radare2/libr/core/cmd_print.c

7830 lines
212 KiB
C

/* radare - LGPL - Copyright 2009-2022 - pancake */
#include "r_asm.h"
#include "r_core.h"
#include "r_config.h"
#include "r_util.h"
#include "r_types.h"
#include <limits.h>
#define R_CORE_MAX_DISASM (1024 * 1024 * 8)
#define PF_USAGE_STR "pf[.k[.f[=v]]|[v]]|[n]|[0|cnt][fmt] [a0 a1 ...]"
static int printzoomcallback(void *user, int mode, ut64 addr, ut8 *bufz, ut64 size);
static const char *help_msg_pa[] = {
"Usage: pa[edD]", "[asm|hex]", "print (dis)assembled",
"pa", " [assembly]", "print hexpairs of the given assembly expression",
"paD", " [hexpairs]", "print assembly expression from hexpairs and show hexpairs",
"pad", " [hexpairs]", "print assembly expression from hexpairs (alias for pdx, pix)",
"pade", " [hexpairs]", "print ESIL expression from hexpairs",
"pae", " [assembly]", "print ESIL expression of the given assembly expression",
NULL
};
static const char *help_msg_psz[] = {
"Usage: psz[jl]", "", "print zero-terminated string",
"psz", "", "print zero-terminated string",
"psz*", "", "r2 command to write the null-terminated string in here",
"pszj", "", "print zero-terminated string as json",
"pszl", "", "print strlen of zero-terminated string in current address",
NULL
};
static const char *help_msg_pdf[] = {
"Usage: pdf[bf]", "", "disassemble function",
"pdf", "", "disassemble function",
"pdfs", "", "disassemble function summary",
NULL
};
static const char *help_msg_pp[] = {
"Usage: pp[d]", "", "print patterns",
"pp0", "", "print buffer filled with zeros",
"pp1", "", "print incremental byte pattern (honor lower bits of cur address and bsize)",
"pp2", "", "print incremental word pattern",
"pp4", "", "print incremental dword pattern",
"pp8", "", "print incremental qword pattern",
"ppa", "[lu]", "latin alphabet (lowercase, uppercases restrictions)",
"ppd", "", "print debruijn pattern (see ragg2 -P, -q and wopD)",
"ppf", "", "print buffer filled with 0xff",
"ppn", "", "numeric pin patterns",
NULL
};
static const char *help_msg_pc[] = {
"Usage:", "pc", " # Print in code",
"pc", "", "C",
"pc*", "", "print 'wx' r2 commands",
"pcA", "", ".bytes with instructions in comments",
"pca", "", "GAS .byte blob",
"pcc", "", "C char * multiline string",
"pcd", "", "C dwords (8 byte)",
"pch", "", "C half-words (2 byte)",
"pci", "", "C array of bytes with instructions",
"pcJ", "", "javascript",
"pcj", "", "json",
"pck", "", "kotlin",
"pco", "", "Objective-C",
"pcp", "", "python",
"pcr", "", "rust",
"pcS", "", "shellscript that reconstructs the bin",
"pcs", "", "string",
"pcv", "", "JaVa",
"pcV", "", "V (vlang.io)",
"pcw", "", "C words (4 byte)",
"pcy", "", "yara",
"pcz", "", "Swift",
NULL
};
static const char *help_msg_p6[] = {
"Usage: p6[de]", "[len]", "base64 decoding/encoding",
"p6d", "[len]", "decode base64",
"p6e", "[len]", "encode base64",
NULL
};
static const char *help_msg_pF[] = {
"Usage: pF[apdbA]", "[len]", "parse ASN1, PKCS, X509, DER, protobuf, axml",
"pFa", "[len]", "decode ASN1 from current block",
"pFaq", "[len]", "decode ASN1 from current block (quiet output)",
"pFb", "[len]", "decode raw proto buffers.",
"pFbv", "[len]", "decode raw proto buffers (verbose).",
"pFo", "[len]", "decode ASN1 OID",
"pFp", "[len]", "decode PKCS7",
"pFx", "[len]", "Same with X509",
"pFX", "[len]", "print decompressed xz block",
"pFA", "[len]", "decode Android Binary XML from current block",
"pFB", "[j] [len]", "decode iOS Binary PLIST from current block",
NULL
};
static const char* help_msg_pr[] = {
"Usage: pr[glx]", "[size]", "print N raw bytes",
"prc", "[=fep..]", "print bytes as colors in palette",
"prg", "[?]", "print raw GUNZIPped block",
"pri", "[aA2r]", "print raw image, honor hex.cols",
"print", "[f][ln]", "print, println, printf, printfln",
"prl", "", "print raw with lines offsets",
"prx", "", "printable chars with real offset (hyew)",
"prz", "", "print raw zero terminated string",
NULL
};
static const char *help_msg_prg[] = {
"Usage: prg[?ilo]", " [len]", "print raw inflated/decompressed block",
"prg", "", "print gunzipped data of current block",
"prgl", "", "decompress current block using LZ4 (adjust blocksize)",
"prgi", "", "show consumed bytes when inflating",
"prgo", "", "show output bytes after inflating",
NULL
};
static const char *help_msg_amper[] = {
"Usage:", "&[-|<cmd>]", "Manage tasks (WARNING: Experimental. Use with caution!)",
"&", " <cmd>", "run <cmd> in a new background task",
"&:", "<cmd>", "queue <cmd> to be executed later when possible",
"&t", " <cmd>", "run <cmd> in a new transient background task (auto-delete when it is finished)",
"&", "", "list all tasks",
"&j", "", "list all tasks (in JSON)",
"&=", " 3", "show output of task 3",
"&b", " 3", "break task 3",
"&w", "", "wait for queued commands and execute them (^C to end)",
"&-", " 1", "delete task #1 or schedule for deletion when it is finished",
"&", "-*", "delete all done tasks",
"&?", "", "show this help",
"&&", " 3", "wait until task 3 is finished",
"&&", "", "wait until all tasks are finished",
NULL
};
static const char *help_msg_p[] = {
"Usage:", "p[=68abcdDfiImrstuxz] [arg|len] [@addr]", "",
"p", "[b|B|xb] [len] ([S])", "bindump N bits skipping S bytes",
"p", "[iI][df] [len]", "print N ops/bytes (f=func) (see pi? and pdi)",
"p", "[kK] [len]", "print key in randomart (K is for mosaic)",
"p-", "[?][jh] [mode]", "bar|json|histogram blocks (mode: e?search.in)",
"p2", " [len]", "8x8 2bpp-tiles",
"p3", " [file]", "print stereogram (3D)",
"p6", "[de] [len]", "base64 decode/encode",
"p8", "[?][j] [len]", "8bit hexpair list of bytes",
"p=", "[?][bep] [N] [L] [b]", "show entropy/printable chars/chars bars",
"pa", "[edD] [arg]", "pa:assemble pa[dD]:disasm or pae: esil from hex",
"pA", "[n_ops]", "show n_ops address and type",
"pb", "[?] [n]", "bitstream of N bits",
"pB", "[?] [n]", "bitstream of N bytes",
"pc", "[?][p] [len]", "output C (or python) format",
"pC", "[aAcdDxw] [rows]", "print disassembly in columns (see hex.cols and pdi)",
"pd", "[?] [sz] [a] [b]", "disassemble N opcodes (pd) or N bytes (pD)",
"pf", "[?][.nam] [fmt]", "print formatted data (pf.name, pf.name $<expr>)",
"pF", "[?][apx]", "print asn1, pkcs7 or x509",
"pg", "[?][x y w h] [cmd]", "create new visual gadget or print it (see pg? for details)",
"ph", "[?][=|hash] ([len])", "calculate hash for a block",
"pi", "[?][bdefrj] [num]", "print instructions",
"pI", "[?][iI][df] [len]", "print N instructions/bytes (f=func)",
"pj", "[?] [len]", "print as indented JSON",
"pm", "[?] [magic]", "print libmagic data (see pm? and /m?)",
"po", "[?] hex", "print operation applied to block (see po?)",
"pp", "[?][sz] [len]", "print patterns, see pp? for more help",
"pq", "[?][is] [len]", "print QR code with the first Nbytes",
"pr", "[?][glx] [len]", "print N raw bytes (in lines or hexblocks, 'g'unzip)",
"ps", "[?][pwz] [len]", "print pascal/wide/zero-terminated strings",
"pt", "[?][dn] [len]", "print different timestamps",
"pu", "[?][w] [len]", "print N url encoded bytes (w=wide)",
"pv", "[?][ejh] [mode]", "show value of given size (1, 2, 4, 8)",
"pwd", "", "display current working directory",
"px", "[?][owq] [len]", "hexdump of N bytes (o=octal, w=32bit, q=64bit)",
"pz", "[?] [len]", "print zoom view (see pz? for help)",
NULL
};
static const char *help_msg_pxd[] = {
"Usage:", "pxd[1248] ([len])", "show decimal byte/short/word/dword dumps",
"pxd", "", "show base10 signed decimal hexdumps",
"pxd1", "", "show byte hexdump (int8_t)",
"pxd2", "", "show short hexdump (int16_t)",
"pxd4", "", "show dword hexdump (int32_t)",
"pxd8", "", "show qword hexdump (int64_t)",
NULL
};
static const char *help_msg_p_equal[] = {
"Usage:", "p=[=bep?][qj] [N] ([len]) ([offset]) ", "show entropy/printable chars/chars bars",
"e ", "zoom.in", "specify range for zoom",
"p=", "", "print bytes of current block in bars",
"p==", "[..]", "same subcommands as p=, using column bars instead of rows",
"p=", "0", "number of 0x00 bytes for each filesize/blocksize",
"p=", "2", "short (signed int16) bars, good for waves",
"p=", "a", "analysis bbs maps",
"p=", "A", "analysis stats maps (see p-)",
"p=", "b", "same as above",
"p=", "c", "number of calls per block",
"p=", "d", "min/max/number of unique bytes in block",
"p=", "e", "entropy for each filesize/blocksize",
"p=", "F", "number of 0xFF bytes for each filesize/blocksize",
"p=", "i", "number of invalid instructions per block",
"p=", "j", "number of jumps and conditional jumps in block",
"p=", "m", "number of flags and marks in block",
"p=", "p", "number of printable bytes for each filesize/blocksize",
"p=", "s", "number of syscall and privileged instructions",
"p=", "z", "number of chars in strings in block",
NULL
};
static const char *help_msg_pj[] = {
"Usage:", "pj[..] [size]", "",
"pj", "", "print current block as indented JSON",
"pj.", "", "print as indented JSON from 0 to the current offset",
"pj..", "", "print JSON path from 0 to the current offset",
NULL
};
static const char *help_msg_p_minus[] = {
"Usage:", "p-[hj] [nblocks] ", "bar|json|histogram blocks",
"p-", "", "show ascii-art bar of metadata in file boundaries",
"p-e", "", "show ascii-art bar of entropy per block",
"p-h", "", "show histogram analysis of metadata per block",
"p-j", "", "show json format",
NULL
};
static const char *help_msg_pd[] = {
"Usage:", "p[dD][ajbrfils] [[-]len]", " # Print N bytes/instructions bw/forward",
"NOTE: ", "len", "parameter can be negative",
"NOTE: ", "", "Pressing ENTER on empty command will repeat last print command in next page",
"pD", " N", "disassemble N bytes",
"pd", " -N", "disassemble N instructions backwards",
"pd", " N", "disassemble N instructions",
"pd--", "[n]", "context disassembly of N instructions",
"pda", "[?]", "disassemble all possible opcodes (byte per byte)",
"pdb", "[?]", "disassemble basic block",
"pdc", "[?][c]", "pseudo disassembler output in C-like syntax",
"pdC", "", "show comments found in N instructions",
"pde", "[q|qq|j] [N]", "disassemble N instructions following execution flow from current PC",
"pdo", "[N]", "convert esil expressions of N instructions to C (bytes for pdO)",
"pdf", "[?]", "disassemble function",
"pdi", "", "like 'pi', with offset and bytes",
"pdj", "", "disassemble to json",
"pdJ", "", "formatted disassembly like pd as json",
"pdk", "[?]", "disassemble all methods of a class",
"pdl", "", "show instruction sizes",
"pdp", "[?]", "disassemble by following pointers to read ropchains",
"pdr", "[?]", "recursive disassemble across the function graph",
"pdr.", "", "recursive disassemble across the function graph (from current basic block)",
"pdR", "", "recursive disassemble block size bytes without analyzing functions",
"pds", "[?]", "disassemble summary (strings, calls, jumps, refs) (see pdsf and pdfs)",
"pdu", "[aceios?]", "disassemble instructions until condition",
"pd,", " [n] [query]", "disassemble N instructions in a table (see dtd for debug traces)",
"pdx", " [hex]", "alias for pad or pix",
NULL
};
static const char *help_msg_pda[] = {
"Usage:", "pda[j]", "Print disassembly of all possbile opcodes",
"pdaj", "", "display the disassembly of all possbile opcodes (byte per byte) in JSON",
NULL
};
static const char *help_msg_pde[] = {
"Usage:", "pde[q|qq|j] [N]", "Disassemble N instructions following execution flow from current PC",
"pde", "", "disassemble N instructions following execution flow from current PC",
"pdej", "", "disassemble N instructions following execution flow from current PC in JSON",
NULL
};
static const char *help_msg_pdp[] = {
"Usage:", "pdp", "Disassemble by following pointers to read ropchains",
"pdp", "", "disassemble by following pointers to read ropchains",
NULL
};
static const char *help_msg_ph[] = {
"Usage:", "ph", " [algorithm] ([size])",
"ph", " md5", "compute md5 hash of current block",
"ph.", " sha1 32 @ 0x1000", "calculate sha1 of 32 bytes starting at 0x1000",
NULL
};
static const char *help_msg_pdr[] = {
"Usage:", "pdr", "Disassemble N instructions following execution flow from current PC",
"pdr", "", "recursive disassemble across the function graph",
"pdr.", "", "recursive disassemble across the function graph (from current basic block)",
NULL
};
static const char *help_msg_pds[] = {
"Usage:", "pds[bf]", "Summarize N bytes or function",
"pdsf", "", "summarize the current function",
"pdsb", "", "summarize N bytes",
NULL
};
static const char *help_msg_pdu[] = {
"Usage:", "pdu[aceios][j]", "Disassemble instructions until condition",
"pdua", "[j] [addr]", "disassemble until address",
"pduc", "[j]", "disassemble until call",
//"pdue", "[j] [expr]", "disassemble until esil expression",
"pdui", "[j] [inst]", "disassemble until instruction (e.g.: add esp, 0x20)",
"pduo", "[j] [opcode]", "disassemble until opcode (e.g.: mul)",
"pdus", "[j]", "disassemble until syscall",
NULL
};
static const char *help_msg_pf[] = {
"Usage:", PF_USAGE_STR, "",
"Commands:", "", "",
"pf", " fmt", "show data using the given format-string. See 'pf\?\?' and 'pf\?\?\?'.",
"pf", "?", "help on commands",
"pf", "??", "help on format characters",
"pf", "???", "show usage examples",
"pf* ", "fmt_name|fmt", "show data using (named) format as r2 flag create commands",
"pf.", "", "list all format definitions",
"pf.", "fmt_name", "show data using named format",
"pf.", "fmt_name.field_name", "show specific data field using named format",
"pf.", "fmt_name.field_name=33", "set new value for the specified field in named format",
"pf.", "fmt_name.field_name[i]", "show element i of array field_name",
"pf.", "fmt_name [0|cnt]fmt", "define a new named format",
"pf?", "fmt_name", "show the definition of a named format",
"pfc ", "fmt_name|fmt", "show data using (named) format as C string",
"pfd.", "fmt_name", "show data using named format as graphviz commands",
"pfj ", "fmt_name|fmt", "show data using (named) format in JSON",
"pfo", " fdf_name", "load a Format Definition File (fdf)",
"pfo", "", "list all format definition files (fdf)",
"pfq", " fmt ...", "quiet print format (do now show address)",
"pfs", "[.fmt_name| fmt]", "print the size of (named) format in bytes",
"pfv.", "fmt_name[.field]", "print value(s) only for named format. Useful for one-liners",
NULL
};
static const char *help_detail_pf[] = {
"Usage:", PF_USAGE_STR, "",
"Format:", "", "",
" ", "b", "byte (unsigned)",
" ", "B", "resolve enum bitfield (see t?)",
" ", "c", "char (signed byte)",
" ", "C", "byte in decimal",
" ", "d", "0xHEX value (4 bytes) (see 'i' and 'x')",
" ", "D", "disassemble one opcode",
" ", "e", "temporally swap endian",
" ", "E", "resolve enum name (see t?)",
" ", "f", "float value (4 bytes)",
" ", "F", "double value (8 bytes)",
" ", "G", "long double value (16 bytes (10 with padding))",
" ", "i", "signed integer value (4 bytes) (see 'd' and 'x')",
" ", "n", "next char specifies size of signed value (1, 2, 4 or 8 byte(s))",
" ", "N", "next char specifies size of unsigned value (1, 2, 4 or 8 byte(s))",
" ", "o", "octal value (4 byte)",
" ", "p", "pointer reference (2, 4 or 8 bytes)",
" ", "q", "quadword (8 bytes)",
" ", "Q", "uint128_t (16 bytes)",
" ", "r", "CPU register `pf r (eax)plop`",
" ", "s", "32bit pointer to string (4 bytes)",
" ", "S", "64bit pointer to string (8 bytes)",
" ", "t", "UNIX timestamp (4 bytes)",
" ", "T", "show Ten first bytes of buffer",
" ", "u", "uleb128 (variable length)",
" ", "w", "word (2 bytes unsigned short in hex)",
" ", "x", "0xHEX value and flag (fd @ addr) (see 'd' and 'i')",
" ", "X", "show formatted hexpairs",
" ", "z", "null terminated string",
" ", "Z", "null terminated wide string",
" ", "?", "data structure `pf ? (struct_name)example_name`",
" ", "*", "next char is a pointer (honors asm.bits)",
" ", "+", "toggle show flags for each offset",
" ", ":", "skip 4 bytes",
" ", ".", "skip 1 byte",
" ", ";", "rewind 4 bytes",
" ", ",", "rewind 1 byte",
NULL
};
static const char *help_detail2_pf[] = {
"Usage:", PF_USAGE_STR, "",
"Examples:", "", "",
"pf", " 3xi foo bar", "3-array of struct, each with named fields: 'foo' as hex, and 'bar' as int",
"pf", " B (BitFldType)arg_name`", "bitfield type",
"pf", " E (EnumType)arg_name`", "enum type",
"pf", " obj=xxdz prev next size name", "same as above",
"pf", " *z*i*w nb name blob", "print the pointers with given labels",
"pf", " iwq foo bar troll", "print the iwq format with foo, bar, troll as the respective names for the fields",
"pf", " 0iwq foo bar troll", "same as above, but considered as a union (all fields at offset 0)",
"pf.", "obj xxdz prev next size name", "define the obj format as xxdz",
"pf.", "plop ? (troll)mystruct", "use structure troll previously defined",
"pfj.", "plop @ 0x14", "apply format object at the given offset",
"pf", " 10xiz pointer length string", "print a size 10 array of the xiz struct with its field names",
"pf", " 5sqw string quad word", "print an array with sqw struct along with its field names",
"pf", " {integer}? (bifc)", "print integer times the following format (bifc)",
"pf", " [4]w[7]i", "print an array of 4 words and then an array of 7 integers",
"pf", " ic...?i foo bar \"(pf xw yo foo)troll\" yo", "print nested anonymous structures",
"pf", " ;..x", "print value located 6 bytes from current offset",
"pf", " [10]z[3]i[10]Zb", "print an fixed size str, widechar, and var",
"pfj", " +F @ 0x14","print the content at given offset with flag",
"pf", " n2", "print signed short (2 bytes) value. Use N instead of n for printing unsigned values",
"pf", " [2]? (plop)structname @ 0", "prints an array of structs",
"pf", " eqew bigWord beef", "swap endianness and print with given labels",
"pf", ".foo rr (eax)reg1 (eip)reg2", "create object referencing to register values ",
"pf", " tt troll plop", "print time stamps with labels troll and plop",
NULL
};
static const char *help_msg_pi[] = {
"Usage:", "pi[bdefrj] [num]", "",
"pia", "", "print all possible opcodes (byte per byte)",
"pib", "", "print instructions of basic block",
"pid", "", "alias for pdi",
"pie", "", "print offset + esil expression",
"pif", "[?]", "print instructions of function",
"pij", "", "print N instructions in JSON",
"pir", "", "like 'pdr' but with 'pI' output",
"piu", "[q] [optype]", "disassemble until instruction of given optype is found (See /atl)",
"pix", " [hexpairs]", "alias for pdx and pad",
NULL
};
static const char *help_msg_pie[] = {
"Usage:", "pie[fq]", " # print esil of N instructions",
"pie", "", "print esil of N instructions",
"pieq", "", "same as above but hiding the offset",
"pief", "", "print esil of all the function basic blocks",
"piefq", "", "same as above but hiding the offset",
// "piej", "", "same but in JSON format",
NULL
};
static const char *help_msg_pif[] = {
"Usage:", "pif[cj]", " # print instructions from function",
"pif", "", "print function instructions",
"pifj", "", "same as above but in JSON format",
"pifc", "", "print all calls from this function", // pif~call?
"pifcj", "", "print all calls from this function in JSON format",
NULL
};
static const char *help_msg_po[] = {
"Usage:","po[24aAdlmorsx]"," [hexpairs] @ addr[!bsize]",
"po[24aAdlmorsx]","", "without hexpair values, clipboard is used",
"po2"," [val]","2= 2 byte endian swap",
"po4"," [val]", "4= 4 byte endian swap",
"poa"," [val]", "+= addition (f.ex: poa 0102)",
"poA"," [val]","&= and",
"pod"," [val]", "/= divide",
"pol"," [val]","<<= shift left",
"pom"," [val]", "*= multiply",
"poo"," [val]","|= or",
"por"," [val]", ">>= shift right",
"pos"," [val]", "-= substraction",
"pox"," [val]","^= xor (f.ex: pox 0x90)",
NULL
};
static const char *help_msg_pq[] = {
"Usage:", "pq[?z] [len]", "generate QR code in ascii art",
"pq", " 32", "print QR code with the current 32 bytes",
"pqz", "", "print QR code with current string in current offset",
NULL
};
static const char *help_msg_ps[] = {
"Usage:", "ps[abijqpsuwWxz+] [N]", "Print String",
"ps", "", "print string",
"ps+", "[j]", "print libc++ std::string (same-endian, ascii, zero-terminated)",
"psa", "", "print any type of string (psp/psw/psW/psz/..)",
"psb", "", "print strings in current block",
"psi", "", "print string inside curseek",
"psj", "", "print string in JSON format",
"psp", "[j]", "print pascal string",
"psq", "", "alias for pqs",
"pss", "", "print string in screen (wrap width)",
"psu", "[zj]", "print utf16 unicode (json)",
"psw", "[j]", "print 16bit wide string",
"psW", "[j]", "print 32bit wide string",
"psx", "", "show string with escaped chars",
"psz", "[?] [lj]", "print zero-terminated string",
NULL
};
static const char *help_msg_pt[] = {
"Usage: pt", "[dn]", "print timestamps",
"pt.", "", "print current time",
"pt", "", "print UNIX time (32 bit `cfg.bigendian`) Since January 1, 1970",
"ptd", "", "print DOS time (32 bit `cfg.bigendian`) Since January 1, 1980",
"pth", "", "print HFS time (32 bit `cfg.bigendian`) Since January 1, 1904",
"ptn", "", "print NTFS time (64 bit `cfg.bigendian`) Since January 1, 1601",
NULL
};
static const char *help_msg_pv[] = {
"Usage: pv[1248z][j]", "", "Print value(s) given size and endian",
"pv", "", "print bytes based on asm.bits",
"pv1", "", "print 1 byte in memory",
"pv2", "", "print 2 bytes in memory",
"pv4", "", "print 4 bytes in memory",
"pv8", "", "print 8 bytes in memory",
"pv8", "", "print 8 bytes in memory",
"pve", " [1234] ([bsize])", "print value with any endian (1234, ",
"pvz", "", "print value as string (alias for ps)",
NULL
};
static const char *help_msg_px[] = {
"Usage:", "px[0afoswqWqQ][f]", " # Print heXadecimal",
"px", "", "show hexdump",
"px--", "[n]", "context hexdump (the hexdump version of pd--3)",
"px/", "", "same as x/ in gdb (help x)",
"px0", "", "8bit hexpair list of bytes until zero byte",
"pxa", "", "show annotated hexdump",
"pxA", "[?]", "show op analysis color map",
"pxb", "", "dump bits in hexdump form", // should be px1?
"pxc", "", "show hexdump with comments",
"pxd", "[?1248]", "signed integer dump (1 byte, 2 and 4)",
"pxe", "", "emoji hexdump! :)",
"pxf", "", "show hexdump of current function",
"pxh", "", "show hexadecimal half-words dump (16bit)",
"pxH", "", "same as above, but one per line",
"pxi", "", "HexII compact binary representation",
"pxl", "", "display N lines (rows) of hexdump",
"pxo", "", "show octal dump",
"pxq", "", "show hexadecimal quad-words dump (64bit)",
"pxQ", "[q]", "same as above, but one per line",
"pxr", "[1248][qj]", "show hexword references (q=quiet, j=json)",
"pxs", "", "show hexadecimal in sparse mode",
"pxt", "[*.] [origin]", "show delta pointer table in r2 commands",
"pxw", "", "show hexadecimal words dump (32bit)",
"pxW", "[q]", "same as above, but one per line (q=quiet)",
"pxx", "", "show N bytes of hex-less hexdump",
"pxX", "", "show N words of hex-less hexdump",
NULL
};
const char *help_msg_pz[] = {
"Usage: pz [len]", "", "print zoomed blocks (filesize/N)",
"e ", "zoom.maxsz", "max size of block",
"e ", "zoom.from", "start address",
"e ", "zoom.to", "end address",
"e ", "zoom.byte", "specify how to calculate each byte",
"pzp", "", "number of printable chars",
"pzf", "", "count of flags in block",
"pzs", "", "strings in range",
"pz0", "", "number of bytes with value '0'",
"pzF", "", "number of bytes with value 0xFF",
"pze", "", "calculate entropy and expand to 0-255 range",
"pzh", "", "head (first byte value); This is the default mode",
// "WARNING: On big files, use 'zoom.byte=h' or restrict ranges\n");
NULL
};
const char *help_msg_pxA[] = {
"Usage: pxA [len]", "", "show op analysis color map",
"$$", "", "int/swi/trap/new",
"+-*/", "", "math ops",
"->", "", "push",
"..", "", "nop",
"<-", "", "pop",
"<<>>", "", "shift ops",
"==", "", "cmp/test",
"XX", "", "invalid",
"_C", "", "call",
"_J", "", "jump",
"_R", "", "ret",
"cJ", "", "conditional jump",
"io", "", "in/out ops",
"mv", "", "move,lea,li",
"|&^", "", "bin ops",
NULL
};
static const ut32 colormap[256] = {
0x000000, 0x560000, 0x640000, 0x750000, 0x870000, 0x9b0000, 0xb00000, 0xc60000, 0xdd0000, 0xf50000, 0xff0f0f, 0xff2828, 0xff4343, 0xff5e5e, 0xff7979, 0xfe9595,
0x4c1600, 0x561900, 0x641e00, 0x752300, 0x872800, 0x9b2e00, 0xb03400, 0xc63b00, 0xdd4200, 0xf54900, 0xff570f, 0xff6928, 0xff7b43, 0xff8e5e, 0xffa179, 0xfeb595,
0x4c3900, 0x564000, 0x644b00, 0x755700, 0x876500, 0x9b7400, 0xb08400, 0xc69400, 0xdda600, 0xf5b800, 0xffc30f, 0xffc928, 0xffd043, 0xffd65e, 0xffdd79, 0xfee495,
0x4c4c00, 0x565600, 0x646400, 0x757500, 0x878700, 0x9b9b00, 0xb0b000, 0xc6c600, 0xdddd00, 0xf5f500, 0xffff0f, 0xffff28, 0xffff43, 0xffff5e, 0xffff79, 0xfffe95,
0x324c00, 0x395600, 0x426400, 0x4e7500, 0x5a8700, 0x679b00, 0x75b000, 0x84c600, 0x93dd00, 0xa3f500, 0xafff0f, 0xb7ff28, 0xc0ff43, 0xc9ff5e, 0xd2ff79, 0xdbfe95,
0x1f4c00, 0x235600, 0x296400, 0x307500, 0x388700, 0x409b00, 0x49b000, 0x52c600, 0x5cdd00, 0x66f500, 0x73ff0f, 0x82ff28, 0x91ff43, 0xa1ff5e, 0xb1ff79, 0xc1fe95,
0x004c00, 0x005600, 0x006400, 0x007500, 0x008700, 0x009b00, 0x00b000, 0x00c600, 0x00dd00, 0x00f500, 0x0fff0f, 0x28ff28, 0x43ff43, 0x5eff5e, 0x79ff79, 0x95fe95,
0x004c19, 0x00561c, 0x006421, 0x007527, 0x00872d, 0x009b33, 0x00b03a, 0x00c642, 0x00dd49, 0x00f551, 0x0fff5f, 0x28ff70, 0x43ff81, 0x5eff93, 0x79ffa6, 0x95feb8,
0x004c4c, 0x005656, 0x006464, 0x007575, 0x008787, 0x009b9b, 0x00b0b0, 0x00c6c6, 0x00dddd, 0x00f5f5, 0x0ffffe, 0x28fffe, 0x43fffe, 0x5efffe, 0x79ffff, 0x95fffe,
0x00394c, 0x004056, 0x004b64, 0x005775, 0x006587, 0x00749b, 0x0084b0, 0x0094c6, 0x00a6dd, 0x00b8f5, 0x0fc3ff, 0x28c9ff, 0x43d0ff, 0x5ed6ff, 0x79ddff, 0x95e4fe,
0x00264c, 0x002b56, 0x003264, 0x003a75, 0x004387, 0x004d9b, 0x0058b0, 0x0063c6, 0x006edd, 0x007af5, 0x0f87ff, 0x2893ff, 0x43a1ff, 0x5eaeff, 0x79bcff, 0x95cafe,
0x00134c, 0x001556, 0x001964, 0x001d75, 0x002187, 0x00269b, 0x002cb0, 0x0031c6, 0x0037dd, 0x003df5, 0x0f4bff, 0x285eff, 0x4372ff, 0x5e86ff, 0x799aff, 0x95b0fe,
0x19004c, 0x1c0056, 0x210064, 0x270075, 0x2d0087, 0x33009b, 0x3a00b0, 0x4200c6, 0x4900dd, 0x5100f5, 0x5f0fff, 0x7028ff, 0x8143ff, 0x935eff, 0xa679ff, 0xb895fe,
0x33004c, 0x390056, 0x420064, 0x4e0075, 0x5a0087, 0x67009b, 0x7500b0, 0x8400c6, 0x9300dd, 0xa300f5, 0xaf0fff, 0xb728ff, 0xc043ff, 0xc95eff, 0xd279ff, 0xdb95fe,
0x4c004c, 0x560056, 0x640064, 0x750075, 0x870087, 0x9b009b, 0xb000b0, 0xc600c6, 0xdd00dd, 0xf500f5, 0xfe0fff, 0xfe28ff, 0xfe43ff, 0xfe5eff, 0xfe79ff, 0xfe95fe,
0x4c0032, 0x560039, 0x640042, 0x75004e, 0x87005a, 0x9b0067, 0xb00075, 0xc60084, 0xdd0093, 0xf500a3, 0xff0faf, 0xff28b7, 0xff43c0, 0xff5ec9, 0xff79d2, 0xffffff,
};
static void __cmd_pad(RCore *core, const char *arg) {
if (*arg == '?') {
eprintf ("Usage: pad [hexpairs] # disassembly given bytes\n");
return;
}
r_asm_set_pc (core->rasm, core->offset);
bool is_pseudo = r_config_get_i (core->config, "asm.pseudo");
RAsmCode *acode = r_asm_mdisassemble_hexstr (core->rasm, is_pseudo ? core->parser : NULL, arg);
if (acode) {
r_cons_print (acode->assembly);
r_asm_code_free (acode);
} else {
eprintf ("Invalid hexstr\n");
}
}
static void first_flag_chars(const char *name, char *ch, char *ch2) {
name = r_name_filter_ro (name);
// name = "ab"; // r_name_filter_ro (name);
/*
while (*name == '_') {
name++;
}
*/
const bool two = name[0] && name[1];
*ch = two? name[0]: ' ';
*ch2 = two? name[1]: name[0]; // two? 1: 0];
}
// colordump
static void cmd_prc(RCore *core, const ut8* block, int len) {
const char *chars = " .,:;!O@#";
bool square = r_config_get_i (core->config, "scr.square");
int i, j;
char ch, ch2, *color;
int cols = r_config_get_i (core->config, "hex.cols");
bool show_color = r_config_get_i (core->config, "scr.color");
bool show_flags = r_config_get_i (core->config, "asm.flags");
bool show_section = r_config_get_i (core->config, "hex.section");
bool show_offset = r_config_get_i (core->config, "hex.offset");
bool show_cursor = core->print->cur_enabled;
bool show_unalloc = core->print->flags & R_PRINT_FLAGS_UNALLOC;
if (cols < 1 || cols > 0xfffff) {
cols = 32;
}
for (i = 0; i < len; i += cols) {
if (show_section) {
const char * name = r_core_get_section_name (core, core->offset + i);
r_cons_printf ("%20s ", r_str_get (name));
}
if (show_offset) {
r_print_addr (core->print, core->offset + i);
}
for (j = i; j < i + cols; j ++) {
if (j >= len) {
break;
}
if (show_color) {
ut32 color_val = colormap[block[j]];
int brightness = ((color_val & 0xff0000) >> 16)
+ 2 * ((color_val & 0xff00) >> 8)
+ (color_val & 0xff) / 2;
char *str = r_str_newf ("rgb:%s rgb:%06x",
brightness <= 0x7f * 3 ? "fff" : "000", color_val);
color = r_cons_pal_parse (str, NULL);
free (str);
if (show_cursor && core->print->cur == j) {
ch = '_';
} else {
ch = ' ';
}
} else {
color = strdup ("");
if (show_cursor && core->print->cur == j) {
ch = '_';
} else {
const int idx = (int)(((double)block[j] / 255) * (strlen (chars) - 1));
ch = chars[idx];
}
}
if (show_unalloc &&
!core->print->iob.is_valid_offset (core->print->iob.io, core->offset + j, false)) {
ch = core->print->io_unalloc_ch;
if (show_color) {
free (color);
color = strdup (Color_RESET);
if (ch == ' ') {
ch = '.';
}
} else {
ch = strchr (chars, ch) ? '?' : ch;
}
}
if (square) {
if (show_flags) {
RFlagItem *fi = r_flag_get_i (core->flags, core->offset + j);
if (fi) {
first_flag_chars (fi->name, &ch, &ch2);
} else {
ch2 = ch;
}
} else {
ch2 = ch;
}
r_cons_printf ("%s%c%c", color, ch, ch2);
} else {
r_cons_printf ("%s%c", color, ch);
}
free (color);
}
if (show_color) {
r_cons_printf (Color_RESET);
}
r_cons_newline ();
}
}
static void cmd_printmsg(RCore *core, const char *input) {
if (!strcmp (input, "ln")) {
r_cons_newline ();
} else if (!strncmp (input, "ln ", 3)) {
r_cons_println (input + 3);
} else if (!strncmp (input, " ", 1)) {
r_cons_print (input + 1);
} else if (!strncmp (input, "f ", 2)) {
eprintf ("TODO: waiting for r2shell\n");
} else if (!strncmp (input, "fln ", 2)) {
eprintf ("TODO: waiting for r2shell\n");
} else {
eprintf ("Usage: print, println, printf, printfln");
}
}
static void cmd_prc_zoom(RCore *core, const char *input) {
const char *chars = " .,:;!O@#";
bool square = r_config_get_i (core->config, "scr.square");
int i, j;
char ch, ch2, *color;
int cols = r_config_get_i (core->config, "hex.cols");
bool show_color = r_config_get_i (core->config, "scr.color");
bool show_flags = r_config_get_i (core->config, "asm.flags");
bool show_cursor = core->print->cur_enabled;
bool show_offset = r_config_get_i (core->config, "hex.offset");
bool show_unalloc = core->print->flags & R_PRINT_FLAGS_UNALLOC;
ut8 *block = core->block;
int len = core->blocksize;
ut64 from = 0;
ut64 to = 0;
RIOMap* map;
RListIter *iter;
if (cols < 1 || cols > 0xfffff) {
cols = 32;
}
RList *list = r_core_get_boundaries_prot (core, -1, NULL, "zoom");
if (list && r_list_length (list) > 0) {
RListIter *iter1 = list->head;
RIOMap* map1 = iter1->data;
from = map1->itv.addr;
r_list_foreach (list, iter, map) {
to = r_io_map_end (map);
}
} else {
from = core->offset;
to = from + core->blocksize;
}
core->print->zoom->mode = (input && *input)? input[1]: 'e';
r_print_zoom_buf (core->print, core, printzoomcallback, from, to, len, len);
block = core->print->zoom->buf;
switch (core->print->zoom->mode) {
case 'f':
// scale buffer for proper visualization of small numbers as colors
for (i = 0; i < core->print->zoom->size; i++) {
block[i] *= 8;
}
break;
}
for (i = 0; i < len; i += cols) {
ut64 ea = core->offset + i;
if (show_offset) {
r_print_addr (core->print, ea);
}
for (j = i; j < i + cols; j ++) {
if (j >= len) {
break;
}
if (show_color) {
char *str = r_str_newf ("rgb:fff rgb:%06x", colormap[block[j]]);
color = r_cons_pal_parse (str, NULL);
free (str);
if (show_cursor && core->print->cur == j) {
ch = '_';
} else {
ch = ' ';
}
} else {
color = strdup ("");
if (show_cursor && core->print->cur == j) {
ch = '_';
} else {
const int idx = (int)(((double)block[j] / 255) * (strlen (chars) - 1));
ch = chars[idx];
}
}
if (show_unalloc &&
!core->print->iob.is_valid_offset (core->print->iob.io, core->offset + j, false)) {
ch = core->print->io_unalloc_ch;
if (show_color) {
free (color);
color = strdup (Color_RESET);
if (ch == ' ') {
ch = '.';
}
} else {
ch = strchr (chars, ch) ? '?' : ch;
}
}
if (square) {
if (show_flags) {
RFlagItem *fi = r_flag_get_i (core->flags, core->offset + j);
if (fi) {
if (fi->name[1]) {
ch = fi->name[0];
ch2 = fi->name[1];
} else {
ch = ' ';
ch2 = fi->name[0];
}
} else {
ch2 = ch;
}
} else {
ch2 = ch;
}
r_cons_printf ("%s%c%c", color, ch, ch2);
} else {
r_cons_printf ("%s%c", color, ch);
}
free (color);
}
if (show_color) {
r_cons_printf (Color_RESET);
}
r_cons_newline ();
}
}
static void cmd_pCd(RCore *core, const char *input) {
int h, w = r_cons_get_size (&h);
int colwidth = (int)((double)r_config_get_i (core->config, "hex.cols") * 2.5);
if (colwidth < 1) {
colwidth = 16;
}
int i, columns = w / colwidth;
int rows = h - 2;
int obsz = core->blocksize;
int user_rows = r_num_math (core->num, input);
bool asm_minicols = r_config_get_i (core->config, "asm.minicols");
char *o_ao = strdup (r_config_get (core->config, "asm.offset"));
char *o_ab = strdup (r_config_get (core->config, "asm.bytes"));
if (asm_minicols) {
r_config_set (core->config, "asm.offset", "false");
// r_config_set (core->config, "asm.bytes", "false");
}
r_config_set (core->config, "asm.bytes", "false");
if (user_rows > 0) {
rows = user_rows + 1;
}
r_cons_push ();
RConsCanvas *c = r_cons_canvas_new (w, rows);
ut64 osek = core->offset;
c->color = r_config_get_i (core->config, "scr.color");
r_core_block_size (core, rows * 32);
for (i = 0; i < columns; i++) {
(void) r_cons_canvas_gotoxy (c, i * (w / columns), 0);
char *cmd = r_str_newf ("pid %d @i:%d", rows, rows * i);
char *dis = r_core_cmd_str (core, cmd);
r_cons_canvas_write (c, dis);
free (cmd);
free (dis);
}
r_core_block_size (core, obsz);
r_core_seek (core, osek, true);
r_cons_pop ();
r_cons_canvas_print (c);
r_cons_canvas_free (c);
if (asm_minicols) {
r_config_set (core->config, "asm.offset", o_ao);
r_config_set (core->config, "asm.bytes", o_ab);
}
r_config_set (core->config, "asm.bytes", o_ab);
free (o_ao);
free (o_ab);
}
static void findMethodBounds(RList *methods, ut64 *min, ut64 *max) {
RBinSymbol *sym;
RListIter *iter;
ut64 at_min = UT64_MAX;
ut64 at_max = 0LL;
r_list_foreach (methods, iter, sym) {
if (sym->vaddr) {
if (sym->vaddr < at_min) {
at_min = sym->vaddr;
}
if (sym->vaddr + sym->size > at_max) {
at_max = sym->vaddr + sym->size;
}
}
}
*min = at_min;
*max = at_max;
}
static ut64 findClassBounds(RCore *core, const char *input, int *len) {
ut64 min = 0, max = 0;
RListIter *iter;
RBinClass *c;
RList *cs = r_bin_get_classes (core->bin);
r_list_foreach (cs, iter, c) {
if (!c || !c->name || !c->name[0]) {
continue;
}
findMethodBounds (c->methods, &min, &max);
if (len) {
*len = (max - min);
}
return min;
}
return 0;
}
static void cmd_pCD(RCore *core, const char *input) {
int h, w = r_cons_get_size (&h);
int i;
int rows = h - 2;
int obsz = core->blocksize;
int user_rows = r_num_math (core->num, input);
bool asm_minicols = r_config_get_i (core->config, "asm.minicols");
char *o_ao = strdup (r_config_get (core->config, "asm.offset"));
char *o_ab = strdup (r_config_get (core->config, "asm.bytes"));
if (asm_minicols) {
r_config_set (core->config, "asm.offset", "false");
r_config_set (core->config, "asm.bytes", "false");
}
r_config_set (core->config, "asm.bytes", "false");
if (user_rows > 0) {
rows = user_rows + 1;
}
r_cons_push ();
RConsCanvas *c = r_cons_canvas_new (w, rows);
ut64 osek = core->offset;
c->color = r_config_get_i (core->config, "scr.color");
r_core_block_size (core, rows * 32);
char *cmd = NULL;
int columns = 2;
for (i = 0; i < columns; i++) {
switch (i) {
case 0:
(void) r_cons_canvas_gotoxy (c, 0, 0);
cmd = r_str_newf ("dr;?e;?e backtrace:;dbt");
break;
case 1:
(void) r_cons_canvas_gotoxy (c, 28, 0);
// cmd = r_str_newf ("pxw 128@r:SP;pd@r:PC");
cmd = r_str_newf ("%s 128@r:SP;pd@ 0x%"PFMT64x, core->stkcmd, osek);
break;
}
char *dis = r_core_cmd_str (core, cmd);
r_cons_canvas_write (c, dis);
free (cmd);
free (dis);
}
r_core_block_size (core, obsz);
r_core_seek (core, osek, true);
r_cons_pop ();
r_cons_canvas_print (c);
r_cons_canvas_free (c);
if (asm_minicols) {
r_config_set (core->config, "asm.offset", o_ao);
r_config_set (core->config, "asm.bytes", o_ab);
}
r_config_set (core->config, "asm.bytes", o_ab);
free (o_ao);
free (o_ab);
}
static void cmd_pCx(RCore *core, const char *input, const char *xcmd) {
int h, w = r_cons_get_size (&h);
int hex_cols = r_config_get_i (core->config, "hex.cols");
int colwidth = hex_cols * 5;
int i, columns = (int)((double)w / (colwidth * 0.9));
int rows = h - 2;
int user_rows = r_num_math (core->num, input);
r_config_set_i (core->config, "hex.cols", colwidth / 5);
if (user_rows > 0) {
rows = user_rows + 1;
}
RConsCanvas *c = r_cons_canvas_new (w, rows);
if (!c) {
eprintf ("Couldn't allocate a canvas with %d rows\n", rows);
goto err;
}
ut64 tsek = core->offset;
c->color = r_config_get_i (core->config, "scr.color");
int bsize = hex_cols * rows;
if (!strcmp (xcmd, "pxA")) {
bsize *= 12;
}
for (i = 0; i < columns; i++) {
(void) r_cons_canvas_gotoxy (c, i * (w / columns), 0);
char *cmd = r_str_newf ("%s %d @ %"PFMT64u, xcmd, bsize, tsek);
char *dis = r_core_cmd_str (core, cmd);
if (dis) {
r_cons_canvas_write (c, dis);
free (dis);
}
free (cmd);
tsek += bsize - 32;
}
r_cons_canvas_print (c);
r_cons_canvas_free (c);
err:
r_config_set_i (core->config, "hex.cols", hex_cols);
}
static char get_string_type(const ut8 *buf, ut64 len) {
ut64 needle = 0;
int rc, i;
char str_type = 0;
if (!buf) {
return '?';
}
while (needle < len) {
rc = r_utf8_decode (buf + needle, len - needle, NULL);
if (!rc) {
needle++;
continue;
}
if (needle + rc + 2 < len &&
buf[needle + rc + 0] == 0x00 &&
buf[needle + rc + 1] == 0x00 &&
buf[needle + rc + 2] == 0x00) {
str_type = 'w';
} else {
str_type = 'a';
}
for (rc = i = 0; needle < len; i += rc) {
RRune r;
if (str_type == 'w') {
if (needle + 1 < len) {
r = buf[needle + 1] << 8 | buf[needle];
rc = 2;
} else {
break;
}
} else {
rc = r_utf8_decode (buf + needle, len - needle, &r);
if (rc > 1) {
str_type = 'u';
}
}
/*Invalid sequence detected*/
if (!rc) {
needle++;
break;
}
needle += rc;
}
}
return str_type;
}
static void cmd_print_eq_dict(RCore *core, const ut8 *block, int bsz) {
int i;
int min = -1;
int max = 0;
int dict = 0;
int range = 0;
bool histogram[256] = {0};
for (i = 0; i < bsz; i++) {
histogram[block[i]] = true;
}
for (i = 0; i < 256; i++) {
if (histogram[i]) {
if (min == -1) {
min = i;
}
max = i;
dict++;
}
}
range = max - min;
r_cons_printf ("min: %d 0x%x\n", min, min);
r_cons_printf ("max: %d 0x%x\n", max, max);
r_cons_printf ("unique (count): %d 0x%x\n", dict, dict);
r_cons_printf ("range (max-min): %d 0x%x\n", range, range);
r_cons_printf ("size (of block): %d 0x%x\n", bsz, bsz);
}
R_API void r_core_set_asm_configs(RCore *core, char *arch, ut32 bits, int segoff) {
r_config_set (core->config, "asm.arch", arch);
r_config_set_i (core->config, "asm.bits", bits);
// XXX - this needs to be done here, because
// if arch == x86 and bits == 16, segoff automatically changes
r_config_set_i (core->config, "asm.segoff", segoff);
}
static int cmd_pdu(RCore *core, const char *input) {
int ret = 0;
const char *sep = strchr (input, ' ');
const char *arg = sep? sep+1: NULL;
ut64 addr = core->offset;
int len = core->blocksize;
ut8 *buf = malloc (len);
if (buf) {
r_io_read_at (core->io, addr, buf, len);
} else {
eprintf ("Cannot allocate %d byte(s)\n", len);
return 1;
}
switch (*input) {
case 'a': // "pdua"
{
if (input[1] == '?' || (input[1] && input[2] == '?') || !arg) {
r_core_cmd_help_match (core, help_msg_pdu, "pdua", true);
break;
}
ut64 to = r_num_get (core->num, arg);
if (!to) {
eprintf ("Couldn't parse address \"%s\"\n", arg);
ret = 1;
break;
} else if (to < addr) {
eprintf ("Can't print until an earlier address\n");
ret = 2;
break;
} else if (to == addr) {
eprintf ("Can't print until the start address\n");
ret = 2;
break;
}
// pD <count>
ut64 count = to - core->offset;
ret = r_core_cmdf (core, "%s %" PFMT64u, (input[1]== 'j')? "pDJ": "pD", count);
}
break;
case 'c': // "pduc"
if (input[1] == '?' || (input[1] && input[2] == '?')) {
r_core_cmd_help_match (core, help_msg_pdu, "pduc", true);
break;
}
ret = r_core_print_disasm (core, addr, buf, len, 0, opcode, "call", false,
input[1] == 'j', NULL, NULL);
break;
/*case 'e': // "pdue"
if (input[1] == '?' || input[2] == '?' || !arg) {
r_core_cmd_help_match (core, help_msg_pdu, "pdue", true);
break;
}
ret = r_core_print_disasm (core, addr, buf, len, 0, esil, arg, false,
input[1] == 'j', NULL, NULL);
break;*/
case 'i': // "pdui"
if (input[1] == '?' || (input[1] && input[2] == '?') || !arg) {
r_core_cmd_help_match (core, help_msg_pdu, "pdui", true);
break;
}
ret = r_core_print_disasm (core, addr, buf, len, 0, instruction, arg, false,
input[1] == 'j', NULL, NULL);
break;
case 'o': // "pduo"
if (input[1] == '?' || (input[1] && input[2] == '?') || !arg) {
r_core_cmd_help_match (core, help_msg_pdu, "pduo", true);
break;
}
ret = r_core_print_disasm (core, addr, buf, len, 0, opcode, arg, false,
input[1] == 'j', NULL, NULL);
break;
case 's': // "pdus"
if (input[1] == '?' || (input[1] && input[2] == '?')) {
r_core_cmd_help_match (core, help_msg_pdu, "pdus", true);
break;
}
ret = r_core_print_disasm (core, addr, buf, len, 0, instruction, "syscall", false,
input[1] == 'j', NULL, NULL);
break;
case '?': // "pdu?"
default:
r_core_cmd_help (core, help_msg_pdu);
break;
}
free (buf);
return ret;
}
static void cmd_pDj(RCore *core, const char *arg) {
int bsize = r_num_math (core->num, arg);
if (bsize < 0) {
bsize = -bsize;
}
PJ *pj = pj_new ();
if (!pj) {
return;
}
pj_a (pj);
ut8 *buf = malloc (bsize);
if (buf) {
r_io_read_at (core->io, core->offset, buf, bsize);
r_core_print_disasm_json (core, core->offset, buf, bsize, 0, pj);
free (buf);
} else {
eprintf ("cannot allocate %d byte(s)\n", bsize);
}
pj_end (pj);
r_cons_println (pj_string (pj));
pj_free (pj);
}
static void cmd_pdj(RCore *core, const char *arg, ut8* block) {
int nblines = r_num_math (core->num, arg);
PJ *pj = pj_new ();
if (!pj) {
return;
}
pj_a (pj);
r_core_print_disasm_json (core, core->offset, block, core->blocksize, nblines, pj);
pj_end (pj);
r_cons_println (pj_string (pj));
pj_free (pj);
}
static void cmd_p_minus_e(RCore *core, ut64 at, ut64 ate) {
ut8 *blockptr = malloc (ate - at);
if (!blockptr) {
return;
}
if (r_io_read_at (core->io, at, blockptr, (ate - at))) {
ut8 entropy = (ut8)(r_hash_entropy_fraction (blockptr, (ate - at)) * 255);
entropy = 9 * entropy / 200; // normalize entropy from 0 to 9
if (r_config_get_i (core->config, "scr.color")) {
const char *color =
(entropy > 6) ? Color_BGRED :
(entropy > 3) ? Color_BGGREEN :
Color_BGBLUE;
r_cons_printf ("%s%d"Color_RESET, color, entropy);
} else {
r_cons_printf ("%d", entropy);
}
}
free (blockptr);
}
static void print_format_help_help_help_help(RCore *core) {
const char *help_msg[] = {
" STAHP IT!!!", "", "",
NULL
};
r_core_cmd_help (core, help_msg);
}
static void cmd_print_fromage(RCore *core, const char *input, const ut8* data, int size) {
switch (*input) {
case 'a':
{
asn1_setformat (input[1] != 'q');
RASN1Object *asn1 = r_asn1_create_object (data, size, data);
if (asn1) {
char *res = r_asn1_to_string (asn1, 0, NULL);
r_asn1_free_object (asn1);
if (res) {
r_cons_printf ("%s\n", res);
free (res);
}
} else {
eprintf ("Malformed object: did you supply enough data?\ntry to change the block size (see b?)\n");
}
}
break;
case 'X': // "pFx" x509
{
size_t out_len = 0;
ut8 *out = r_sys_unxz (data, size, &out_len);
if (out) {
r_cons_write ((const char *)out, out_len);
free (out);
}
}
break;
case 'x': // "pFx" x509
{
RX509Certificate* x509 = r_x509_parse_certificate (r_asn1_create_object (data, size, data));
if (x509) {
RStrBuf *sb = r_strbuf_new ("");
r_x509_certificate_dump (x509, NULL, sb);
char *res = r_strbuf_drain (sb);
if (res) {
r_cons_printf ("%s\n", res);
free (res);
}
r_x509_free_certificate (x509);
} else {
eprintf ("Malformed object: did you supply enough data?\ntry to change the block size (see b?)\n");
}
}
break;
case 'p': // "pFp"
{
RCMS *cms = r_pkcs7_parse_cms (data, size);
if (cms) {
char *res = r_pkcs7_cms_to_string (cms);
if (res) {
r_cons_printf ("%s\n", res);
free (res);
}
r_pkcs7_free_cms (cms);
} else {
eprintf ("Malformed object: did you supply enough data?\ntry to change the block size (see b?)\n");
}
}
break;
case 'b': // "pFb"
{
char *s = r_protobuf_decode (data, size, input[1] == 'v');
if (s) {
r_cons_printf ("%s", s);
free (s);
}
}
break;
case 'A': // "pFA"
{
char *s = r_axml_decode (data, size);
if (s) {
r_cons_printf ("%s", s);
free (s);
} else {
eprintf ("Malformed object: did you supply enough data?\ntry to change the block size (see b?)\n");
}
}
break;
case 'B': // "pFB"
if (input[1] == '?') {
eprintf ("Usage: pFB[j] - parse binary plist format, check 'b'lock size on errors, pFBj for json output\n");
} else {
PJ *pj = r_core_pj_new (core);
if (!r_bplist_parse (pj, data, size)) {
eprintf ("Parse error\n");
}
char *s = pj_drain (pj);
if (input[1] == 'j') {
r_cons_printf ("%s\n", s);
} else {
char *r = r_print_json_human (s);
r_cons_printf ("%s\n", r);
free (r);
}
free (s);
}
break;
default:
case '?': // "pF?"
r_core_cmd_help (core, help_msg_pF);
break;
}
}
R_API void r_core_gadget_free(RCoreGadget *g) {
free (g->cmd);
free (g);
}
static const char *help_msg_pg[] = {
"Usage: pg[-]", "[asm|hex]", "print (dis)assembled",
"pg", " [x y w h cmd]", "add a new gadget",
"pg", "", "print them all",
"pg", "*", "print the gadgets as r2 commands",
"pg-", "*", "remove all the gadgets",
NULL
};
static void cmd_print_gadget(RCore *core, const char *_input) {
if (*_input == '?') { // "pg?"
r_core_cmd_help (core, help_msg_pg);
return;
}
if (*_input == '-') { // "pg-"
// TODO support selecting one
r_list_free (core->gadgets);
core->gadgets = r_list_newf ((RListFree)r_core_gadget_free);
} else if (*_input == '*') { // "pg*"
RCoreGadget *g;
RListIter *iter;
r_list_foreach (core->gadgets, iter, g) {
r_cons_printf ("\"pg %d %d %d %d %s\"\n", g->x, g->y, g->w, g->h, g->cmd);
}
} else if (*_input == 'b') { // "pgb"
eprintf ("TODO: Change gadget background color\n");
} else if (*_input == 'm') { // "pgm"
int nth = atoi (_input + 1);
RCoreGadget *g = r_list_get_n (core->gadgets, nth);
if (g) {
char *input = strdup (_input);
char *space = strchr (input, ' ');
if (space) {
space++;
} else {
space = "";
}
RList *args = r_str_split_list (space, " ", 0);
char *x = r_list_pop_head (args);
char *y = r_list_pop_head (args);
char *w = r_list_pop_head (args);
char *h = r_list_pop_head (args);
if (x && y && w && h) {
g->x = r_num_math (core->num, x);
g->y = r_num_math (core->num, y);
g->w = r_num_math (core->num, w);
g->h = r_num_math (core->num, h);
}
r_list_free (args);
free (input);
}
} else if (*_input == ' ') { // "pg "
char *input = strdup (_input);
RList *args = r_str_split_list (input, " ", 0);
char *x = r_list_pop_head (args);
char *y = r_list_pop_head (args);
char *w = r_list_pop_head (args);
char *h = r_list_pop_head (args);
if (x && y && w && h) {
int X = r_num_math (core->num, x);
int Y = r_num_math (core->num, y);
int W = r_num_math (core->num, w);
int H = r_num_math (core->num, h);
char *cmd = r_str_list_join (args, " ");
if (cmd) {
// eprintf ("%d %d %d %d (%s)\n", X, Y, W, H, cmd);
RCoreGadget *g = R_NEW0 (RCoreGadget);
g->x = X;
g->y = Y;
g->w = W;
g->h = H;
g->cmd = cmd;
r_list_append (core->gadgets, g);
}
}
r_list_free (args);
free (input);
} else if (!*_input) { // "pg"
RCoreGadget *g;
RListIter *iter;
r_list_foreach (core->gadgets, iter, g) {
char *res = r_core_cmd_str (core, g->cmd);
if (res) {
r_cons_strcat_at (res, g->x, g->y, g->w, g->h);
free (res);
}
}
} else {
r_core_cmd_help (core, help_msg_pg);
}
}
static void cmd_pfo_help(RCore *core) {
const char *help[] = {
"Usage:", "pfo [format-file]", "# List all format definition files (fdf)",
/* literally, whitespaces to prevent help system rendering rows as headers */
R_JOIN_3_PATHS ("~", R2_HOME_SDB_FORMAT, ""), " ", " ",
"<insert sys prefix path here>", " ", " ",
NULL
};
char *buf = r_str_newf ("%s"R_SYS_DIR"%s", R2_SDB_FORMAT, r_sys_prefix (NULL));
help[6] = buf;
r_core_cmd_help (core, help);
free (buf);
}
static void cmd_print_format(RCore *core, const char *_input, const ut8* block, int len) {
char *input = NULL;
int mode = R_PRINT_MUSTSEE;
switch (_input[1]) {
case '*': // "pf*"
_input++;
mode = R_PRINT_SEEFLAGS;
break;
case 'q': // "pfq"
_input++;
mode = R_PRINT_QUIET | R_PRINT_MUSTSEE;
break;
case 'd': // "pfd"
_input++;
mode = R_PRINT_DOT;
break;
case 'j': // "pfj"
_input++;
mode = R_PRINT_JSON;
break;
case 'v': // "pfv"
_input++;
mode = R_PRINT_VALUE | R_PRINT_MUSTSEE;
break;
case 'c': // "pfc"
_input++;
mode = R_PRINT_STRUCT;
break;
case 's': { // "pfs"
const char *val = NULL;
_input += 2;
if (*_input == '.') {
_input++;
val = sdb_get (core->print->formats, _input, NULL);
if (val) {
r_cons_printf ("%d\n", r_print_format_struct_size (core->print, val, mode, 0));
} else {
eprintf ("Struct %s not defined\nUsage: pfs.struct_name | pfs format\n", _input);
}
} else if (*_input == ' ') {
while (*_input == ' ' && *_input != '\0') {
_input++;
}
if (*_input) {
r_cons_printf ("%d\n", r_print_format_struct_size (core->print, _input, mode, 0));
} else {
eprintf ("Struct %s not defined\nUsage: pfs.struct_name | pfs format\n", _input);
}
} else {
eprintf ("Usage: pfs.struct_name | pfs format\n");
}
return;
}
case '?': // "pf?"
_input += 2;
if (*_input) {
if (*_input == '?') {
_input++;
if (_input && *_input == '?') {
_input++;
if (_input && *_input == '?') {
print_format_help_help_help_help (core);
} else {
r_core_cmd_help (core, help_detail2_pf);
}
} else {
r_core_cmd_help (core, help_detail_pf);
}
} else {
const char *struct_name = r_str_trim_head_ro (_input);
const char *val = sdb_const_get (core->print->formats, struct_name, NULL);
if (val) {
r_cons_printf ("%s\n", val);
} else {
eprintf ("Struct %s is not defined\n", _input);
}
}
} else {
r_core_cmd_help (core, help_msg_pf);
}
return;
case 'o': // "pfo"
if (_input[2] == '?') {
cmd_pfo_help (core);
} else if (_input[2] == ' ') {
const char *fname = r_str_trim_head_ro (_input + 3);
char *tmp = r_str_newf (R_JOIN_2_PATHS (R2_HOME_SDB_FORMAT, "%s"), fname);
char *home = r_str_home (tmp);
free (tmp);
tmp = r_str_newf (R_JOIN_2_PATHS (R2_SDB_FORMAT, "%s"), fname);
char *path = r_str_r2_prefix (tmp);
if (r_str_endswith (_input, ".h")) {
char *error_msg = NULL;
const char *dir = r_config_get (core->config, "dir.types");
char *out = r_parse_c_file (core->anal, path, dir, &error_msg);
if (out) {
r_anal_save_parsed_type (core->anal, out);
r_core_cmd0 (core, ".ts*");
free (out);
} else {
eprintf ("Parse error: %s\n", error_msg);
}
} else {
if (!r_core_cmd_file (core, home) && !r_core_cmd_file (core, path)) {
if (!r_core_cmd_file (core, _input + 3)) {
eprintf ("pfo: cannot open format file at '%s'\n", path);
}
}
}
free (home);
free (path);
free (tmp);
} else {
RList *files;
RListIter *iter;
const char *fn;
char *home = r_str_home (R2_HOME_SDB_FORMAT R_SYS_DIR);
if (home) {
files = r_sys_dir (home);
r_list_foreach (files, iter, fn) {
if (*fn && *fn != '.') {
r_cons_println (fn);
}
}
r_list_free (files);
free (home);
}
char *path = r_str_r2_prefix (R2_SDB_FORMAT R_SYS_DIR);
if (path) {
files = r_sys_dir (path);
r_list_foreach (files, iter, fn) {
if (*fn && *fn != '.') {
r_cons_println (fn);
}
}
r_list_free (files);
free (path);
}
}
return;
} // switch
input = strdup (_input);
/* syntax aliasing bridge for 'pf foo=xxd' -> 'pf.foo xxd' */
if (input[1] == ' ') {
char *eq = strchr (input + 2, '=');
if (eq) {
input[1] = '.';
*eq = ' ';
}
}
bool listFormats = false;
if (input[1] == '.') {
listFormats = true;
} else if (!strcmp (input, "*") && mode == R_PRINT_SEEFLAGS) {
listFormats = true;
}
core->print->reg = core->dbg->reg;
core->print->get_register = r_reg_get;
core->print->get_register_value = r_reg_get_value;
int o_blocksize = core->blocksize;
if (listFormats) {
core->print->num = core->num;
/* print all stored format */
if (!input[1] || !input[2]) { // "pf."
SdbListIter *iter;
SdbKv *kv;
SdbList *sdbls = sdb_foreach_list (core->print->formats, true);
ls_foreach (sdbls, iter, kv) {
r_cons_printf ("pf.%s %s\n", sdbkv_key (kv), sdbkv_value (kv));
}
/* delete a format */
} else if (input[1] && input[2] == '-') { // "pf-"
if (input[3] == '*') { // "pf-*"
sdb_free (core->print->formats);
core->print->formats = sdb_new0 ();
} else { // "pf-xxx"
sdb_unset (core->print->formats, input + 3, 0);
}
} else {
char *name = strdup (input + (input[1] ? 2 : 1));
char *space = strchr (name, ' ');
char *eq = strchr (name, '=');
char *dot = strchr (name, '.');
if (dot) {
*dot = 0;
}
if (!space && !sdb_const_get (core->print->formats, name, NULL)) {
eprintf ("Unknown format name '%s'.\n", name);
goto err_name;
}
if (dot) {
*dot = '.';
}
if (space) {
const char *afterspace = r_str_trim_head_ro (space + 1);
if (*afterspace == '=' && eq) {
r_str_cpy (space, afterspace);
space = NULL;
}
}
if (eq && !dot) {
*eq = ' ';
space = eq;
eq = NULL;
}
/* store a new format */
if (space && (!eq || space < eq)) {
*space++ = 0;
if (strchr (name, '.')) {
eprintf ("Struct or fields name can not contain a dot (%s)\n", name);
} else {
// pf.foo=xxx
sdb_set (core->print->formats, name, space, 0);
}
goto err_name;
}
if (!strchr (name, '.') && !sdb_const_get (core->print->formats, name, NULL)) {
eprintf ("Cannot find '%s' format.\n", name);
goto err_name;
}
char *delim = strchr (name, '.');
if (delim) {
int len = delim - name;
if (len > 0) {
name[len] = '\0';
}
}
/* Load format from name into fmt to get the size */
/* Make sure the structure will be printed entirely */
char *fmt = sdb_get (core->print->formats, name, NULL);
if (fmt) {
// TODO: what is +10 magic number?
// Backtracks to commit e5e23c237755cdeb13ba15938c93ada590e453db / issue #2808
int size = r_print_format_struct_size (core->print, fmt, mode, 0) + 10;
if (size > core->blocksize) {
r_core_block_size (core, size);
}
free (fmt);
}
/* display a format */
if (dot) {
*dot++ = 0;
eq = strchr (dot, '=');
if (eq) { // Write mode (pf.field=value)
*eq++ = 0;
r_str_trim_tail (name);
mode = R_PRINT_MUSTSET;
r_print_format (core->print, core->offset,
core->block, core->blocksize, name, mode, eq, dot);
} else {
r_print_format (core->print, core->offset,
core->block, core->blocksize, name, mode, NULL, dot);
}
} else {
r_print_format (core->print, core->offset,
core->block, core->blocksize, name, mode, NULL, NULL);
}
err_name:
free (name);
}
} else {
/* Make sure the structure will be printed entirely */
ut8 *buf = NULL;
const char *fmt = r_str_trim_head_ro (input + 1);
int struct_sz = r_print_format_struct_size (core->print, fmt, mode, 0);
int size = R_MAX (core->blocksize, struct_sz);
if (size < 1) {
goto err_buf;
}
buf = calloc (1, size);
if (!buf) {
goto err_buf;
}
memcpy (buf, core->block, core->blocksize);
char *args = strdup (fmt);
if (!args) {
goto err_args;
}
/* check if fmt is '\d+ \d+<...>', common mistake due to usage string*/
const char *arg1 = strtok (args, " ");
if (arg1 && r_str_isnumber (arg1)) {
r_core_cmd_help (core, (const char *[]){
"Usage:", "pf [0|cnt][format-string]", "",
NULL
});
goto err_arg1;
}
r_print_format (core->print, core->offset,
buf, size, fmt, mode, NULL, NULL);
err_arg1:
free (args);
err_args:
free (buf);
err_buf:
;
}
free (input);
r_core_block_size (core, o_blocksize);
}
// > pxa
/* In this function, most of the buffers have 4 times
* the required length. This is because we supports colours,
* that are 4 chars long. */
#define append(x, y) if (x && y) { strcat (x, y); x += strlen (y); }
static void annotated_hexdump(RCore *core, const char *str, int len) {
if (!core || !str || len < 1) {
return;
}
const int usecolor = r_config_get_i (core->config, "scr.color");
int nb_cols = r_config_get_i (core->config, "hex.cols");
core->print->use_comments = r_config_get_i (core->config, "hex.comments");
int flagsz = r_config_get_i (core->config, "hex.flagsz");
bool showSection = r_config_get_i (core->config, "hex.section");
const ut8 *buf = core->block;
ut64 addr = core->offset;
int color_idx = 0;
char *bytes, *chars;
char *ebytes, *echars; // They'll walk over the vars above
ut64 fend = UT64_MAX;
int i, j, low, max, here, rows;
bool marks = false, setcolor = true, hascolor = false;
ut8 ch = 0;
char *colors[10] = {NULL};
for (i = 0; i < 10; i++) {
colors[i] = r_cons_rainbow_get (i, 10, false);
}
const int col = core->print->col;
RFlagItem *curflag = NULL;
char **note;
int html = r_config_get_i (core->config, "scr.html");
int nb_cons_cols;
bool compact = false;
if (core->print) {
compact = core->print->flags & R_PRINT_FLAGS_COMPACT;
}
char *format = compact ? " %X %X" : " %X %X ";
int step = compact ? 4 : 5;
// Adjust the number of columns
if (nb_cols < 1) {
nb_cols = 16;
}
nb_cols -= (nb_cols % 2); // nb_cols should be even
if (nb_cols < 1) {
return;
}
nb_cons_cols = 12 + nb_cols * 2 + (nb_cols / 2);
nb_cons_cols += 17;
rows = len / nb_cols;
chars = calloc (nb_cols * 40, sizeof (char));
if (!chars) {
goto err_chars;
}
note = calloc (nb_cols, sizeof (char *));
if (!note) {
goto err_note;
}
bytes = calloc (64 + nb_cons_cols * 40, sizeof (char));
if (!bytes) {
goto err_bytes;
}
#if 1
char addrpad[32];
int addrpadlen = snprintf (addrpad, 0, "%08"PFMT64x, addr) - 8;
if (addrpadlen > 0) {
memset (addrpad, ' ', addrpadlen);
addrpad[addrpadlen] = 0;
// Compute, then show the legend
strcpy (bytes, addrpad);
} else {
*addrpad = 0;
addrpadlen = 0;
}
strcpy (bytes + addrpadlen, "- offset - ");
#endif
j = strlen (bytes);
for (i = 0; i < nb_cols; i += 2) {
sprintf (bytes + j, format, (i & 0xf), (i + 1) & 0xf);
j += step;
}
if (!compact) {
j--;
}
strcpy (bytes + j, " ");
j += 2;
for (i = 0; i < nb_cols; i++) {
sprintf (bytes + j + i, "%0X", i % 17);
}
if (usecolor) {
r_cons_strcat (Color_GREEN);
r_cons_strcat (bytes);
r_cons_strcat (Color_RESET);
} else {
r_cons_strcat (bytes);
}
r_cons_newline ();
// hexdump
for (i = 0; i < rows; i++) {
bytes[0] = '\0';
chars[0] = '\0';
ebytes = bytes;
echars = chars;
ut64 ea = addr;
if (core->print->pava) {
ut64 va = r_io_p2v (core->io, addr);
if (va != UT64_MAX) {
ea = va;
}
}
if (usecolor) {
append (ebytes, core->cons->context->pal.offset);
}
if (showSection) {
const char * name = r_core_get_section_name (core, ea);
char *s = r_str_newf ("%20s ", name);
append (ebytes, s);
free (s);
}
ebytes += sprintf (ebytes, "0x%08"PFMT64x, ea);
if (usecolor) {
append (ebytes, Color_RESET);
}
append (ebytes, (col == 1)? " |": " ");
bool hadflag = false;
for (j = 0; j < nb_cols; j++) {
setcolor = true;
R_FREE (note[j]);
// TODO: in pava mode we should read addr or ea? // imho ea. but wat about hdrs and such
RIntervalNode *meta_node = r_meta_get_in (core->anal, ea + j, R_META_TYPE_FORMAT);
RAnalMetaItem *meta = meta_node ? meta_node->data : NULL;
if (meta && meta->type == R_META_TYPE_FORMAT && meta_node->start == addr + j) {
r_cons_printf (".format %s ; size=", meta->str);
r_core_cmdf (core, "pfs %s", meta->str);
r_core_cmdf (core, "pf %s @ 0x%08"PFMT64x, meta->str, meta_node->start);
if (usecolor) {
append (ebytes, Color_INVERT);
append (echars, Color_INVERT);
}
hadflag = true;
}
if (meta) {
meta = NULL;
}
// collect comments
const char *comment = r_meta_get_string (core->anal, R_META_TYPE_COMMENT, addr + j);
if (comment) {
note[j] = r_str_newf (";%s", comment);
marks = true;
}
const RList *list = r_flag_get_list (core->flags, addr + j);
RListIter *iter;
RFlagItem *fi;
ut64 flagsize = 0;
ut64 flagaddr = 0;
bool found = false;
char *flagname = NULL;
ut64 at = addr + j;
if (r_list_empty (list)) {
// get flag fnear and check for size
RFlagItem *fnear = r_flag_get_at (core->flags, at, true);
if (fnear) {
if (fnear->offset <= at) {
if (fnear->offset + fnear->size >= at) {
found = true;
}
}
if (found) {
flagaddr = fnear->offset;
if (fnear->offset == at) {
free (flagname);
flagname = fnear->name;
}
if (fnear->color) {
curflag = fnear;
}
if (!curflag) {
curflag = fnear;
}
hascolor = false;
}
}
} else {
r_list_foreach (list, iter, fi) {
flagsize = R_MAX (flagsize, fi->size);
if (fi->color) {
curflag = fi;
}
if (!flagaddr || fi->color) {
flagaddr = fi->offset;
if (fi->offset == at) {
free (flagname);
flagname = strdup (fi->name);
}
if (!fi->color) {
curflag = fi;
}
}
}
if (curflag) {
hascolor = false;
found = true;
}
}
// collect flags
if (found) {
if (flagsz) {
flagsize = flagsz;
}
if (flagsize) {
fend = addr + flagsize;
} else {
fend = addr + j + flagsize;
}
const char *name = r_name_filter_ro (flagname);
if (name) {
free (note[j]);
note[j] = r_str_prepend (strdup (name), "/");
} else {
free (note[j]);
note[j] = NULL;
}
marks = true;
color_idx++;
color_idx %= 10;
if (showSection) {
r_cons_printf ("%20s ", "");
}
if (flagaddr == addr + j) {
if (usecolor) {
append (ebytes, Color_INVERT);
append (echars, Color_INVERT);
}
hadflag = true;
}
} else {
// Are we past the current flag?
if (curflag && addr + j > (curflag->offset + curflag->size)) {
setcolor = false;
curflag = NULL;
}
// Turn colour off if we're at the end of the current flag
if (fend == UT64_MAX || fend <= addr + j) {
setcolor = false;
}
}
R_FREE (flagname);
hascolor = false;
if (usecolor) {
if (!setcolor) {
const char *bytecolor = r_print_byte_color (core->print, addr + j, ch);
if (bytecolor) {
append (ebytes, bytecolor);
append (echars, bytecolor);
hascolor = true;
}
} else if (!hascolor) {
hascolor = true;
if (curflag && curflag->color) {
char *ansicolor = r_cons_pal_parse (curflag->color, NULL);
if (ansicolor) {
append (ebytes, ansicolor);
append (echars, ansicolor);
free (ansicolor);
}
} else { // Use "random" colours
append (ebytes, colors[color_idx]);
append (echars, colors[color_idx]);
}
}
}
here = R_MIN ((i * nb_cols) + j, core->blocksize);
ch = buf[here];
if (core->print->ocur != -1) {
low = R_MIN (core->print->cur, core->print->ocur);
max = R_MAX (core->print->cur, core->print->ocur);
} else {
low = max = core->print->cur;
}
if (core->print->cur_enabled) {
if (low == max) {
if (low == here) {
if (html || !usecolor) {
append (ebytes, "[");
append (echars, "[");
} else {
append (echars, Color_INVERT);
append (ebytes, Color_INVERT);
}
}
} else {
if (here >= low && here < max) {
if (html || !usecolor) {
append (ebytes, "[");
append (echars, "[");
} else {
if (usecolor) {
append (ebytes, Color_INVERT);
append (echars, Color_INVERT);
}
}
}
}
}
sprintf (ebytes, "%02x", ch);
// r_print_byte (core->print, "%02x ", j, ch);
ebytes += strlen (ebytes);
if (hadflag) {
if (usecolor) {
append (ebytes, Color_INVERT_RESET);
append (echars, Color_INVERT_RESET);
}
hadflag = false;
}
*echars++ = IS_PRINTABLE (ch)? ch: '.';
*echars = 0;
if (core->print->cur_enabled && max == here) {
if (!html && usecolor) {
append (ebytes, Color_RESET);
append (echars, Color_RESET);
}
hascolor = false;
}
if (j < (nb_cols - 1) && (j % 2) && !compact) {
append (ebytes, " ");
}
if (fend != UT64_MAX && fend == addr + j + 1) {
if (!html && usecolor) {
append (ebytes, Color_RESET);
append (echars, Color_RESET);
}
fend = UT64_MAX;
hascolor = false;
}
}
if (!html && usecolor) {
append (ebytes, Color_RESET);
append (echars, Color_RESET);
}
append (ebytes, (col == 1)? "| ": (col == 2)? " |": " ");
if (col == 2) {
append (echars, "|");
}
if (marks) { // show comments and flags
int hasline = 0;
int out_sz = nb_cons_cols + 20;
char *out = calloc (out_sz, sizeof (char));
memset (out, ' ', nb_cons_cols - 1);
for (j = 0; j < nb_cols; j++) {
if (note[j]) {
int off = (j * 3) - (j / 2) + 13;
int notej_len = strlen (note[j]);
int sz = R_MIN (notej_len, nb_cons_cols - off);
if (compact) {
off -= (j / 2);
} else {
if (j % 2) {
off--;
}
}
memcpy (out + off, note[j], sz);
if (sz < notej_len) {
out[off + sz - 2] = '.';
out[off + sz - 1] = '.';
}
hasline = (out[off] != ' ');
R_FREE (note[j]);
}
}
out[out_sz - 1] = 0;
if (hasline) {
r_cons_strcat (addrpad);
r_cons_strcat (out + 1);
r_cons_newline ();
}
marks = false;
free (out);
}
r_cons_strcat (bytes);
r_cons_strcat (chars);
if (core->print->use_comments) {
for (j = 0; j < nb_cols; j++) {
const char *comment = core->print->get_comments (core->print->user, addr + j);
if (comment) {
r_cons_printf (" ; %s", comment);
}
}
}
r_cons_newline ();
addr += nb_cols;
}
free (bytes);
err_bytes:
free (note);
err_note:
free (chars);
err_chars:
for (i = 0; i < R_ARRAY_SIZE (colors); i++) {
R_FREE (colors[i]);
}
}
R_API void r_core_print_examine(RCore *core, const char *str) {
char cmd[128], *p;
ut64 addr = core->offset;
int size = core->anal->config->bits / 4;
int count = atoi (str);
int i, n;
if (count < 1) {
count = 1;
}
// skipspaces
while (*str >= '0' && *str <= '9') {
str++;
}
// "px/" alone isn't a full command.
if (!str[0]) {
return;
}
#if 0
Size letters are b(byte), h (halfword), w (word), g (giant, 8 bytes).
#endif
switch (str[1]) {
case 'b': size = 1; break;
case 'h': size = 2; break;
case 'd': size = 4; break;
case 'w': size = 4; break;
case 'g': size = 8; break;
}
if ((p = strchr (str, ' '))) {
*p++ = 0;
addr = r_num_math (core->num, p);
}
switch (*str) {
case '?':
eprintf (
"Format is x/[num][format][size]\n"
"Num specifies the number of format elements to display\n"
"Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n"
" t(binary), f(float), a(address), i(instruction), c(char) and s(string),\n"
" T(OSType), A(floating point values in hex).\n"
"Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n"
);
break;
case 's': // "x/s"
r_core_cmdf (core, "psb %d @ 0x%"PFMT64x, count * size, addr);
break;
case 'o': // "x/o"
r_core_cmdf (core, "pxo %d @ 0x%"PFMT64x, count * size, addr);
break;
case 'f':
case 'A': // XXX (float in hex wtf)
n = 3;
snprintf (cmd, sizeof (cmd), "pxo %d @ 0x%"PFMT64x,
count * size, addr);
strcpy (cmd, "pf ");
for (i = 0; i < count && n < sizeof (cmd); i++) {
cmd[n++] = 'f';
}
cmd[n] = 0;
r_core_cmd0 (core, cmd);
break;
case 'w':
size = 4;
// fallthrough
case 'x':
switch (size) {
default:
case 1:
r_core_cmdf (core, "px %d @ 0x%"PFMT64x, count, addr);
break;
case 2:
r_core_cmdf (core, "px%c %d @ 0x%"PFMT64x,
'h', count * 2, addr);
break;
case 4:
r_core_cmdf (core, "px%c %d @ 0x%"PFMT64x,
'w', count * 4, addr);
break;
case 8:
r_core_cmdf (core, "px%c %d @ 0x%"PFMT64x,
'q', count * 8, addr);
break;
}
break;
case 'a':
case 'd':
r_core_cmdf (core, "pxw %d @ 0x%"PFMT64x, count * size, addr);
break;
case 'i':
r_core_cmdf (core, "pid %d @ 0x%"PFMT64x, count, addr);
break;
}
}
struct count_pz_t {
RSpace *flagspace;
ut64 addr;
ut64 size;
int *ret;
};
static bool count_pzs(RFlagItem *fi, void *u) {
struct count_pz_t *user = (struct count_pz_t *)u;
if (fi->space == user->flagspace &&
((user->addr <= fi->offset && fi->offset < user->addr + user->size) ||
(user->addr <= fi->offset + fi->size && fi->offset + fi->size < user->addr + user->size))) {
(*user->ret)++;
}
return true;
}
static bool count_pzf(RFlagItem *fi, void *u) {
struct count_pz_t *user = (struct count_pz_t *)u;
if (fi->offset <= user->addr && user->addr < fi->offset + fi->size) {
(*user->ret)++;
}
return true;
}
static int printzoomcallback(void *user, int mode, ut64 addr, ut8 *bufz, ut64 size) {
RCore *core = (RCore *) user;
int j, ret = 0;
struct count_pz_t u;
switch (mode) {
case 'a':
{
RAnalFunction *fcn = r_anal_get_fcn_in (core->anal, addr, 0);
int value = 0;
if (fcn) {
value = r_list_length (fcn->bbs);
}
return value;
}
break;
case 'A':
{
RCoreAnalStats *as = r_core_anal_get_stats (core, addr, addr + size * 2, size);
int i;
int value = 0;
for (i = 0; i < 1; i++) {
value += as->block[i].functions;
value += as->block[i].in_functions;
value += as->block[i].comments;
value += as->block[i].symbols;
value += as->block[i].flags;
value += as->block[i].strings;
value += as->block[i].blocks;
value *= 20;
}
r_core_anal_stats_free (as);
return value;
}
break;
case '0': // "pz0"
for (j = 0; j < size; j++) {
if (bufz[j] == 0) {
ret++;
}
}
break;
case 'e': // "pze"
ret = (ut8) (r_hash_entropy_fraction (bufz, size) * 255);
break;
case 'f': // "pzf"
u.addr = addr;
u.ret = &ret;
r_flag_foreach (core->flags, count_pzf, &u);
break;
case 'F': // "pzF"
for (j = 0; j < size; j++) {
if (bufz[j] == 0xff) {
ret++;
}
}
break;
case 'p': // "pzp"
for (j = 0; j < size; j++) {
if (IS_PRINTABLE (bufz[j])) {
ret++;
}
}
break;
case 's': // "pzs"
u.flagspace = r_flag_space_get (core->flags, R_FLAGS_FS_STRINGS);
u.addr = addr;
u.size = size;
u.ret = &ret;
r_flag_foreach (core->flags, count_pzs, &u);
break;
case 'h': // "pzh" head
default:
ret = *bufz;
}
return ret;
}
R_API void r_core_print_cmp(RCore *core, ut64 from, ut64 to) {
long int delta = 0;
int col = core->cons->columns > 123;
ut8 *b = malloc (core->blocksize);
ut64 addr = core->offset;
memset (b, 0xff, core->blocksize);
delta = addr - from;
r_io_read_at (core->io, to + delta, b, core->blocksize);
r_print_hexdiff (core->print, core->offset, core->block,
to + delta, b, core->blocksize, col);
free (b);
}
static void cmd_print_pwn(const RCore *core) {
r_cons_printf ("easter egg license has expired\n");
}
static int cmd_print_pxA(RCore *core, int len, const char *input) {
RConsPrintablePalette *pal = &core->cons->context->pal;
int show_offset = true;
int cols = r_config_get_i (core->config, "hex.cols");
int show_color = r_config_get_i (core->config, "scr.color");
int onechar = r_config_get_i (core->config, "hex.onechar");
bool hex_offset = r_config_get_i (core->config, "hex.offset");
int bgcolor_in_heap = false;
bool show_cursor = core->print->cur_enabled;
char buf[2];
char *bgcolor, *fgcolor, *text;
ut64 i, c, oi;
RAnalOp op;
ut8 *data;
int datalen;
if (*input == 'v') {
datalen = cols * 8 * core->cons->rows;
data = malloc (datalen);
r_io_read_at (core->io, core->offset, data, datalen);
len = datalen;
} else {
data = core->block;
datalen = core->blocksize;
}
if (len < 1) {
len = datalen;
}
if (len < 0 || len > datalen) {
eprintf ("Invalid length\n");
return 0;
}
if (onechar) {
cols *= 4;
} else {
cols *= 2;
}
if (show_offset) {
char offstr[128];
snprintf (offstr, sizeof (offstr),
"0x%08"PFMT64x " ", core->offset);
if (strlen (offstr) > 12) {
cols -= ((strlen (offstr) - 12) * 2);
}
}
for (oi = i = c = 0; i < len; c++) {
if (i && (cols != 0) && !(c % cols)) {
show_offset = true;
r_cons_printf (" %" PFMT64u "\n", i - oi);
oi = i;
}
if (show_offset && hex_offset) {
r_cons_printf ("0x%08"PFMT64x " ", core->offset + i);
show_offset = false;
}
if (bgcolor_in_heap) {
free (bgcolor);
bgcolor_in_heap = false;
}
bgcolor = Color_BGBLACK;
fgcolor = Color_WHITE;
text = NULL;
if (r_anal_op (core->anal, &op, core->offset + i, data + i, len - i, R_ANAL_OP_MASK_BASIC) <= 0) {
op.type = 0;
bgcolor = Color_BGRED;
op.size = 1;
}
switch (op.type) {
case R_ANAL_OP_TYPE_LEA:
case R_ANAL_OP_TYPE_MOV:
case R_ANAL_OP_TYPE_CAST:
case R_ANAL_OP_TYPE_LENGTH:
case R_ANAL_OP_TYPE_CMOV:
text = "mv";
bgcolor = pal->mov;
fgcolor = Color_YELLOW;
break;
case R_ANAL_OP_TYPE_PUSH:
case R_ANAL_OP_TYPE_UPUSH:
case R_ANAL_OP_TYPE_RPUSH:
bgcolor = pal->push;
fgcolor = Color_WHITE;
text = "->";
break;
case R_ANAL_OP_TYPE_IO:
bgcolor = pal->swi;
fgcolor = Color_WHITE;
text = "io";
break;
case R_ANAL_OP_TYPE_TRAP:
case R_ANAL_OP_TYPE_SWI:
case R_ANAL_OP_TYPE_NEW:
// bgcolor = Color_BGRED;
bgcolor = pal->trap; // r_cons_swap_ground (pal->trap);
fgcolor = Color_WHITE;
text = "$$";
break;
case R_ANAL_OP_TYPE_POP:
text = "<-";
bgcolor = r_cons_swap_ground (pal->pop);
bgcolor_in_heap = true;
fgcolor = Color_WHITE;
break;
case R_ANAL_OP_TYPE_NOP:
fgcolor = Color_WHITE;
bgcolor = r_cons_swap_ground (pal->nop);
bgcolor_in_heap = true;
text = "..";
break;
case R_ANAL_OP_TYPE_MUL:
fgcolor = Color_BLACK;
bgcolor = r_cons_swap_ground (pal->math);
bgcolor_in_heap = true;
text = "_*";
break;
case R_ANAL_OP_TYPE_DIV:
bgcolor = r_cons_swap_ground (pal->math);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "_/";
break;
case R_ANAL_OP_TYPE_AND:
bgcolor = r_cons_swap_ground (pal->bin);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "_&";
break;
case R_ANAL_OP_TYPE_XOR:
bgcolor = r_cons_swap_ground (pal->bin);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "_^";
break;
case R_ANAL_OP_TYPE_OR:
bgcolor = r_cons_swap_ground (pal->bin);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "_|";
break;
case R_ANAL_OP_TYPE_SHR:
bgcolor = r_cons_swap_ground (pal->bin);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = ">>";
break;
case R_ANAL_OP_TYPE_SHL:
bgcolor = r_cons_swap_ground (pal->bin);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "<<";
break;
case R_ANAL_OP_TYPE_SUB:
bgcolor = r_cons_swap_ground (pal->math);
bgcolor_in_heap = true;
fgcolor = Color_WHITE;
text = "--";
break;
case R_ANAL_OP_TYPE_ADD:
bgcolor = r_cons_swap_ground (pal->math);
bgcolor_in_heap = true;
fgcolor = Color_WHITE;
text = "++";
break;
case R_ANAL_OP_TYPE_JMP:
case R_ANAL_OP_TYPE_UJMP:
case R_ANAL_OP_TYPE_IJMP:
case R_ANAL_OP_TYPE_RJMP:
case R_ANAL_OP_TYPE_IRJMP:
case R_ANAL_OP_TYPE_MJMP:
bgcolor = r_cons_swap_ground (pal->jmp);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "_J";
break;
case R_ANAL_OP_TYPE_CJMP:
case R_ANAL_OP_TYPE_UCJMP:
bgcolor = r_cons_swap_ground (pal->cjmp);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "cJ";
break;
case R_ANAL_OP_TYPE_CALL:
case R_ANAL_OP_TYPE_UCALL:
case R_ANAL_OP_TYPE_ICALL:
case R_ANAL_OP_TYPE_RCALL:
case R_ANAL_OP_TYPE_IRCALL:
case R_ANAL_OP_TYPE_UCCALL:
bgcolor = r_cons_swap_ground (pal->call);
bgcolor_in_heap = true;
fgcolor = Color_WHITE;
text = "_C";
break;
case R_ANAL_OP_TYPE_ACMP:
case R_ANAL_OP_TYPE_CMP:
bgcolor = r_cons_swap_ground (pal->cmp);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "==";
break;
case R_ANAL_OP_TYPE_RET:
bgcolor = r_cons_swap_ground (pal->ret);
bgcolor_in_heap = true;
fgcolor = Color_WHITE;
text = "_R";
break;
case -1:
case R_ANAL_OP_TYPE_ILL:
case R_ANAL_OP_TYPE_UNK:
bgcolor = r_cons_swap_ground (pal->invalid);
bgcolor_in_heap = true;
fgcolor = Color_WHITE;
text = "XX";
break;
#if 0
default:
color = Color_BGCYAN;
fgcolor = Color_BLACK;
break;
#endif
}
int opsz = R_MAX (op.size, 1);
if (show_cursor) {
if (core->print->cur >= i && core->print->cur < i + opsz) {
r_cons_invert (1, 1);
}
}
if (onechar) {
if (text) {
if (text[0] == '_' || text[0] == '.') {
buf[0] = text[1];
} else {
buf[0] = text[0];
}
} else {
buf[0] = '.';
}
buf[1] = 0;
text = buf;
}
if (show_color) {
if (!text) {
text = " ";
}
r_cons_printf ("%s%s%s\x1b[0m", bgcolor, fgcolor, text);
} else {
if (text) {
r_cons_print (text);
} else {
r_cons_print (" ");
}
}
if (show_cursor) {
if (core->print->cur >= i && core->print->cur < i + opsz) {
r_cons_invert (0, 1);
}
}
i += opsz;
r_anal_op_fini (&op);
}
r_cons_printf (" %" PFMT64d "\n", i - oi);
if (bgcolor_in_heap) {
free (bgcolor);
}
if (data != core->block) {
free (data);
}
return true;
}
static void cmd_print_op(RCore *core, const char *input) {
ut8 *buf;
if (!input[0]) {
return;
}
switch (input[1]) {
case 'a':
case 's':
case 'A':
case 'x':
case 'r':
case 'l':
case 'm':
case 'd':
case 'o':
case '2':
case '4':
if (input[2]) { // parse val from arg
buf = r_core_transform_op (core, input+3, input[1]);
} else { // use clipboard instead of val
buf = r_core_transform_op (core, NULL, input[1]);
}
break;
case 'n':
buf = r_core_transform_op (core, "ff", 'x');
break;
case '\0':
case '?':
default:
r_core_cmd_help (core, help_msg_po);
return;
}
if (buf) {
r_print_hexdump (core->print, core->offset, buf, core->blocksize, 16, 1, 1);
free (buf);
}
}
static void printraw(RCore *core, int len, int mode) {
int obsz = core->blocksize;
int restore_obsz = 0;
if (len != obsz) {
if (!r_core_block_size (core, len)) {
len = core->blocksize;
} else {
restore_obsz = 1;
}
}
r_print_raw (core->print, core->offset, core->block, len, mode);
if (restore_obsz) {
(void) r_core_block_size (core, obsz);
}
core->cons->newline = core->cmd_in_backticks ? false : true;
}
static void _handle_call(RCore *core, char *line, char **str) {
r_return_if_fail (core && line && str && core->rasm && core->rasm->cur);
if (strstr (core->rasm->cur->arch, "x86")) {
*str = strstr (line, "call ");
} else if (strstr (core->rasm->cur->arch, "arm")) {
*str = strstr (line, " b ");
if (*str && strstr (*str, " 0x")) {
/*
* avoid treating branches to
* non-symbols as calls
*/
*str = NULL;
}
if (!*str) {
*str = strstr (line, "bl ");
}
if (!*str) {
*str = strstr (line, "bx ");
}
}
}
// TODO: this is just a PoC, the disasm loop should be rewritten
// TODO: this is based on string matching, it should be written upon RAnalOp to know
// when we have a call and such
static void disasm_strings(RCore *core, const char *input, RAnalFunction *fcn) {
const char *linecolor = NULL;
char *ox, *qo, *string = NULL;
char *line, *s, *string2 = NULL;
char *switchcmp = NULL;
int i, count, use_color = r_config_get_i (core->config, "scr.color");
bool show_comments = r_config_get_b (core->config, "asm.comments");
bool show_offset = r_config_get_b (core->config, "asm.offset");
bool asm_tabs = r_config_get_b (core->config, "asm.tabs");
bool scr_html = r_config_get_b (core->config, "scr.html");
bool asm_dwarf = r_config_get_b (core->config, "asm.dwarf");
bool asm_flags = r_config_get_b (core->config, "asm.flags");
bool asm_cmt_right = r_config_get_b (core->config, "asm.cmt.right");
bool asm_emu = r_config_get_b (core->config, "asm.emu");
bool emu_str = r_config_get_b (core->config, "emu.str");
r_config_set_i (core->config, "emu.str", true);
RConsPrintablePalette *pal = &core->cons->context->pal;
// force defaults
r_config_set_i (core->config, "scr.color", COLOR_MODE_DISABLED);
r_config_set_b (core->config, "asm.offset", true);
r_config_set_b (core->config, "asm.dwarf", true);
r_config_set_b (core->config, "asm.tabs", false);
r_config_set_b (core->config, "scr.html", false);
r_config_set_b (core->config, "asm.cmt.right", true);
r_cons_push ();
line = NULL;
s = NULL;
if (!strncmp (input, "dsb", 3)) {
RAnalBlock *bb = r_anal_bb_from_offset (core->anal, core->offset);
if (bb) {
line = s = r_core_cmd_strf (core, "pD %"PFMT64u" @ 0x%08"PFMT64x, bb->size, bb->addr);
}
} else if (!strncmp (input, "dsf", 3) || !strncmp (input, "dsr", 3)) {
RAnalFunction *fcn = r_anal_get_fcn_in (core->anal, core->offset, R_ANAL_FCN_TYPE_NULL);
if (fcn) {
line = s = r_core_cmd_str (core, "pdr");
} else {
eprintf ("Cannot find function.\n");
r_config_set_i (core->config, "scr.color", use_color);
r_config_set_i (core->config, "asm.cmt.right", asm_cmt_right);
goto restore_conf;
}
} else if (!strncmp (input, "ds ", 3)) {
line = s = r_core_cmd_strf (core, "pD %s", input + 3);
} else {
line = s = r_core_cmd_str (core, "pd");
}
r_cons_pop ();
r_config_set_i (core->config, "scr.html", scr_html);
r_config_set_i (core->config, "scr.color", use_color);
r_config_set_i (core->config, "asm.cmt.right", asm_cmt_right);
count = r_str_split (s, '\n');
if (!line || !*line || count < 1) {
// R_FREE (s);
goto restore_conf;
}
for (i = 0; i < count; i++) {
ut64 addr = UT64_MAX;
char *str;
ox = strstr (line, "0x");
qo = strchr (line, '\"');
R_FREE (string);
if (ox) {
addr = r_num_get (NULL, ox);
}
if (qo) {
char *qoe = strrchr (qo + 1, '"');
if (qoe) {
int raw_len = qoe - qo - 1;
int actual_len = 0;
char *ptr = qo + 1;
for(; ptr < qoe; ptr++) {
if (*ptr == '\\' && ptr + 1 < qoe) {
int i, body_len;
switch (*(ptr + 1)) {
case 'x':
body_len = 3;
break;
case 'u':
body_len = 5;
break;
case 'U':
body_len = 9;
break;
default:
body_len = 1;
}
for (i = 0; i < body_len && ptr < qoe; i++) {
ptr++;
}
}
actual_len++;
}
if (actual_len > 2) {
string = r_str_ndup (qo, raw_len + 2);
}
linecolor = R_CONS_COLOR (comment);
}
}
ox = strstr (line, "; 0x");
if (!ox) {
ox = strstr (line, "@ 0x");
}
if (ox) {
char *qoe = strchr (ox + 3, ' ');
if (!qoe) {
qoe = strchr (ox + 3, '\x1b');
}
int len = qoe? qoe - ox: strlen (ox + 3);
string2 = r_str_ndup (ox + 2, len - 1);
if (r_num_get (NULL, string2) < 0x100) {
R_FREE (string2);
}
}
if (asm_flags) {
str = strstr (line, ";-- ");
if (str) {
if (!r_str_startswith (str + 4, "case")) {
r_cons_printf ("%s\n", str);
}
}
}
#define USE_PREFIXES 1
#if USE_PREFIXES
// XXX leak
str = strstr (line, " obj.");
if (!str) {
str = strstr (line, " str.");
if (!str) {
str = strstr (line, " imp.");
if (!str) {
str = strstr (line, " fcn.");
if (!str) {
str = strstr (line, " sub.");
}
}
}
}
#else
if (strchr (line, ';')) {
const char *dot = r_str_rchr (line, NULL, '.');
if (dot) {
const char *o = r_str_rchr (line, dot, ' ');
if (o) {
str = (char*)o;
} else {
eprintf ("Warning: missing summary reference: %s\n", dot);
}
}
}
#endif
if (str) {
char *qoe = NULL;
if (!qoe) {
qoe = strchr (str + 1, '\x1b');
}
if (!qoe) {
qoe = strchr (str + 1, ';');
}
if (!qoe) {
qoe = strchr (str + 1, ' ');
}
if (qoe) {
free (string2);
string2 = r_str_ndup (str + 1, qoe - str - 1);
} else {
free (string2);
string2 = strdup (str + 1);
}
if (string2) {
R_FREE (string);
string = string2;
string2 = NULL;
}
}
R_FREE (string2);
_handle_call (core, line, &str);
if (!str) {
str = strstr (line, "sym.");
if (!str) {
str = strstr (line, "fcn.");
}
}
if (str) {
char *qoe = strchr (str, ';');
if (qoe) {
str = r_str_ndup (str, qoe - str);
} else {
str = strdup (str);
}
}
if (str) {
string2 = strdup (str);
linecolor = R_CONS_COLOR (call);
}
if (!string && string2) {
string = string2;
string2 = NULL;
}
if (strstr (line, "XREF")) {
addr = UT64_MAX;
}
if (addr != UT64_MAX) {
const char *str = NULL;
if (show_comments) {
char *comment = r_core_anal_get_comments (core, addr);
if (comment) {
if (switchcmp) {
if (strcmp (comment, switchcmp)) {
if (show_offset) {
r_cons_printf ("%s0x%08"PFMT64x" ", use_color? pal->offset: "", addr);
}
r_cons_printf ("%s%s\n", use_color? pal->comment: "", comment);
}
}
else {
if (show_offset) {
r_cons_printf ("%s0x%08"PFMT64x" ", use_color? pal->offset: "", addr);
}
r_cons_printf ("%s%s\n", use_color? pal->comment: "", comment);
}
if (r_str_startswith (comment, "switch table")) {
free (switchcmp);
switchcmp = strdup (comment);
}
R_FREE (comment);
}
}
if (fcn) {
bool label = false;
/* show labels, basic blocks and (conditional) branches */
RAnalBlock *bb;
RListIter *iter;
r_list_foreach (fcn->bbs, iter, bb) {
if (addr == bb->jump) {
if (show_offset) {
r_cons_printf ("%s0x%08"PFMT64x ":\n", use_color? Color_YELLOW: "", addr);
}
label = true;
break;
}
}
if (!label && strstr (line, "->")) {
r_cons_printf ("%s0x%08"PFMT64x ":\n", use_color? Color_YELLOW: "", addr);
}
if (strstr (line, "=<")) {
r_list_foreach (fcn->bbs, iter, bb) {
if (addr >= bb->addr && addr < bb->addr + bb->size) {
const char *op;
if (use_color) {
op = (bb->fail == UT64_MAX)? Color_GREEN "jmp": "cjmp";
} else {
op = (bb->fail == UT64_MAX)? "jmp": "cjmp";
}
if (show_offset) {
r_cons_printf ("%s0x%08"PFMT64x" "Color_RESET, use_color? pal->offset: "", addr);
}
r_cons_printf ("%s 0x%08"PFMT64x "%s\n",
op, bb->jump, use_color? Color_RESET: "");
break;
}
}
}
}
if (string && *string) {
if (string && !strncmp (string, "0x", 2)) {
str = string;
}
if (string2 && !strncmp (string2, "0x", 2)) {
str = string2;
}
ut64 ptr = r_num_math (NULL, str);
RFlagItem *flag = NULL;
if (str) {
flag = r_core_flag_get_by_spaces (core->flags, ptr);
}
if (!flag) {
if (string && !strncmp (string, "0x", 2)) {
R_FREE (string);
}
if (string2 && !strncmp (string2, "0x", 2)) {
R_FREE (string2);
}
}
if (string && addr != UT64_MAX && addr != UT32_MAX) {
r_str_trim (string);
if (string2) {
r_str_trim (string2);
}
//// TODO implememnt avoid duplicated strings
// eprintf ("---> %s\n", string);
if (use_color) {
if (show_offset) {
r_cons_printf ("%s0x%08"PFMT64x" "Color_RESET, use_color? pal->offset: "", addr);
}
r_cons_printf ("%s%s%s%s%s%s%s\n",
r_str_get (linecolor),
r_str_get (string2), string2? " ": "", string,
flag? " ": "", flag? flag->name: "", Color_RESET);
} else {
if (show_offset) {
r_cons_printf ("0x%08"PFMT64x" ", addr);
}
r_cons_printf ("%s%s%s%s%s\n",
r_str_get (string2), string2? " ": "", string,
flag? " ": "", flag? flag->name: "");
}
}
}
}
free (str);
line += strlen (line) + 1;
}
// r_cons_printf ("%s", s);
R_FREE (string2);
R_FREE (string);
R_FREE (s);
R_FREE (switchcmp);
restore_conf:
r_config_set_b (core->config, "asm.offset", show_offset);
r_config_set_b (core->config, "asm.dwarf", asm_dwarf);
r_config_set_b (core->config, "asm.tabs", asm_tabs);
r_config_set_b (core->config, "scr.html", scr_html);
r_config_set_b (core->config, "asm.emu", asm_emu);
r_config_set_b (core->config, "emu.str", emu_str);
}
static void algolist(int mode) {
int i;
for (i = 0; i < R_HASH_NBITS; i++) {
ut64 bits = 1ULL << i;
const char *name = r_hash_name (bits);
if (name && *name) {
if (mode) {
r_cons_println (name);
} else {
r_cons_printf ("%s ", name);
}
}
}
if (!mode) {
r_cons_newline ();
}
}
static bool cmd_print_ph(RCore *core, const char *input) {
char algo[128];
ut32 osize = 0, len = core->blocksize;
const char *ptr;
int pos = 0, handled_cmd = false;
if (*input == '?') {
r_core_cmd_help (core, help_msg_ph);
return true;
}
if (!*input) {
algolist (1);
return true;
}
if (*input == '=') {
algolist (0);
return true;
}
input = r_str_trim_head_ro (input);
ptr = strchr (input, ' ');
sscanf (input, "%31s", algo);
if (ptr && ptr[1]) { // && r_num_is_valid_input (core->num, ptr + 1)) {
int nlen = r_num_math (core->num, ptr + 1);
if (nlen > 0) {
len = nlen;
}
osize = core->blocksize;
if (nlen > core->blocksize) {
r_core_block_size (core, nlen);
if (nlen != core->blocksize) {
eprintf ("Invalid block size\n");
r_core_block_size (core, osize);
return false;
}
r_core_block_read (core);
}
} else if (!ptr || !*(ptr + 1)) {
osize = len;
}
/* TODO: Simplify this spaguetti monster */
while (osize > 0 && hash_handlers[pos].name) {
if (!r_str_ccmp (hash_handlers[pos].name, input, ' ')) {
hash_handlers[pos].handler (core->block, len);
handled_cmd = true;
break;
}
pos++;
}
if (osize) {
r_core_block_size (core, osize);
}
return handled_cmd;
}
static ut32 convert(ut8 *data, const char *bo) {
ut32 n = 0;
while (*bo) {
int i = *bo - '0';
if (i < 1 || i > 4) {
break;
}
n <<= 8;
n |= (data[i - 1] & 0xff);
bo++;
}
return n;
}
static void cmd_print_pv(RCore *core, const char *input, bool useBytes) {
const char *stack[] = {
"ret", "arg0", "arg1", "arg2", "arg3", "arg4", NULL
};
ut8 *block = core->block;
int blocksize = core->blocksize;
ut8 *heaped_block = NULL;
ut8 *block_end = core->block + blocksize;
int i, n = core->rasm->config->bits / 8;
int type = 'v';
bool fixed_size = true;
switch (input[0]) {
case '1': // "pv1"
n = 1;
input++;
break;
case '2': // "pv2"
n = 2;
input++;
break;
case '4': // "pv4"
n = 4;
input++;
break;
case '8': // "pv8"
n = 8;
input++;
break;
default:
if (*input && input[1] == 'j') {
input++;
}
fixed_size = false;
break;
}
const char *arg = strchr (input, ' ');
arg = arg? r_str_trim_head_ro (arg + 1): input;
st64 repeat = r_num_math (core->num, arg);
if (repeat < 0) {
repeat = 1;
}
if (useBytes && n > 0 && repeat > 0) {
repeat /= n;
}
if (repeat < 1) {
repeat = 1;
}
// variables can be
switch (input[0]) {
case 'z': // "pvz"
type = 'z';
if (input[1]) {
input++;
} else {
r_core_cmdf (core, "ps");
break;
}
/* fallthrough */
// case ' ': // "pv "
for (i = 0; stack[i]; i++) {
if (!strcmp (input + 1, stack[i])) {
if (type == 'z') {
r_core_cmdf (core, "ps @ [`drn sp`+%d]", n * i);
} else {
r_core_cmdf (core, "?v [`drn sp`+%d]", n * i);
}
}
}
break;
case '*': { // "pv*"
for (i = 0; i < repeat; i++) {
const bool be = core->anal->config->big_endian;
ut64 at = core->offset + (i * n);
ut8 buf[8];
r_io_read_at (core->io, at, buf, sizeof (buf));
ut8 *b = buf;
switch (n) {
case 1:
r_cons_printf ("f pval.0x%08"PFMT64x"=%d\n", at, r_read_ble8 (b));
break;
case 2:
r_cons_printf ("f pval.0x%08"PFMT64x"=%d\n", at, r_read_ble16 (b, be));
break;
case 4:
r_cons_printf ("f pval.0x%08"PFMT64x"=%d\n", at, r_read_ble32 (b, be));
break;
case 8:
default:
r_cons_printf ("f pval.0x%08"PFMT64x"=%"PFMT64d"\n", at, r_read_ble64 (b, be));
break;
}
}
break;
}
case 'j': { // "pvj"
PJ *pj = r_core_pj_new (core);
if (!pj) {
return;
}
pj_a (pj);
ut64 at = core->offset;
for (i = 0; i < repeat; i++) {
ut8 buf[8];
r_io_read_at (core->io, at, buf, sizeof (buf));
char *str = r_core_cmd_strf (core, "ps@0x%"PFMT64x, at);
r_str_trim (str);
char *p = str;
if (p) {
while (*p) {
if (*p == '\\' && p[1] == 'x') {
memmove (p, p + 4, strlen (p + 4) + 1);
}
p++;
}
}
// r_num_get is gonna use a dangling pointer since the internal
// token that RNum holds ([$$]) has been already freed by r_core_cmd_str
// r_num_math reload a new token so the dangling pointer is gone
pj_o (pj);
pj_k (pj, "value");
switch (n) {
case 1:
pj_i (pj, r_read_ble8 (buf));
break;
case 2:
pj_i (pj, r_read_ble16 (buf, core->anal->config->big_endian));
break;
case 4:
pj_n (pj, (ut64)r_read_ble32 (buf, core->anal->config->big_endian));
break;
case 8:
default:
pj_n (pj, r_read_ble64 (buf, core->anal->config->big_endian));
break;
}
pj_ks (pj, "string", str);
pj_kn (pj, "address", at);
pj_end (pj);
free (str);
at += n;
}
pj_end (pj);
r_cons_println (pj_string (pj));
pj_free (pj);
break;
}
case 'e': // "pve"
{
int size = 4; // default is 4.. or asm.bits?
const char *byteorder = r_config_get_b (core->config, "cfg.bigendian")
? "1234": "4321";
if (strchr (input, ' ')) {
size = atoi (input + 1);
byteorder = r_str_trim_head_ro (input + 2);
} else {
size = strlen (byteorder);
}
int length = size;
char *space = strchr (byteorder, ' ');
if (space) {
length = atoi (space + 1);
}
int i = 0;
if (length + size > 0xfffff) {
eprintf ("Too large\n");
break;
}
ut8 * data = calloc (length + size, 1);
if (data) {
(void)r_io_read_at (core->io, core->offset, data, length + size);
while (i < length) {
ut32 n = convert (data + i, byteorder);
r_cons_printf ("0x%08"PFMT64x" %d (0x%08x)\n", core->offset + i, n, n);
i += size;
}
free (data);
}
}
break;
case '?': // "pv?"
r_core_cmd_help (core, help_msg_pv);
break;
default:
do {
repeat--;
if (block + 8 >= block_end) {
int blockdelta = block - core->block;
if (heaped_block) {
blockdelta = block - heaped_block;
free (heaped_block);
}
blocksize = ((1 + repeat) * 8) + 8;
block_end = block + blocksize;
heaped_block = calloc (blocksize, 1);
if (!heaped_block) {
break;
}
r_io_read_at (core->io, core->offset + blockdelta, heaped_block, blocksize);
block = heaped_block;
}
ut64 v;
if (!fixed_size) {
n = 0;
}
switch (n) {
case 1:
v = r_read_ble8 (block);
r_cons_printf ("0x%02" PFMT64x "\n", v);
block += 1;
break;
case 2:
v = r_read_ble16 (block, core->print->big_endian);
r_cons_printf ("0x%04" PFMT64x "\n", v);
block += 2;
break;
case 4:
v = r_read_ble32 (block, core->print->big_endian);
r_cons_printf ("0x%08" PFMT64x "\n", v);
block += 4;
break;
case 8:
v = r_read_ble64 (block, core->print->big_endian);
r_cons_printf ("0x%016" PFMT64x "\n", v);
block += 8;
break;
default:
v = r_read_ble64 (block, core->print->big_endian);
switch (core->rasm->config->bits / 8) {
case 1: r_cons_printf ("0x%02" PFMT64x "\n", v & UT8_MAX); break;
case 2: r_cons_printf ("0x%04" PFMT64x "\n", v & UT16_MAX); break;
case 4: r_cons_printf ("0x%08" PFMT64x "\n", v & UT32_MAX); break;
case 8: r_cons_printf ("0x%016" PFMT64x "\n", v & UT64_MAX); break;
default: break;
}
block += core->rasm->config->bits / 8;
break;
}
} while (repeat > 0);
free (heaped_block);
break;
}
}
static bool cmd_print_blocks(RCore *core, const char *input) {
bool result = false;
char mode = input[0];
RList *list = NULL;
RCoreAnalStats *as = NULL;
RTable *t = NULL;
PJ *pj = NULL;
if (mode == '?') {
r_core_cmd_help (core, help_msg_p_minus);
return false;
}
if (mode && mode != ' ') {
input++;
}
int w = (input[0] == ' ')
? (int)r_num_math (core->num, input + 1)
: (int)(core->print->cols * 2.7);
if (w == 0) {
r_core_cmd_help (core, help_msg_p_minus);
return false;
}
int cols = r_config_get_i (core->config, "hex.cols");
//int cols = r_cons_get_size (NULL) - 30;
ut64 off = core->offset;
ut64 from = UT64_MAX;
ut64 to = 0;
list = r_core_get_boundaries_prot (core, -1, NULL, "search");
if (!list) {
result = true;
goto cleanup;
}
RListIter *iter;
RIOMap *map;
r_list_foreach (list, iter, map) {
ut64 f = r_io_map_begin (map);
ut64 t = r_io_map_end (map);
if (f < from) {
from = f;
}
if (t > to) {
to = t;
}
}
r_list_free (list);
list = NULL;
ut64 piece = R_MAX ((to - from) / R_MAX (cols, w), 1);
as = r_core_anal_get_stats (core, from, to, piece);
if (!as) {
goto cleanup;
}
switch (mode) {
case '-': // "p--"
#if 0
{
RConsPixel *p = r_cons_pixel_new (80, 80);
r_cons_pixel_set (p, 5, 5, 1);
r_cons_pixel_fill (p, 10, 10, 30, 30, 1);
char *s = r_cons_pixel_drain (p);
r_cons_printf ("%s%c", s, 10);
free (s);
}
#endif
r_print_graphline (core->print, core->block, core->blocksize);
goto cleanup;
case 'j': // "p-j"
pj = pj_new ();
if (!pj) {
goto cleanup;
}
pj_o (pj);
pj_kn (pj, "from", from);
pj_kn (pj, "to", to);
pj_ki (pj, "blocksize", piece);
pj_k (pj, "blocks");
pj_a (pj);
break;
case 'h': { // "p-h"
t = r_core_table (core, "navbar");
if (!t) {
goto cleanup;
}
t->showSum = true;
r_table_set_columnsf (t, "sddddd", "offset", "flags", "funcs", "cmts", "syms", "str");
break;
}
case 'e':
default:
r_cons_printf ("0x%08"PFMT64x " [", from);
}
bool use_color = r_config_get_i (core->config, "scr.color");
int len = 0;
int i;
for (i = 0; i < ((to - from) / piece); i++) {
ut64 at = from + (piece * i);
ut64 ate = at + piece;
ut64 p = (at - from) / piece;
switch (mode) {
case 'j':
pj_o (pj);
if ((as->block[p].flags)
|| (as->block[p].functions)
|| (as->block[p].comments)
|| (as->block[p].symbols)
|| (as->block[p].perm)
|| (as->block[p].strings)) {
pj_kn (pj, "offset", at);
pj_kn (pj, "size", piece);
}
if (as->block[p].flags) {
pj_ki (pj, "flags", as->block[p].flags);
}
if (as->block[p].functions) {
pj_ki (pj, "functions", as->block[p].functions);
}
if (as->block[p].in_functions) {
pj_ki (pj, "in_functions", as->block[p].in_functions);
}
if (as->block[p].comments) {
pj_ki (pj, "comments", as->block[p].comments);
}
if (as->block[p].symbols) {
pj_ki (pj, "symbols", as->block[p].symbols);
}
if (as->block[p].strings) {
pj_ki (pj, "strings", as->block[p].strings);
}
if (as->block[p].perm) {
pj_ks (pj, "perm", r_str_rwx_i (as->block[p].perm));
}
pj_end (pj);
len++;
break;
case 'h':
if ((as->block[p].flags)
|| (as->block[p].functions)
|| (as->block[p].comments)
|| (as->block[p].symbols)
|| (as->block[p].strings)) {
r_strf_var (atstr, 32, "0x%09"PFMT64x"", at);
r_table_add_rowf (t, "sddddd", atstr, as->block[p].flags,
as->block[p].functions, as->block[p].comments, as->block[p].symbols, as->block[p].strings);
}
break;
case 'e': // p-e
cmd_p_minus_e (core, at, ate);
break;
default:{ // p--
if (off >= at && off < ate) {
r_cons_write ("^", 1);
} else {
RIOMap *s = r_io_map_get_at (core->io, at);
if (use_color) {
if (s) {
if (s->perm & R_PERM_X) {
r_cons_print (r_cons_singleton ()->context->pal.graph_trufae);
} else {
r_cons_print (r_cons_singleton ()->context->pal.graph_true);
}
} else {
r_cons_print (r_cons_singleton ()->context->pal.graph_false);
}
}
if (as->block[p].strings > 0) {
r_cons_write ("z", 1);
} else if (as->block[p].symbols > 0) {
r_cons_write ("s", 1);
} else if (as->block[p].functions > 0) {
r_cons_write ("F", 1);
} else if (as->block[p].comments > 0) {
r_cons_write ("c", 1);
} else if (as->block[p].flags > 0) {
r_cons_write (".", 1);
} else if (as->block[p].in_functions > 0) {
r_cons_write ("f", 1);
} else {
r_cons_write ("_", 1);
}
}
}
break;
}
}
switch (mode) {
case 'j':
pj_end (pj);
pj_end (pj);
r_cons_println (pj_string (pj));
break;
case 'h': {
char *table_string = r_table_tofancystring (t);
if (!table_string) {
goto cleanup;
}
r_cons_printf ("\n%s\n", table_string);
free (table_string);
break;
}
case 'e':
default:
if (use_color) {
r_cons_print (Color_RESET);
}
r_cons_printf ("] 0x%08"PFMT64x "\n", to);
break;
}
result = true;
cleanup:
pj_free (pj);
r_table_free (t);
r_list_free (list);
r_core_anal_stats_free (as);
return result;
}
static bool checkAnalType(RAnalOp *op, int t) {
if (t == 'c') {
switch (op->type) {
case R_ANAL_OP_TYPE_RCALL:
case R_ANAL_OP_TYPE_UCALL:
case R_ANAL_OP_TYPE_CALL:
return true;
}
} else if (t == 's') {
if (op->family == R_ANAL_OP_FAMILY_PRIV) {
return true;
}
switch (op->type) {
case R_ANAL_OP_TYPE_SWI:
return true;
}
} else if (t == 'i') {
switch (op->type) {
case R_ANAL_OP_TYPE_TRAP:
case R_ANAL_OP_TYPE_ILL:
return true;
}
} else if (t == 'j') {
switch (op->type) {
case R_ANAL_OP_TYPE_JMP:
//case R_ANAL_OP_TYPE_RJMP:
//case R_ANAL_OP_TYPE_UJMP:
case R_ANAL_OP_TYPE_CJMP:
return true;
default:
break;
}
}
return false;
}
static inline void matchBar(ut8 *ptr, int i) {
if (ptr[i] < 0xff) {
ptr[i]++;
}
}
static ut8 *analBars(RCore *core, size_t type, size_t nblocks, size_t blocksize, size_t skipblocks, ut64 from) {
size_t j, i = 0;
ut8 *ptr = calloc (1, nblocks);
if (!ptr) {
eprintf ("Error: failed to malloc memory");
return NULL;
}
// XXX: unused memblock
ut8 *p = malloc (blocksize);
if (!p) {
R_FREE (ptr);
eprintf ("Error: failed to malloc memory");
return NULL;
}
if (type == 'A') {
ut64 to = from + (blocksize * nblocks);
RCoreAnalStats *as = r_core_anal_get_stats (core, from, to, blocksize);
for (i = 0; i < nblocks; i++) {
int value = 0;
value += as->block[i].functions;
value += as->block[i].in_functions;
value += as->block[i].comments;
value += as->block[i].symbols;
value += as->block[i].flags;
value += as->block[i].strings;
value += as->block[i].blocks;
ptr[i] = R_MIN (255, value);
}
r_core_anal_stats_free (as);
free (p);
return ptr;
}
for (i = 0; i < nblocks; i++) {
if (r_cons_is_breaked ()) {
break;
}
ut64 off = from + (i + skipblocks) * blocksize;
for (j = 0; j < blocksize ; j++) {
if (type == 'a') {
RAnalFunction *fcn = r_anal_get_fcn_in (core->anal, off + j, 0);
if (fcn) {
ptr[i] = r_list_length (fcn->bbs);
}
continue;
}
RAnalOp *op = r_core_anal_op (core, off + j, R_ANAL_OP_MASK_BASIC);
if (op) {
if (op->size < 1) {
// do nothing
if (type == 'i') {
matchBar (ptr, i);
}
} else {
if (checkAnalType (op, type)) {
matchBar (ptr, i);
}
}
if (op->size > 0) {
j += op->size - 1;
}
r_anal_op_free (op);
} else {
if (type == 'i') {
matchBar (ptr, i);
}
}
}
}
free (p);
return ptr;
}
static void cmd_print_bars(RCore *core, const char *input) {
bool print_bars = false;
ut8 *ptr = NULL;
// p=e [nblocks] [totalsize] [skip]
int nblocks = -1;
ut64 totalsize = UT64_MAX;
int skipblocks = -1;
RIOMap* map;
RListIter *iter;
ut64 from = 0, to = 0;
RList *list = r_core_get_boundaries_prot (core, -1, NULL, "zoom");
if (!list) {
goto beach;
}
ut64 blocksize = 0;
int mode = 'b'; // e, p, b, ...
int submode = 0; // q, j, ...
if (input[0]) {
char *spc = strchr (input, ' ');
if (spc) {
nblocks = r_num_math (core->num, spc + 1);
if (nblocks < 1) {
goto beach;
}
spc = strchr (spc + 1, ' ');
if (spc) {
totalsize = r_num_math (core->num, spc + 1);
spc = strchr (spc + 1, ' ');
if (spc) {
skipblocks = r_num_math (core->num, spc + 1);
}
}
}
mode = input[1];
if (mode && mode != ' ' && input[2]) {
submode = input[2];
}
}
if (skipblocks < 0) {
skipblocks = 0;
}
if (totalsize == UT64_MAX) {
if (r_config_get_b (core->config, "cfg.debug")) {
RDebugMap *map = r_debug_map_get (core->dbg, core->offset);
if (map) {
totalsize = map->addr_end - map->addr;
from = map->addr;
}
} else {
if (core->io && core->io->desc) {
totalsize = r_io_fd_size (core->io, core->io->desc->fd);
if ((st64) totalsize < 1) {
totalsize = UT64_MAX;
}
}
if (totalsize == UT64_MAX) {
eprintf ("Cannot determine file size\n");
goto beach;
}
}
}
blocksize = (blocksize > 0)? (totalsize / blocksize): (core->blocksize);
if (blocksize < 1) {
eprintf ("Invalid block size: %d\n", (int)blocksize);
goto beach;
}
if (!r_config_get_b (core->config, "cfg.debug")) {
RIOMap* map1 = r_list_first (list);
if (map1) {
from = map1->itv.addr;
r_list_foreach (list, iter, map) {
to = r_io_map_end (map);
}
totalsize = to - from;
} else {
from = core->offset;
}
}
if (nblocks < 1) {
nblocks = totalsize / blocksize;
} else {
blocksize = totalsize / nblocks;
if (blocksize < 1) {
eprintf ("Invalid block size: %d\n", (int)blocksize);
goto beach;
}
}
switch (mode) {
case '?': // bars
r_core_cmd_help (core, help_msg_p_equal);
break;
case '=': // "p=="
switch (submode) {
case '?':
r_core_cmd_help (core, help_msg_p_equal);
break;
case '0': // 0x00 bytes
case 'f': // 0xff bytes
case 'F': // 0xff bytes
case 'A': // anal stats
case 'a': // anal bb
case 'p': // printable chars
case 'z': // zero terminated strings
case 'b': // zero terminated strings
{
ut64 i, j, k;
ptr = calloc (1, nblocks);
if (!ptr) {
eprintf ("Error: failed to malloc memory");
goto beach;
}
ut8 *p = calloc (1, blocksize);
if (!p) {
R_FREE (ptr);
eprintf ("Error: failed to malloc memory");
goto beach;
}
int len = 0;
if (submode == 'A') {
ut64 to = from + totalsize; // (blocksize * nblocks);
RCoreAnalStats *as = r_core_anal_get_stats (core, from, to, blocksize);
for (i = 0; i < nblocks; i++) {
int value = 0;
value += as->block[i].functions;
value += as->block[i].in_functions;
value += as->block[i].comments;
value += as->block[i].symbols;
value += as->block[i].flags;
value += as->block[i].strings;
value += as->block[i].blocks;
ptr[i] = 256 * value / blocksize;
ptr[i] *= 3;
}
r_core_anal_stats_free (as);
} else for (i = 0; i < nblocks; i++) {
ut64 off = from + blocksize * (i + skipblocks);
r_io_read_at (core->io, off, p, blocksize);
for (j = k = 0; j < blocksize; j++) {
switch (submode) {
case 'a':
{
RAnalFunction *fcn = r_anal_get_fcn_in (core->anal, off + j, 0);
if (fcn) {
k += r_list_length (fcn->bbs);
k = R_MAX (255, k);
}
}
break;
case '0':
if (!p[j]) {
k++;
}
break;
case 'f':
if (p[j] == 0xff) {
k++;
}
break;
case 'z':
if ((IS_PRINTABLE (p[j]))) {
if ((j + 1) < blocksize && p[j + 1] == 0) {
k++;
j++;
}
if (len++ > 8) {
k++;
}
} else {
len = 0;
}
break;
case 'p':
if ((IS_PRINTABLE (p[j]))) {
k++;
}
break;
}
}
ptr[i] = 256 * k / blocksize;
}
r_print_columns (core->print, ptr, nblocks, 14);
free (p);
}
break;
case 'e': // "p=e"
{
ut8 *p;
int i = 0;
ptr = calloc (1, nblocks);
if (!ptr) {
eprintf ("Error: failed to malloc memory");
goto beach;
}
p = malloc (blocksize);
if (!p) {
R_FREE (ptr);
eprintf ("Error: failed to malloc memory");
goto beach;
}
for (i = 0; i < nblocks; i++) {
ut64 off = from + (blocksize * (i + skipblocks));
r_io_read_at (core->io, off, p, blocksize);
ptr[i] = (ut8) (255 * r_hash_entropy_fraction (p, blocksize));
}
free (p);
r_print_columns (core->print, ptr, nblocks, 14);
}
break;
default:
r_print_columns (core->print, core->block, core->blocksize, 14);
break;
}
break;
case '2': // "p=2"
{
short *word = (short*) core->block;
int i, words = core->blocksize / 2;
int step = r_num_math (core->num, input + 2);
ut64 oldword = 0;
for (i = 0; i<words; i++) {
ut64 word64 = word[i] + ST16_MAX;
r_cons_printf ("0x%08"PFMT64x" %8d ", core->offset + (i *2), word[i]);
r_print_progressbar (core->print, word64 * 100 / UT16_MAX, 60);
r_cons_printf (" %" PFMT64d, word64 - oldword);
oldword = word64;
r_cons_newline ();
i += step;
}
}
break;
case 'd': // "p=d"
ptr = NULL;
if (input[2]) {
ut64 bufsz = r_num_math (core->num, input + 3);
ut64 curbsz = core->blocksize;
if (bufsz < 1) {
bufsz = curbsz;
}
if (bufsz > core->blocksize) {
r_core_block_size (core, bufsz);
r_core_block_read (core);
}
cmd_print_eq_dict (core, core->block, bufsz);
if (bufsz != curbsz) {
r_core_block_size (core, curbsz);
}
} else {
cmd_print_eq_dict (core, core->block, core->blocksize);
}
break;
case 'j': // "p=j" cjmp and jmp
case 'A': // "p=A" anal info
case 'a': // "p=a" bb info
case 'c': // "p=c" calls
case 'i': // "p=i" invalid
case 's': // "p=s" syscalls
if ((ptr = analBars (core, mode, nblocks, blocksize, skipblocks, from))) {
print_bars = true;
}
break;
case 'm':
{
ut8 *p;
int j, i = 0;
ptr = calloc (1, nblocks);
if (!ptr) {
eprintf ("Error: failed to malloc memory");
goto beach;
}
p = malloc (blocksize);
if (!p) {
R_FREE (ptr);
eprintf ("Error: failed to malloc memory");
goto beach;
}
for (i = 0; i < nblocks; i++) {
ut64 off = from + (blocksize * (i + skipblocks));
for (j = 0; j < blocksize; j++) {
if (r_flag_get_at (core->flags, off + j, false)) {
matchBar (ptr, i);
}
}
}
free (p);
print_bars = true;
}
break;
case 'e': // "p=e" entropy
{
ut8 *p;
int i = 0;
ptr = calloc (1, nblocks);
if (!ptr) {
eprintf ("Error: failed to malloc memory");
goto beach;
}
p = malloc (blocksize);
if (!p) {
R_FREE (ptr);
eprintf ("Error: failed to malloc memory");
goto beach;
}
for (i = 0; i < nblocks; i++) {
ut64 off = from + (blocksize * (i + skipblocks));
r_io_read_at (core->io, off, p, blocksize);
ptr[i] = (ut8) (255 * r_hash_entropy_fraction (p, blocksize));
}
free (p);
print_bars = true;
}
break;
case '0': // 0x00 bytes
case 'F': // 0xff bytes
case 'p': // printable chars
case 'z': // zero terminated strings
{
ut8 *p;
ut64 i, j, k;
ptr = calloc (1, nblocks);
if (!ptr) {
eprintf ("Error: failed to malloc memory");
goto beach;
}
p = calloc (1, blocksize);
if (!p) {
R_FREE (ptr);
eprintf ("Error: failed to malloc memory");
goto beach;
}
int len = 0;
for (i = 0; i < nblocks; i++) {
ut64 off = from + blocksize * (i + skipblocks);
r_io_read_at (core->io, off, p, blocksize);
for (j = k = 0; j < blocksize; j++) {
switch (mode) {
case '0':
if (!p[j]) {
k++;
}
break;
case 'f':
if (p[j] == 0xff) {
k++;
}
break;
case 'z':
if ((IS_PRINTABLE (p[j]))) {
if ((j + 1) < blocksize && p[j + 1] == 0) {
k++;
j++;
}
if (len++ > 8) {
k++;
}
} else {
len = 0;
}
break;
case 'p':
if ((IS_PRINTABLE (p[j]))) {
k++;
}
break;
}
}
ptr[i] = 256 * k / blocksize;
}
free (p);
print_bars = true;
}
break;
case 'b': // bytes
case '\0':
ptr = calloc (1, nblocks);
r_io_read_at (core->io, from, ptr, nblocks);
// TODO: support print_bars
r_print_fill (core->print, ptr, nblocks, from, blocksize);
R_FREE (ptr);
break;
}
if (print_bars) {
bool hex_offset = r_config_get_i (core->config, "hex.offset");
if (hex_offset) {
core->print->flags |= R_PRINT_FLAGS_OFFSET;
} else {
core->print->flags &= ~R_PRINT_FLAGS_OFFSET;
}
int i;
switch (submode) {
case 'j': {
PJ *pj = pj_new ();
if (!pj) {
return;
}
pj_o (pj);
pj_kn (pj, "blocksize", blocksize);
pj_kn (pj, "address", from);
pj_kn (pj, "size", totalsize);
pj_k (pj, "entropy");
pj_a (pj);
for (i = 0; i < nblocks; i++) {
ut8 ep = ptr[i];
ut64 off = blocksize * i;
off += from;
pj_o (pj);
pj_kn (pj, "addr", off);
pj_ki (pj, "value", ep);
pj_end (pj);
}
pj_end (pj);
pj_end (pj);
r_cons_println (pj_string (pj));
pj_free (pj);
} break;
case 'q':
for (i = 0; i < nblocks; i++) {
ut64 off = from + (blocksize * i);
if (core->print->cur_enabled) {
if (i == core->print->cur) {
r_cons_printf ("> ");
r_core_return_code (core, off);
} else {
r_cons_printf (" ");
}
}
r_cons_printf ("0x%08"PFMT64x " %d %d\n", off, i, ptr[i]);
}
break;
default:
core->print->num = core->num;
r_print_fill (core->print, ptr, nblocks, from, blocksize);
break;
}
}
beach:
r_list_free (list);
free (ptr);
}
static int bbcmp(RAnalBlock *a, RAnalBlock *b) {
return a->addr - b->addr;
}
/* TODO: integrate this into r_anal */
static void _pointer_table(RCore *core, ut64 origin, ut64 offset, const ut8 *buf, int len, int step, int mode) {
int i;
ut64 addr;
st32 *delta; // only for step == 4
if (step < 1) {
step = 4;
}
if (!r_io_is_valid_offset (core->io, origin, 0) ||
!r_io_is_valid_offset (core->io, offset, 0)) {
return;
}
if (origin != offset) {
switch (mode) {
case '*':
r_cons_printf ("CC-@ 0x%08"PFMT64x "\n", origin);
r_cons_printf ("CC switch table @ 0x%08"PFMT64x "\n", origin);
r_cons_printf ("axd 0x%"PFMT64x " 0x%08"PFMT64x "\n", origin, offset);
break;
case '.':
r_core_cmdf (core, "CC-@ 0x%08"PFMT64x "\n", origin);
r_core_cmdf (core, "CC switch table @ 0x%08"PFMT64x "\n", origin);
r_core_cmdf (core, "f switch.0x%08"PFMT64x"=0x%08"PFMT64x"\n", origin, origin);
r_core_cmdf (core, "f jmptbl.0x%08"PFMT64x"=0x%08"PFMT64x"\n", offset, offset); //origin, origin);
r_core_cmdf (core, "axd 0x%"PFMT64x " 0x%08"PFMT64x "\n", origin, offset);
break;
}
} else if (mode == '.') {
r_core_cmdf (core, "CC-@ 0x%08"PFMT64x "\n", origin);
r_core_cmdf (core, "CC switch basic block @ 0x%08"PFMT64x "\n", offset);
r_core_cmdf (core, "f switch.0x%08"PFMT64x"=0x%08"PFMT64x"\n", offset, offset); // basic block @ 0x%08"PFMT64x "\n", offset);
}
int n = 0;
for (i = 0; (i + sizeof (st32)) <= len; i += step, n++) {
delta = (st32 *) (buf + i);
addr = offset + *delta;
if (!r_io_is_valid_offset (core->io, addr, 0)) {
// Lets check for jmptbl with not relative addresses
// Like: jmp dword [eax*4 + jmptbl.0x5435345]
if (!r_io_is_valid_offset (core->io, *delta, 0)) {
break;
}
addr = *delta;
}
if (mode == '*') {
r_cons_printf ("af case.%d.0x%"PFMT64x " 0x%08"PFMT64x "\n", n, offset, addr);
r_cons_printf ("ax 0x%"PFMT64x " 0x%08"PFMT64x "\n", offset, addr);
r_cons_printf ("ax 0x%"PFMT64x " 0x%08"PFMT64x "\n", addr, offset); // wrong, but useful because forward xrefs dont work :?
r_cons_printf ("aho case 0x%"PFMT64x " 0x%08"PFMT64x " @ 0x%08"PFMT64x "\n", (ut64)i, addr, offset + i); // wrong, but useful because forward xrefs dont work :?
r_cons_printf ("ahs %d @ 0x%08"PFMT64x "\n", step, offset + i);
} else if (mode == '.') {
r_core_cmdf (core, "af case.%d.0x%"PFMT64x " @ 0x%08"PFMT64x "\n", n, offset, addr);
r_core_cmdf (core, "ax 0x%"PFMT64x " 0x%08"PFMT64x "\n", offset, addr);
r_core_cmdf (core, "ax 0x%"PFMT64x " 0x%08"PFMT64x "\n", addr, offset); // wrong, but useful because forward xrefs dont work :?
// r_core_cmdf (core, "CC+ case %d: 0x%08"PFMT64x " @ 0x%08"PFMT64x "\n", i / step, addr, origin);
r_core_cmdf (core, "CCu case %d: @ 0x%08"PFMT64x "\n", n, addr); //, origin);
r_core_cmdf (core, "aho case %d 0x%08"PFMT64x " @ 0x%08"PFMT64x "\n", n, addr, offset + i); // wrong, but useful because forward xrefs dont work :?
r_core_cmdf (core, "ahs %d @ 0x%08"PFMT64x "\n", step, offset + i);
} else {
r_cons_printf ("0x%08"PFMT64x " -> 0x%08"PFMT64x "\n", offset + i, addr);
}
}
}
static void __printPattern(RCore *core, const char *_input) {
char *input = strdup (_input);
const char *arg = r_str_nextword (input, ' ');
size_t i, j;
st64 len = arg? r_num_math (core->num, arg): core->blocksize;
if (len < 1) {
eprintf ("Invalid length\n");
return;
}
switch (input[0]) {
case 'd': // "ppd"
// debruijn pattern
{
ut8 *buf = (ut8*)r_debruijn_pattern (len, 0, NULL);
for (i = 0; i < len; i++) {
r_cons_printf ("%02x", buf[i]);
}
r_cons_newline ();
free (buf);
}
break;
case '1': // "pp1"
// incremental byte sequence
{
int min = (core->offset & 0xff);
for (i = 0; i < len; i++) {
r_cons_printf ("%02x", (int)(i + min));
}
r_cons_newline ();
}
break;
case '2': // "pp2"
// incremental half word sequences
{
// TODO: honor cfg.bigendian
int min = (core->offset & 0xffff);
for (i = 0; i < len; i++) {
r_cons_printf ("%04x", (int)(i + min));
}
r_cons_newline ();
}
break;
case '4': // "pp4"
// incremental half word sequences
{
// TODO: honor cfg.bigendian
int min = (core->offset & UT32_MAX);
for (i = 0; i < len; i++) {
r_cons_printf ("%08x", (int)(i + min));
}
r_cons_newline ();
}
break;
case '8': // "pp8"
// incremental half word sequences
{
// TODO: honor cfg.bigendian
ut64 min = (core->offset);
for (i = 0; i < len; i++) {
r_cons_printf ("%016"PFMT64x, i + min);
}
r_cons_newline ();
}
break;
case 'f': // "ppf"
// zero ssled
{
ut8 *buf = (ut8*)r_debruijn_pattern (len, 0, NULL);
for (i = 0; i < len; i++) {
r_cons_printf ("%02x", 0xff);
}
r_cons_newline ();
free (buf);
}
break;
case '0': // "pp0"
// zero ssled
{
ut8 *buf = (ut8*)r_debruijn_pattern (len, 0, NULL);
for (i = 0; i < len; i++) {
r_cons_printf ("%02x", 0);
}
r_cons_newline ();
free (buf);
}
break;
case 'a':
// TODO
{
i = core->offset;
size_t bs = 4; // XXX hardcoded
ut8 *buf = calloc (bs, 1);
// for (;i>0;i--) { incDigitBuffer (buf, bs); }
for (i = 0; i < len; i++) {
incAlphaBuffer (buf, bs);
for (j = 0; j < bs; j++) {
r_cons_printf ("%c", buf[j]?buf[j]:'A');
}
r_cons_printf (" ");
}
r_cons_newline ();
free (buf);
}
break;
case 'n': // "ppn"
{
i = core->offset;
size_t bs = 4; // XXX hardcoded
ut8 *buf = calloc (bs, 1);
// for (;i>0;i--) { incDigitBuffer (buf, bs); }
for (i = 0; i < len; i++) {
incDigitBuffer (buf, bs);
for (j = 0; j < bs; j++) {
r_cons_printf ("%c", buf[j]?buf[j]:'0');
}
r_cons_printf (" ");
}
r_cons_newline ();
free (buf);
}
break;
default:
r_core_cmd_help (core, help_msg_pp);
break;
}
free (input);
}
static void pr_bb(RCore *core, RAnalFunction *fcn, RAnalBlock *b, bool emu, ut64 saved_gp, ut8 *saved_arena, int saved_arena_size, char p_type, bool fromHere) {
bool show_flags = r_config_get_b (core->config, "asm.flags");
const char *orig_bb_middle = r_config_get (core->config, "asm.bbmiddle");
core->anal->gp = saved_gp;
if (fromHere) {
if (b->addr < core->offset) {
core->cons->null = true;
} else {
core->cons->null = false;
}
}
if (emu) {
if (b->parent_reg_arena) {
ut64 gp;
r_reg_arena_poke (core->anal->reg, b->parent_reg_arena, b->parent_reg_arena_size);
R_FREE (b->parent_reg_arena);
gp = r_reg_getv (core->anal->reg, "gp");
if (gp) {
core->anal->gp = gp;
}
} else {
r_reg_arena_poke (core->anal->reg, saved_arena, saved_arena_size);
}
}
if (b->parent_stackptr != INT_MAX) {
core->anal->stackptr = b->parent_stackptr;
}
r_config_set_i (core->config, "asm.bbmiddle", false);
// r_cons_printf ("| loc_0x%08"PFMT64x":", b->addr);
ut8 *buf = malloc (b->size);
if (!buf) {
r_cons_printf ("Failed to allocate %"PFMT64u" bytes", b->size);
return;
}
if (r_io_nread_at (core->io, b->addr, buf, b->size) < 0) {
r_cons_printf ("Failed to read %" PFMT64u " bytes at 0x%" PFMT64x "\n",
b->size, b->addr);
return;
}
if (p_type == 'D') {
r_core_cmdf (core, "pD %" PFMT64u " @0x%" PFMT64x, b->size, b->addr);
} else {
r_core_cmdf (core, "pI %" PFMT64u " @0x%" PFMT64x, b->size, b->addr);
}
free (buf);
r_config_set (core->config, "asm.bbmiddle", orig_bb_middle);
if (b->jump != UT64_MAX) {
if (b->jump > b->addr) {
RAnalBlock *jumpbb = r_anal_get_block_at (b->anal, b->jump);
if (jumpbb && r_list_contains (jumpbb->fcns, fcn)) {
if (emu && core->anal->last_disasm_reg && !jumpbb->parent_reg_arena) {
jumpbb->parent_reg_arena = r_reg_arena_dup (core->anal->reg, core->anal->last_disasm_reg);
}
if (jumpbb->parent_stackptr == INT_MAX) {
jumpbb->parent_stackptr = core->anal->stackptr + b->stackptr;
}
}
}
if (p_type == 'D' && show_flags) {
r_cons_printf ("| // true: 0x%08"PFMT64x, b->jump);
}
}
if (b->fail != UT64_MAX) {
if (b->fail > b->addr) {
RAnalBlock *failbb = r_anal_get_block_at (b->anal, b->fail);
if (failbb && r_list_contains (failbb->fcns, fcn)) {
if (emu && core->anal->last_disasm_reg && !failbb->parent_reg_arena) {
failbb->parent_reg_arena = r_reg_arena_dup (core->anal->reg, core->anal->last_disasm_reg);
}
if (failbb->parent_stackptr == INT_MAX) {
failbb->parent_stackptr = core->anal->stackptr + b->stackptr;
}
}
}
if (p_type == 'D' && show_flags) {
r_cons_printf (" false: 0x%08"PFMT64x, b->fail);
}
}
if (p_type == 'D' && show_flags) {
r_cons_newline ();
}
}
#if 0
dsmap {
r_itv_t addr;
ut64 size;
ut8 *dis;
}
#endif
static void disasm_until_optype(RCore *core, ut64 addr, char type_print, int optype, int limit) {
int p = 0;
const bool show_color = core->print->flags & R_PRINT_FLAGS_COLOR;
int i;
for (i = 0; i < limit; i++) {
RAnalOp *op = r_core_anal_op (core, addr, R_ANAL_OP_MASK_BASIC | R_ANAL_OP_MASK_DISASM);
if (op) {
char *mnem = op->mnemonic;
char *m = malloc ((strlen (mnem) * 2) + 32);
strcpy (m, mnem);
//r_parse_parse (core->parser, op->mnemonic, m);
if (type_print == 'q') {
r_cons_printf ("%s\n", m);
} else {
if (show_color) {
const char *offsetColor = r_cons_singleton ()->context->pal.offset; // TODO etooslow. must cache
r_cons_printf ("%s0x%08"PFMT64x""Color_RESET" %10s %s\n",
offsetColor, addr + p, "", m);
} else {
r_cons_printf ("0x%08"PFMT64x" %10s %s\n", addr + p, "", m);
}
}
if ((op->type & 0xfffff) == optype) {
goto beach;
}
if (op->type == R_ANAL_OP_TYPE_JMP) {
addr = op->jump;
} else {
addr += op->size;
}
} else {
eprintf ("[pdp] Cannot get op at 0x%08"PFMT64x"\n", addr + p);
r_anal_op_free (op);
break;
}
//r_io_read_at (core->io, n, rbuf, 512);
r_anal_op_free (op);
}
beach:
return;
}
static void disasm_ropchain(RCore *core, ut64 addr, char type_print) {
int p = 0;
ut64 n = 0;
ut8 *buf = calloc (core->blocksize, 1);
(void)r_io_read_at (core->io, addr, buf, core->blocksize);
while (p + 4 < core->blocksize) {
const bool be = core->print->big_endian;
if (core->rasm->config->bits == 64) {
n = r_read_ble64 (buf + p, be);
} else {
n = r_read_ble32 (buf + p, be);
}
r_cons_printf ("[0x%08"PFMT64x"] 0x%08"PFMT64x"\n", addr + p, n);
disasm_until_optype (core, n, type_print, R_ANAL_OP_TYPE_RET, 1024);
if (core->rasm->config->bits == 64) {
p += 8;
} else {
p += 4;
}
}
free (buf);
}
static void disasm_recursive(RCore *core, ut64 addr, int count, char type_print) {
RAnalOp aop = {0};
int ret;
ut8 buf[128];
PJ *pj = NULL;
if (type_print == 'j') {
pj = pj_new ();
if (!pj) {
return;
}
pj_a (pj);
}
while (count-- > 0) {
r_io_read_at (core->io, addr, buf, sizeof (buf));
r_anal_op_fini (&aop);
ret = r_anal_op (core->anal, &aop, addr, buf, sizeof (buf), R_ANAL_OP_MASK_BASIC);
if (ret < 0 || aop.size < 1) {
addr++;
continue;
}
// r_core_cmdf (core, "pD %d @ 0x%08"PFMT64x, aop.size, addr);
if (type_print == 'j') {
r_core_print_disasm_json (core, addr, buf, sizeof (buf), 1, pj);
} else {
r_core_cmdf (core, "pd 1 @ 0x%08"PFMT64x, addr);
}
switch (aop.type) {
case R_ANAL_OP_TYPE_JMP:
addr = aop.jump;
continue;
case R_ANAL_OP_TYPE_UCJMP:
break;
case R_ANAL_OP_TYPE_RET:
count = 0; // stop disassembling when hitting RET
break;
default:
break;
}
addr += aop.size;
}
if (type_print == 'j') {
pj_end (pj);
r_cons_printf ("%s\n", pj_string (pj));
pj_free (pj);
}
}
static void func_walk_blocks(RCore *core, RAnalFunction *f, char input, char type_print, bool fromHere) {
RListIter *iter;
RAnalBlock *b = NULL;
const char *orig_bb_middle = r_config_get (core->config, "asm.bbmiddle");
r_config_set_i (core->config, "asm.bbmiddle", false);
PJ *pj = NULL;
// XXX: hack must be reviewed/fixed in code analysis
if (!b) {
if (r_list_length (f->bbs) >= 1) {
ut32 fcn_size = r_anal_function_realsize (f);
b = r_list_get_top (f->bbs);
if (b->size > fcn_size) {
b->size = fcn_size;
}
}
}
r_list_sort (f->bbs, (RListComparator) bbcmp);
if (input == 'j' && b) {
pj = pj_new ();
if (!pj) {
return;
}
pj_a (pj);
r_list_foreach (f->bbs, iter, b) {
if (fromHere) {
if (b->addr < core->offset) {
core->cons->null = true;
} else {
core->cons->null = false;
}
}
ut8 *buf = malloc (b->size);
if (buf) {
r_io_read_at (core->io, b->addr, buf, b->size);
r_core_print_disasm_json (core, b->addr, buf, b->size, 0, pj);
free (buf);
} else {
eprintf ("cannot allocate %"PFMT64u" byte(s)\n", b->size);
}
}
pj_end (pj);
r_cons_printf ("%s\n", pj_string (pj));
pj_free (pj);
} else {
bool asm_lines = r_config_get_i (core->config, "asm.lines.jmp");
bool emu = r_config_get_i (core->config, "asm.emu");
ut64 saved_gp = 0;
int saved_arena_size = 0;
ut8 *saved_arena = NULL;
int saved_stackptr = core->anal->stackptr;
if (emu) {
saved_gp = core->anal->gp;
saved_arena = r_reg_arena_peek (core->anal->reg, &saved_arena_size);
}
r_config_set_i (core->config, "asm.lines.jmp", 0);
r_list_foreach (f->bbs, iter, b) {
pr_bb (core, f, b, emu, saved_gp, saved_arena, saved_arena_size, type_print, fromHere);
}
if (emu) {
core->anal->gp = saved_gp;
if (saved_arena) {
r_reg_arena_poke (core->anal->reg, saved_arena, saved_arena_size);
R_FREE (saved_arena);
}
}
core->anal->stackptr = saved_stackptr;
r_config_set_i (core->config, "asm.lines.jmp", asm_lines);
}
r_config_set (core->config, "asm.bbmiddle", orig_bb_middle);
}
static inline char cmd_pxb_p(char input) {
return IS_PRINTABLE (input)? input: '.';
}
static inline int cmd_pxb_k(const ut8 *buffer, int x) {
return buffer[3 - x] << (8 * x);
}
static void print_json_string(RCore *core, const char* block, int len, const char* type) {
const char* section_name = r_core_get_section_name (core, core->offset);
if (section_name && strlen (section_name) < 1) {
section_name = "unknown";
} else {
// cleaning useless spaces in section name in json data.
section_name = r_str_trim_head_ro (section_name);
char* p;
for (p = (char*) section_name; *p && *p != ' '; p++) {}
*p = '\0';
}
if (!type) {
switch (get_string_type (core->block, len)) {
case 'w': type = "wide"; break;
case 'a': type = "ascii"; break;
case 'u': type = "utf"; break;
default: type = "unknown"; break;
}
}
bool is_wide = !strcmp (type, "wide");
size_t slen = r_str_nlen (block, len);
char *tblock = (char *)block;
if (is_wide) {
int i;
// dewide
tblock = r_mem_dup (block, len);
for (i = 0; i < len; i++) {
if (tblock[i] && !tblock[i + 1]) {
memmove (tblock + i + 1, tblock + i + 2, len - i - 2);
} else {
tblock[i] = 0;
break;
}
}
slen = strlen (tblock);
}
PJ *pj = r_core_pj_new (core);
if (pj) {
pj_o (pj);
pj_k (pj, "string");
// TODO: add pj_kd for data to pass key(string) and value(data,len) instead of pj_ks which null terminates
char *str = r_str_utf16_encode (tblock, slen); // XXX just block + len should be fine, pj takes care of this
pj_raw (pj, "\"");
pj_raw (pj, str);
free (str);
pj_raw (pj, "\"");
pj_kn (pj, "offset", core->offset);
pj_ks (pj, "section", section_name);
pj_ki (pj, "length", slen);
pj_ks (pj, "type", type);
pj_end (pj);
r_cons_println (pj_string (pj));
pj_free (pj);
}
if (tblock != block) {
free (tblock);
}
}
static char *__op_refs(RCore *core, RAnalOp *op, int n) {
RStrBuf *sb = r_strbuf_new ("");
if (n) {
// RList *list = r_anal_xrefs_get_from (core->anal, op->addr);
RList *list = r_anal_xrefs_get (core->anal, op->addr);
RAnalRef *ref;
RListIter *iter;
r_list_foreach (list, iter, ref) {
r_strbuf_appendf (sb, "0x%08"PFMT64x" ", ref->at);
}
} else {
if (op->jump != UT64_MAX) {
r_strbuf_appendf (sb, "0x%08"PFMT64x" ", op->jump);
}
if (op->fail != UT64_MAX) {
r_strbuf_appendf (sb, "0x%08"PFMT64x" ", op->fail);
}
if (op->ptr != UT64_MAX) {
if (r_io_is_valid_offset (core->io, op->ptr, false)) {
r_strbuf_appendf (sb, "0x%08"PFMT64x" ", op->ptr);
}
}
}
char *res = r_strbuf_drain (sb);
r_str_trim (res);
return res;
}
static void r_core_disasm_table(RCore *core, int l, const char *input) {
int i;
RTable *t = r_core_table (core, "disasm");
char *arg = strchr (input, ' ');
if (arg) {
input = arg + 1;
}
r_table_set_columnsf (t, "snssssss", "name", "addr", "bytes", "disasm", "comment", "esil", "refs", "xrefs");
const int minopsz = 1;
const int options = R_ANAL_OP_MASK_BASIC | R_ANAL_OP_MASK_HINT | R_ANAL_OP_MASK_DISASM | R_ANAL_OP_MASK_ESIL;
ut64 ea = core->offset;
for (i = 0; i < l; i++) {
RAnalOp *op = r_core_anal_op (core, ea, options);
if (!op || op->size < 1) {
i += minopsz;
ea += minopsz;
continue;
}
const char *comment = r_meta_get_string (core->anal, R_META_TYPE_COMMENT, ea);
// TODO parse/filter op->mnemonic for better disasm
ut8 *bytes = malloc (op->size);
if (!bytes) {
break;
}
r_io_read_at (core->io, ea, bytes, op->size); // XXX ranalop should contain the bytes like rasmop do
char *sbytes = r_hex_bin2strdup(bytes, op->size);
RFlagItem *fi = r_flag_get_i (core->flags, ea);
char *fn = fi? fi->name: "";
const char *esil = R_STRBUF_SAFEGET (&op->esil);
char *refs = __op_refs (core, op, 0);
char *xrefs = __op_refs (core, op, 1);
r_table_add_rowf (t, "sXssssss", fn, ea, sbytes, op->mnemonic, r_str_get (comment), esil, refs, xrefs);
free (sbytes);
free (bytes);
free (xrefs);
free (refs);
ea += op->size;
r_anal_op_free (op);
}
if (input && *input) {
r_table_query (t, input);
}
char *ts = r_table_tostring (t);
r_cons_printf ("%s", ts); // \n?
free (ts);
r_table_free (t);
}
// the caller controls the size of the buffer is enough for the base wordsize
static ut64 read_value(const ut8 *buf, int base, int be) {
if (base == 8) {
return r_read_ble64 (buf, be);
}
if (base == 4) {
return r_read_ble32 (buf, be) & UT32_MAX;
}
if (base == 2) {
return r_read_ble16 (buf, be) & UT16_MAX;
}
return *buf;
}
static void cmd_pxr(RCore *core, int len, int mode, int wordsize, const char *arg) {
PJ *pj = NULL;
RTable *t = NULL;
if (mode == ',') {
t = r_table_new ("pxr");
RTableColumnType *n = r_table_type ("number");
RTableColumnType *s = r_table_type ("string");
r_table_add_column (t, n, "addr", 0);
r_table_add_column (t, n, "value", 0);
r_table_add_column (t, s, "refs", 0);
}
if (mode == 'j') {
pj = pj_new ();
if (!pj) {
return;
}
}
ut64 o_offset = core->offset;
if (mode == 'j' || mode == ',' || mode == '*' || mode == 'q') {
size_t i;
const int be = core->anal->config->big_endian;
if (pj) {
pj_a (pj);
}
const ut8 *buf = core->block;
bool withref = false;
int end = R_MIN (core->blocksize, len);
ut64 at = o_offset;
for (i = 0; i + wordsize < end; i += wordsize) {
ut64 addr = o_offset + i;
ut64 val = read_value (buf + i, wordsize, be);
if (pj) {
pj_o (pj);
pj_kn (pj, "addr", addr);
pj_kn (pj, "value", val);
}
// XXX: this only works in little endian
withref = false;
char *refs = NULL;
core->offset = at + i;
if (core->print->hasrefs) {
char *rstr = core->print->hasrefs (core->print->user, val, true);
if (R_STR_ISNOTEMPTY (rstr)) {
r_str_trim (rstr);
if (pj) {
char *ns = r_str_escape (rstr);
pj_ks (pj, "refstr", r_str_trim_head_ro (ns));
pj_k (pj, "ref");
const int hex_depth = r_config_get_i (core->config, "hex.depth");
free (r_core_anal_hasrefs_to_depth (core, val, pj, hex_depth));
pj_end (pj);
free (ns);
}
withref = true;
}
refs = rstr;
}
if (mode == '*' && R_STR_ISNOTEMPTY (refs)) {
// Show only the mapped ones?
r_cons_printf ("f pxr.%"PFMT64x"=0x%"PFMT64x"\n", val, addr);
} else if (mode == 'q' && R_STR_ISNOTEMPTY (refs)) {
r_cons_printf ("%s\n", refs);
}
if (t) {
r_table_add_rowf (t, "xxs", addr, val, refs);
}
R_FREE (refs);
if (!withref && pj) {
pj_end (pj);
}
}
core->offset = at;
if (t) {
r_table_query (t, arg? arg + 1: NULL);
char *s = r_table_tostring (t);
r_cons_println (s);
free (s);
r_table_free (t);
}
if (pj) {
pj_end (pj);
r_cons_println (pj_string (pj));
pj_free (pj);
}
} else {
const int ocols = core->print->cols;
int bitsize = core->rasm->config->bits;
/* Thumb is 16bit arm but handles 32bit data */
if (bitsize == 16) {
bitsize = 32;
}
core->print->cols = 1;
core->print->flags |= R_PRINT_FLAGS_REFS;
r_cons_break_push (NULL, NULL);
r_print_hexdump (core->print, core->offset,
core->block, R_MIN (len, core->blocksize),
wordsize * 8, bitsize / 8, 1);
r_cons_break_pop ();
core->print->flags &= ~R_PRINT_FLAGS_REFS;
core->print->cols = ocols;
}
core->offset = o_offset;
}
static ut8 *decode_text(RCore *core, ut64 offset, size_t len, bool zeroend) {
const char *current_charset = r_config_get (core->config, "cfg.charset");
ut8 *out = calloc (len, 10);
if (out) {
r_io_read_at (core->io, core->offset, out, len);
if (zeroend) {
len = (size_t)r_str_nlen ((const char*)out, len);
}
if (!R_STR_ISEMPTY (current_charset)) {
size_t out_len = len * 10;
ut8 *data = out;
out = calloc (len, 10);
if (out) {
r_io_read_at (core->io, core->offset, data, len);
r_charset_encode_str (core->print->charset, out, out_len, data, len);
free (data);
}
}
}
return out;
}
static bool cmd_pi(RCore *core, const char *input, int len, int l, ut8 *block) {
char ch = input[1];
if (ch == '+' || ch == '-') {
ch = ' ';
l = r_num_math (core->num, input + 1);
}
switch (ch) {
case '?':
// r_cons_printf ("|Usage: pi[defj] [num]\n");
r_core_cmd_help (core, help_msg_pi);
break;
case 'u': // "piu" disasm until given optype
{
int optype = -1;
char print_type = 0;
const char *_input = input;
if (_input[2] && _input[2] != ' ') {
print_type = _input[2];
_input++;
}
if (_input[2] && _input[3]) {
// TODO: add limit as arg
char *instruction = r_str_word_get_first (_input + 3);
optype = r_anal_optype_from_string (instruction);
free (instruction);
if (optype == -1) {
optype = R_ANAL_OP_TYPE_RET;
}
} else {
optype = R_ANAL_OP_TYPE_RET;
}
disasm_until_optype (core, core->offset, print_type, optype, 1024);
} break;
case 'x': // "pix"
__cmd_pad (core, r_str_trim_head_ro (input + 2));
break;
case 'a': // "pia" is like "pda", but with "pi" output
if (l != 0) {
r_core_print_disasm_all (core, core->offset, l, len, 'i');
}
break;
case 'j': // pij is the same as pdj
if (l != 0) {
cmd_pdj (core, input + 2, block);
}
break;
case 'd': // "pid" is the same as pdi
if (l != 0) {
r_core_disasm_pdi (core, l, 0, 0);
}
break;
case 'e': // "pie"
if (strchr (input + 2, '?')) { // "pie?"
r_core_cmd_help (core, help_msg_pie);
} else if (input[2] == 'f') { // "pief"
const bool asm_offset = r_config_get_b (core->config, "asm.offset");
if (input[3] == 'q') { // "piefq"
r_config_set_b (core->config, "asm.offset", false);
}
ut64 orig = core->offset;
RAnalBlock *bb;
RListIter *iter;
RAnalFunction *fcn = r_anal_get_fcn_in (core->anal, orig, 0);
if (fcn) {
r_list_foreach (fcn->bbs, iter, bb) {
r_core_seek (core, orig, true);
r_core_disasm_pdi (core, bb->ninstr, 0, 'e');
}
r_core_seek (core, orig, true);
}
r_config_set_b (core->config, "asm.offset", asm_offset);
} else if (input[2] == 'q') { // "pieq"
const bool orig = r_config_get_b (core->config, "asm.offset");
r_config_set_b (core->config, "asm.offset", false);
if (l != 0) {
r_core_disasm_pdi (core, l, 0, 'e');
}
r_config_set_b (core->config, "asm.offset", orig);
} else {
if (l != 0) {
r_core_disasm_pdi (core, l, 0, 'e');
}
}
break;
case 'f': // "pif"
if (input[2] == '?') { // "pif?"
r_core_cmd_help (core, help_msg_pif);
} else if (input[2] == 'j') {
r_core_cmdf (core, "pdfj%s", input + 3);
} else if (input[2] == 'c') { // "pifc"
RListIter *iter;
RAnalRef *refi;
RList *refs = NULL;
PJ *pj = NULL;
// check for bounds
if (input[3] != 0) {
if (input[3] == 'j') { // "pifcj"
pj = pj_new ();
pj_a (pj);
}
}
// get function in current offset
RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset,
R_ANAL_FCN_TYPE_FCN | R_ANAL_FCN_TYPE_SYM);
// validate that a function was found in the given address
if (!f) {
// print empty json object
if (pj) {
pj_end (pj);
r_cons_println (pj_string(pj));
pj_free (pj);
}
break;
}
// get all the calls of the function
refs = r_core_anal_fcn_get_calls (core, f);
// sanity check
if (!r_list_empty (refs)) {
// store current configurations
RConfigHold *hc = r_config_hold_new (core->config);
r_config_hold (hc, "asm.offset", "asm.comments", "asm.tabs", "asm.bytes", "emu.str", NULL);
// temporarily replace configurations
r_config_set_b (core->config, "asm.offset", false);
r_config_set_b (core->config, "asm.comments", false);
r_config_set_i (core->config, "asm.tabs", 0);
r_config_set_b (core->config, "asm.bytes", false);
r_config_set_b (core->config, "emu.str", false);
// iterate over all call references
r_list_foreach (refs, iter, refi) {
if (pj) {
RAnalFunction *f = r_anal_get_fcn_in (core->anal, refi->addr,
R_ANAL_FCN_TYPE_FCN | R_ANAL_FCN_TYPE_SYM);
char *dst = r_str_newf ((f? f->name: "0x%08"PFMT64x), refi->addr);
char *dst2 = NULL;
RAnalOp *op = r_core_anal_op (core, refi->addr, R_ANAL_OP_MASK_BASIC);
RBinReloc *rel = r_core_getreloc (core, refi->addr, op->size);
if (rel) {
if (rel && rel->import && rel->import->name) {
dst2 = rel->import->name;
} else if (rel && rel->symbol && rel->symbol->name) {
dst2 = rel->symbol->name;
}
} else {
dst2 = dst;
}
pj_o (pj);
pj_ks (pj, "dest", dst2);
pj_kn (pj, "addr", refi->addr);
pj_kn (pj, "at", refi->at);
pj_end (pj);
r_anal_op_free (op);
} else {
char *s = r_core_cmd_strf (core, "pdi %i @ 0x%08"PFMT64x, 1, refi->at);
r_cons_printf ("%s", s);
free (s);
}
}
// restore saved configuration
r_config_hold_restore (hc);
r_config_hold_free (hc);
r_list_free (refs);
}
// print json object
if (pj) {
pj_end (pj);
r_cons_println (pj_string (pj));
pj_free (pj);
}
} else if (l != 0) {
RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset,
R_ANAL_FCN_TYPE_FCN | R_ANAL_FCN_TYPE_SYM);
if (f) {
ut32 bsz = core->blocksize;
// int fsz = r_anal_function_realsize (f);
int fsz = r_anal_function_linear_size (f); // we want max-min here
r_core_block_size (core, fsz);
r_core_print_disasm_instructions (core, fsz, 0);
r_core_block_size (core, bsz);
} else {
r_core_print_disasm_instructions (core,
core->blocksize, l);
}
}
break;
case 'r': // "pir"
{
RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset,
R_ANAL_FCN_TYPE_FCN | R_ANAL_FCN_TYPE_SYM);
if (f) {
func_walk_blocks (core, f, input[2], 'I', input[2] == '.');
} else {
eprintf ("Cannot find function at 0x%08"PFMT64x "\n", core->offset);
r_core_return_code (core, 0);
}
}
break;
case 'b': // "pib"
{
RAnalBlock *b = r_anal_bb_from_offset (core->anal, core->offset);
if (b) {
r_core_print_disasm_instructions (core, b->size - (core->offset - b->addr), 0);
} else {
eprintf ("Cannot find function at 0x%08"PFMT64x "\n", core->offset);
r_core_return_code (core, 0);
}
}
break;
default: // "pi"
if (l != 0) {
r_core_print_disasm_instructions (core, 0, l);
}
break;
}
return false;
}
#include "esil2c.c"
static void core_print_decompile(RCore *core, const char *input) {
int i, count = r_num_get (core->num, input);
if (count < 1) {
count = 1;
}
ut64 addr = core->offset;
int minopsize = r_anal_archinfo (core->anal, R_ANAL_ARCHINFO_MIN_OP_SIZE);
int bits = r_config_get_i (core->config, "asm.bits");
int ss = 16 * 1024;
RAnalEsil *esil = r_anal_esil_new (ss, 0, bits);
// r_anal_esil_setup (esil, core->anal, true, 0, 0);
esil2c_setup (core, esil);
for (i = 0; i < count; i++) {
RAnalOp *op = r_core_anal_op (core, addr, R_ANAL_OP_MASK_BASIC | R_ANAL_OP_MASK_ESIL);
if (!op) {
addr += minopsize;
continue;
}
const char *es = R_STRBUF_SAFEGET (&op->esil);
r_anal_esil_set_pc (esil, addr);
r_cons_printf ("addr_0x%08"PFMT64x"_0: // %s\n", addr, es);
char *cstr = esil2c (core, esil, es);
if (cstr) {
r_cons_printf ("%s", cstr);
free (cstr);
}
addr += (op->size > 0)? op->size: minopsize;
r_anal_op_free (op);
}
esil2c_free (esil->user);
esil->user = NULL;
r_anal_esil_free (esil);
}
static bool strnullpad_check(const ut8 *buf, int len, int clen, int inc, bool be) {
int i;
for (i = 0; i < len; i += inc) {
if (inc == 2) {
if (be) {
if (!buf[i] && !buf[i + 1]) {
return false;
}
if (!IS_PRINTABLE (buf[i]) || buf[i + 1]) {
return false;
}
} else {
if (!buf[i] && !buf[i + 1]) {
return false;
}
if (buf[i] || !IS_PRINTABLE (buf[i+1])) {
return false;
}
}
// utf32 } else if (inc == 4) {
} else {
eprintf ("Invalid inc\n");
return false;
}
}
return true;
}
static bool check_string_at(RCore *core, ut64 addr) {
if (!r_io_is_valid_offset (core->io, addr, 0)) {
return false;
}
const int len = core->blocksize; // max string length
int i;
// bool is_utf32le = false;
// bool is_utf32be = false;
bool is_pascal1 = false;
bool is_pascal2 = false;
bool is_utf8 = false;
bool is_ascii = false;
char *out = NULL; // utf8 string containing the printable result
ut8 *buf = malloc (len);
if (buf) {
if (r_io_read_at (core->io, addr, buf, len) < 1) {
free (buf);
return false;
}
} else {
eprintf ("Cannot allocate %d byte(s)\n", len);
return false;
}
int nullbyte = r_str_nlen ((const char *)buf, len);
if (nullbyte == len) {
// full block, not null terminated somehow. lets check how printable it is first..
buf[len - 1] = 0;
nullbyte--;
}
if (nullbyte < len && nullbyte > 3) {
is_ascii = true;
// it's a null terminated string!
for (i = 0; i < nullbyte; i++) {
if (!IS_PRINTABLE (buf[i])) {
is_ascii = false;
}
}
if (!is_ascii) {
is_utf8 = true;
if ((buf[0] & 0xf0) == 0xf0 && (buf[1] & 0xf0) == 0xf0) {
is_utf8 = false;
}
for (i = 0; i < nullbyte; i++) {
int us = r_utf8_size (buf + i);
if (us < 1) {
is_utf8 = false;
break;
}
i += us - 1;
}
}
}
// utf16le check
if (strnullpad_check (buf, R_MIN (len, 10), 10, 2, false)) {
out = malloc (len + 1);
if (r_str_utf16_to_utf8 ((ut8*)out, len, buf, len, true) < 1) {
R_FREE (out);
}
}
// utf16be check
if (strnullpad_check (buf, R_MIN (len, 10), 10, 2, true)) {
out = malloc (len + 1);
if (r_str_utf16_to_utf8 ((ut8*)out, len, buf, len, false) < 1) {
R_FREE (out);
}
}
// TODO: add support for utf32 strings and improve util apis
// check for pascal string
{
ut8 plen = buf[0];
if (plen > 1 && plen < len) {
is_pascal1 = true;
int i;
for (i = 1; i < plen; i++) {
if (!IS_PRINTABLE (buf[i])) {
is_pascal1 = false;
break;
}
}
if (is_pascal1) {
char *oout = r_str_ndup ((const char *)buf + 1, i);
free (out);
out = oout;
}
}
}
if (!is_pascal1) {
ut8 plen = r_read_le16 (buf);
if (plen > 2 && plen < len) {
is_pascal2 = true;
for (i = 2; i < plen; i++) {
if (!IS_PRINTABLE (buf[i])) {
is_pascal2 = false;
break;
}
}
if (is_pascal2) {
char *oout = r_str_ndup ((const char *)buf + 2, i);
free (out);
out = oout;
}
}
}
#if 0
eprintf ("pascal %d\n", is_pascal1 + is_pascal2);
eprintf ("utf8 %d\n", is_utf8);
eprintf ("utf16 %d\n", is_utf16le+ is_utf16be);
eprintf ("ascii %d\n", is_ascii);
eprintf ("render%c", 10);
#endif
// render the stuff
if (out) {
r_cons_printf ("%s\n", out);
free (out);
free (buf);
return true;
}
if (is_ascii || is_utf8) {
r_cons_printf ("%s\n", buf);
free (buf);
return true;
}
free (buf);
return false;
}
static bool check_string_pointer(RCore *core, ut64 addr) {
ut8 buf[16];
r_io_read_at (core->io, addr, buf, sizeof (buf));
// check for 64bit pointer to string
ut64 p1 = r_read_le64 (buf);
if (check_string_at (core, p1)) {
return true;
}
// check for 32bit pointer to string
ut64 p2 = (ut64)r_read_le32 (buf);
if (check_string_at (core, p2)) {
return true;
}
// check for self reference pointer to string used by swift
st32 p3 = (st32)r_read_le32 (buf);
ut64 dst = core->offset + p3;
if (check_string_at (core, dst)) {
return true;
}
return false;
}
static void cmd_psa(RCore *core, const char *_) {
bool found = true;
if (!check_string_at (core, core->offset)) {
if (!check_string_pointer (core, core->offset)) {
found = false;
}
}
RCmdReturnCode rc = found? R_CMD_RC_SUCCESS: R_CMD_RC_FAILURE;
r_core_return_code (core, rc);
}
static int cmd_print(void *data, const char *input) {
RCore *core = (RCore *) data;
st64 l;
int i, len, ret;
ut8* block = NULL;
bool myblock = false;
ut32 tbs = core->blocksize;
ut64 n, off, from, to, at, ate, piece;
ut64 tmpseek = UT64_MAX;
const size_t addrbytes = core->io->addrbytes;
i = l = len = ret = 0;
n = off = from = to = at = ate = piece = 0;
PJ *pj = NULL;
/* !strncmp (input, "du", 2) */
if (input[0] == 'd' && input[1] == 'u') { // "pdu"
/* hijack here for now, idk how to more cleanly integrate it */
return cmd_pdu (core, input + 2);
}
if (!strncmp (input, "ushd", 4)) { // "pushd"
bool halp = true;
const char *arg = strchr (input, ' ');
if (arg) {
arg = r_str_trim_head_ro (arg + 1);
if (*arg) {
halp = false;
if (r_syscmd_pushd (arg)) {
r_core_return_code (core, 0);
} else {
r_core_return_code (core, 1);
}
}
}
if (halp) {
eprintf ("Usage: pushd [dir]\n");
r_core_return_code (core, 1);
}
return 0;
}
if (!strncmp (input, "opd", 3)) { // "popd"
bool all = strstr (input, "-a");
bool halp = strstr (input, "-h");
if (halp) {
eprintf ("Usage: popd [-a]\n");
r_core_return_code (core, 1);
} else {
bool suc = all
? r_syscmd_popalld ()
: r_syscmd_popd ();
if (suc) {
r_core_return_code (core, 0);
} else {
eprintf ("Cannot popd\n");
r_core_return_code (core, 1);
}
}
return 0;
}
r_print_init_rowoffsets (core->print);
off = UT64_MAX;
l = len = core->blocksize;
if (input[0] && input[1]) {
int idx = (input[0] == 'h')? 2: 1;
const char *p = off? strchr (input + idx, ' '): NULL;
if (!p) {
p = strchr (input, '-');
if (p) {
p--;
}
}
if (p) {
l = (int) r_num_math (core->num, p + 1);
/* except disasm and memoryfmt (pd, pm) and overlay (po) */
if (input[0] != 'd' && input[0] != 't' && input[0] != 'D' && input[0] != 'm' &&
input[0] != 'a' && input[0] != 'f' && input[0] != 'i' &&
input[0] != 'I' && input[0] != 'o') {
if (l < 0) {
off = core->offset + l;
len = l = -l;
tmpseek = core->offset;
} else {
len = l;
if (l > core->blocksize) {
if (!r_core_block_size (core, l)) {
goto beach;
}
}
}
} else {
len = l;
}
}
}
if (len < 0) {
len = -len;
}
if (len > core->blocksize) {
block = calloc (1, len);
if (block) {
r_io_read_at (core->io, core->offset - len, block, len);
myblock = true;
} else {
len = core->blocksize;
block = core->block;
}
} else {
block = core->block;
}
if (input[0] != 'd' && input[0] != 'm' && input[0] != 'a' && input[0] != 'f' && input[0] != 'i') {
n = core->blocksize_max;
i = (int) n;
if (i != n) {
i = 0;
}
if (i && l > i) {
eprintf ("This block size is too big (0x%"PFMT64x
" < 0x%" PFMT64x "). Did you mean 'p%c @ %s' instead?\n",
n, l, *input, input + 2);
goto beach;
}
}
if (input[0] == 'x' || input[0] == 'D') {
if (l > 0 && tmpseek == UT64_MAX) {
if (!r_core_block_size (core, l)) {
eprintf ("This block size is too big. Did you mean 'p%c @ %s' instead?\n",
*input, input + 2);
goto beach;
}
}
}
if (input[0] && input[0] != 'z' && input[1] == 'f' && input[2]!='?') {
RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset, 0);
// R_ANAL_FCN_TYPE_FCN|R_ANAL_FCN_TYPE_SYM);
if (f) {
len = r_anal_function_linear_size (f);
if (len > core->blocksize) {
len = core->blocksize;
}
} else {
eprintf ("p: Cannot find function at 0x%08"PFMT64x "\n", core->offset);
r_core_return_code (core, 0);
goto beach;
}
}
// TODO figure out why `f eax=33; f test=eax; pa call test` misassembles if len is 0
r_core_return_code (core, len ? len : core->blocksize);
if (off != UT64_MAX) {
r_core_seek (core, off, SEEK_SET);
r_core_block_read (core);
}
switch (*input) {
case 'w': // "pw"
if (input[1] == 'n') {
cmd_print_pwn (core);
} else if (input[1] == 'd') {
if (!r_sandbox_enable (0)) {
char *cwd = r_sys_getdir ();
if (cwd) {
r_cons_println (cwd);
free (cwd);
}
}
} else {
r_cons_printf ("| pwd display current working directory\n");
}
break;
case 'j': // "pj"
if (input[1] == '?') {
r_core_cmd_help (core, help_msg_pj);
} else if (input[1] == '.') {
if (input[2] == '.') {
ut8 *data = calloc (core->offset + 1, 1);
if (data) {
data[core->offset] = 0;
(void)r_io_read_at (core->io, 0, data, core->offset);
char *res = r_print_json_path ((const char *)data, core->offset);
if (res) {
eprintf ("-> res(%s)\n", res);
}
/*
char *res = r_print_json_indent ((char*)data, false, " ", NULL);
print_json_path (core, res);
free (res);
*/
} else {
eprintf ("Cannot allocate %d\n", (int)(core->offset));
}
} else {
r_core_cmdf (core, "pj %"PFMT64u" @ 0", core->offset);
}
} else {
if (core->blocksize < 4 || !memcmp (core->block, "\xff\xff\xff\xff", 4)) {
eprintf ("Cannot read\n");
} else {
char *res = r_print_json_indent ((const char *)core->block, true, " ", NULL);
r_cons_printf ("%s\n", res);
free (res);
}
}
break;
case 'h': // "ph"
cmd_print_ph (core, input + 1);
break;
case 'v': // "pv"
cmd_print_pv (core, input + 1, false);
break;
case 'V': // "pv"
cmd_print_pv (core, input + 1, true);
break;
case '-': // "p-"
return cmd_print_blocks (core, input + 1);
case '=': // "p="
cmd_print_bars (core, input);
break;
case 'A': // "pA"
{
const ut64 saved_from = r_config_get_i (core->config, "search.from"),
saved_to = r_config_get_i (core->config, "search.to"),
saved_maxhits = r_config_get_i (core->config, "search.maxhits");
int want = r_num_math (core->num, input + 1);
if (input[1] == '?') {
r_core_cmd0 (core, "/A?");
} else {
r_config_set_i (core->config, "search.maxhits", want);
r_config_set_i (core->config, "search.from", core->offset);
r_config_set_i (core->config, "search.to", core->offset + core->blocksize);
r_core_cmd0 (core, "/A");
r_config_set_i (core->config, "search.maxhits", saved_maxhits);
r_config_set_i (core->config, "search.from", saved_from);
r_config_set_i (core->config, "search.to", saved_to);
}
}
break;
case 'a': // "pa"
{
const char *arg = NULL;
if (input[1] != '\0') {
arg = r_str_trim_head_ro (input + 2);
}
if (input[1] == 'e') { // "pae"
if (input[2] == '?') {
r_cons_printf ("|Usage: pae [asm] print ESIL expression of the given assembly expression\n");
} else {
int printed = 0;
int bufsz;
RAnalOp aop = {0};
r_asm_set_pc (core->rasm, core->offset);
RAsmCode *acode = r_asm_massemble (core->rasm, input + 2);
if (acode) {
bufsz = acode->len;
while (printed < bufsz) {
aop.size = 0;
if (r_anal_op (core->anal, &aop, core->offset,
(const ut8 *)acode->bytes + printed, bufsz - printed, R_ANAL_OP_MASK_ESIL) > 0) {
const char *str = R_STRBUF_SAFEGET (&aop.esil);
r_cons_println (str);
} else {
eprintf ("Cannot decode instruction\n");
break;
}
if (aop.size < 1) {
eprintf ("Cannot decode instruction\n");
break;
}
printed += aop.size;
r_anal_op_fini (&aop);
}
}
}
} else if (input[1] == 'D') { // "paD"
if (input[2] == '?') {
r_cons_printf ("|Usage: paD [hex] print assembly expression from hexpairs and show hexpairs\n");
} else {
r_core_cmdf (core, "pdi@x:%s", input + 2);
}
} else if (input[1] == 'd') { // "pad*"
switch (input[2]) {
case 'e': // "pade"
if (input[3] == '?') {
r_cons_printf ("|Usage: pade [hex] print ESIL expression from hexpairs\n");
} else {
int printed = 0;
int bufsz;
RAnalOp aop = {0};
char *hex_arg = calloc (1, strlen (arg) + 1);
if (hex_arg) {
bufsz = r_hex_str2bin (arg + 1, (ut8 *)hex_arg);
while (printed < bufsz) {
aop.size = 0;
if (r_anal_op (core->anal, &aop, core->offset,
(const ut8 *)hex_arg + printed, bufsz - printed, R_ANAL_OP_MASK_ESIL) > 0) {
const char *str = R_STRBUF_SAFEGET (&aop.esil);
r_cons_println (str);
} else {
eprintf ("Cannot decode instruction\n");
break;
}
if (aop.size < 1) {
eprintf ("Cannot decode instruction\n");
break;
}
printed += aop.size;
r_anal_op_fini (&aop);
}
free (hex_arg);
}
}
break;
case ' ': // "pad"
__cmd_pad (core, arg);
break;
case '?': // "pad?"
r_cons_printf ("|Usage: pad [hex] print assembly expression from hexpairs\n");
break;
default:
r_cons_printf ("|Usage: pa[edD] [asm|hex] print (dis)assembled\n");
break;
}
} else if (input[1] == '?') {
r_core_cmd_help (core, help_msg_pa);
} else {
r_asm_set_pc (core->rasm, core->offset);
RAsmCode *acode = r_asm_massemble (core->rasm, input + 1);
if (acode) {
if (!acode->len) {
eprintf ("Usage: pa [instruction-to-assemble] ; use pd to disassemble\n");
} else {
size_t i;
for (i = 0; i < acode->len; i++) {
ut8 b = acode->bytes[i];
r_cons_printf ("%02x", b);
}
r_cons_newline ();
r_asm_code_free (acode);
}
}
}
}
break;
case 'b': { // "pb"
if (input[1] == '?') {
r_cons_printf ("|Usage: p[bB] [len] ([skip]) ; see also pB and pxb\n");
} else if (l != 0) {
int from, to;
const int size = len * 8;
char *spc, *buf = malloc (size + 1);
spc = strchr (input, ' ');
if (spc) {
len = r_num_math (core->num, spc + 1);
if (len < 1) {
len = 1;
}
spc = strchr (spc + 1, ' ');
if (spc) {
from = r_num_math (core->num, spc + 1);
} else {
from = 0;
}
to = from + len;
} else {
from = 0;
to = size;
}
if (buf) {
int buf_len;
r_str_bits (buf, block, size, NULL);
buf_len = strlen (buf);
if (from >= 0 && to >= 0) {
if (from >= buf_len) {
from = buf_len;
}
if (to < buf_len) {
buf[to] = 0;
//buf[buf_len - 1] = 0;
}
r_cons_println (buf + from);
}
free (buf);
} else {
eprintf ("ERROR: Cannot malloc %d byte(s)\n", size);
}
}
}
break;
case 'B': { // "pB"
if (input[1] == '?') {
r_cons_printf ("|Usage: p[bB] [len] bitstream of N bytes\n");
} else if (l != 0) {
int size;
char *buf;
if (!r_core_block_size (core, len)) {
len = core->blocksize;
}
size = len * 8;
buf = malloc (size + 1);
if (buf) {
r_str_bits (buf, core->block, size, NULL);
r_cons_println (buf);
free (buf);
} else {
eprintf ("ERROR: Cannot malloc %d byte(s)\n", size);
}
}
}
break;
case 'I': // "pI"
switch (input[1]) {
case 'j': // "pIj" is the same as pDj
if (l != 0) {
if (input[2]) {
cmd_pDj (core, input + 2);
} else {
r_strf_var (numstr, 32, "%d", core->blocksize);
cmd_pDj (core, numstr);
}
}
break;
case 'f': // "pIf"
{
const RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset,
R_ANAL_FCN_TYPE_FCN | R_ANAL_FCN_TYPE_SYM);
if (f) {
r_core_print_disasm_instructions (core,
r_anal_function_linear_size ((RAnalFunction *) f), 0);
break;
}
}
case 'd': // "pId" is the same as pDi
if (l) {
r_core_disasm_pdi (core, 0, l, 0);
}
break;
case '?': // "pi?"
r_cons_printf ("|Usage: p[iI][df] [len] print N instructions/bytes"
"(f=func) (see pi? and pdi)\n");
break;
default:
if (l) {
r_core_print_disasm_instructions (core, l, 0);
}
}
break;
case 'i': // "pi"
if (cmd_pi (core, input, len, l, block)) {
break;
}
goto beach;
case 'D': // "pD"
case 'd': // "pd"
{
ut64 use_blocksize = core->blocksize;
ut8 bw_disassemble = false;
ut32 pd_result = false, processed_cmd = false;
bool formatted_json = false;
if (input[1] && input[2]) {
// "pd--" // context disasm
if (!strncmp (input + 1, "--", 2)) {
char *offs = r_str_newf ("%s", input + 2);
if (offs) {
ut64 sz = r_num_math (core->num, offs);
char *fmt;
if (((st64)sz * -1) > core->offset) {
// the offset is smaller than the negative value
// so only print -offset
fmt = r_str_newf ("d %"PFMT64d, -1 * core->offset);
} else {
fmt = r_str_newf ("d %s", input + 2);
}
if (fmt) {
cmd_print (core, fmt);
strcpy (fmt + 2, input + 3);
cmd_print (core, fmt);
free (fmt);
}
free (offs);
}
ret = 0;
goto beach;
}
}
if (input[1] == 'x') { // pdx
__cmd_pad (core, r_str_trim_head_ro (input + 2));
return 0;
}
const char *sp = NULL;
if (input[1] == '.' || input[1] == '+') {
sp = input + 2;
} else {
sp = strchr (input + 1, ' ');
}
if (!sp && input[1] == '-') {
sp = input + 1;
}
if (sp) {
int n = (int) r_num_math (core->num, r_str_trim_head_ro (sp));
if (!n) {
goto beach;
}
use_blocksize = n;
}
int mbs = core->blocksize_max;
if (core->blocksize_max < use_blocksize && (int) use_blocksize < -mbs) {
eprintf ("This block size is too big (%"PFMT64u "<%"PFMT64u "). Did you mean 'p%c @ 0x%08"PFMT64x "' instead?\n",
(ut64) core->blocksize_max, (ut64) use_blocksize, input[0], (ut64) use_blocksize);
goto beach;
} else if (core->blocksize_max < use_blocksize && (int) use_blocksize > -mbs) {
bw_disassemble = true;
l = use_blocksize; // negative
use_blocksize = (ut64)-(st64)use_blocksize;
} else {
l = use_blocksize;
}
// may be unnecessary, fixes 'pd 1;pdj 100;pd 1' bug
r_core_block_read (core);
switch (input[1]) {
case 'C': // "pdC"
r_core_disasm_pdi (core, l, 0, 'C');
pd_result = 0;
processed_cmd = true;
break;
case 'v': // "pdv" // east decompiler
eprintf ("Error: r2pm -ci east\n");
processed_cmd = true;
break;
case 'd': // "pdd" // r2dec
eprintf ("Error: r2pm -ci r2dec\n");
processed_cmd = true;
break;
case 'z': // "pdz" // retdec
eprintf ("Error: r2pm -ci r2retdec\n");
processed_cmd = true;
break;
case 'g': // "pdg" // r2ghidra
eprintf ("Error: r2pm -ci r2ghidra\n");
processed_cmd = true;
break;
case 'c': // "pdc" // "pDc"
r_core_pseudo_code (core, input + 2);
pd_result = 0;
processed_cmd = true;
break;
case ',': // "pd,"
case 't': // "pdt"
r_core_disasm_table (core, l, r_str_trim_head_ro (input + 2));
pd_result = 0;
processed_cmd = true;
break;
case 'k': // "pdk" -print class
{
int len = 0;
ut64 at = findClassBounds (core, r_str_trim_head_ro (input + 2), &len);
return r_core_cmdf (core, "pD %d @ %"PFMT64u, len, at);
}
case 'i': // "pdi" // "pDi"
processed_cmd = true;
if (*input == 'D') {
r_core_disasm_pdi (core, 0, l, 0);
} else {
r_core_disasm_pdi (core, l, 0, 0);
}
pd_result = 0;
break;
case 'a': // "pda"
processed_cmd = true;
if (input[2] == '?') {
r_core_cmd_help (core, help_msg_pda);
break;
}
r_core_print_disasm_all (core, core->offset, l, len, input[2]);
pd_result = true;
break;
case 'o': // "pdo"
core_print_decompile (core, input + 2);
pd_result = true;
processed_cmd = true;
break;
case 'e': // "pde"
processed_cmd = true;
if (!core->fixedblock && !sp) {
l /= 4;
}
if (input[2] == '?') { // "pde?"
r_core_cmd_help (core, help_msg_pde);
break;
};
int mode = R_MODE_PRINT;
if (input[2] == 'j') {
mode = R_MODE_JSON;
} else if (input[2] == 'q') {
if (input[3] == 'q') { // "pdeqq"
mode = R_MODE_SIMPLEST; // Like pi
} else { // "pdeq"
mode = R_MODE_SIMPLE; // Like pdi
}
}
r_core_disasm_pde (core, l, mode);
pd_result = true;
break;
case 'R': // "pdR"
processed_cmd = true;
if (input[2] == 'j') {
disasm_recursive (core, core->offset, use_blocksize, 'j');
} else {
disasm_recursive (core, core->offset, use_blocksize, 'D');
}
pd_result = true;
break;
case 'r': // "pdr"
processed_cmd = true;
if (input[2] == '?') { // "pdr?"
r_core_cmd_help (core, help_msg_pdr);
pd_result = true;
break;
};
{
RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset, 0);
// R_ANAL_FCN_TYPE_FCN|R_ANAL_FCN_TYPE_SYM);
if (f) {
func_walk_blocks (core, f, input[2], 'D', input[2] == '.');
} else {
eprintf ("Cannot find function at 0x%08"PFMT64x "\n", core->offset);
}
pd_result = true;
}
break;
case 'b': // "pdb"
processed_cmd = true;
if (input[2] == '?') {
r_cons_printf ("Usage: pdb[j] - disassemble basic block\n");
} else {
RAnalBlock *b = r_anal_bb_from_offset (core->anal, core->offset);
if (b) {
ut8 *block = malloc (b->size + 1);
if (block) {
r_io_read_at (core->io, b->addr, block, b->size);
if (input[2] == 'j') {
pj = pj_new ();
if (!pj) {
break;
}
pj_a (pj);
r_core_print_disasm_json (core, b->addr, block, b->size, 0, pj);
pj_end (pj);
r_cons_printf ("%s\n", pj_string (pj));
pj_free (pj);
} else {
int dislen = r_core_print_disasm (
core, b->addr, block,
b->size, b->size, 0, NULL, true,
input[2] == 'J', NULL, NULL);
r_core_return_code (core, dislen);
}
free (block);
pd_result = 0;
}
} else {
eprintf ("Cannot find function at 0x%08"PFMT64x "\n", core->offset);
r_core_return_code (core, 0);
}
}
break;
case 's': // "pds" and "pdsf"
processed_cmd = true;
if (input[2] == '?') {
r_core_cmd_help (core, help_msg_pds);
} else {
if (input[2] && input[3] == '?') {
r_core_cmd_help (core, help_msg_pds);
} else {
disasm_strings (core, input, NULL);
}
}
break;
case 'f': // "pdf"
processed_cmd = true;
if (input[2] == '?') {
r_core_cmd_help (core, help_msg_pdf);
} else if (input[2] == 's') { // "pdfs"
ut64 oseek = core->offset;
int oblock = core->blocksize;
RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset,
R_ANAL_FCN_TYPE_FCN | R_ANAL_FCN_TYPE_SYM);
if (f) {
ut32 rs = r_anal_function_realsize (f);
ut32 fs = r_anal_function_linear_size (f);
r_core_seek (core, oseek, SEEK_SET);
r_core_block_size (core, R_MAX (rs, fs));
disasm_strings (core, input, f);
r_core_block_size (core, oblock);
r_core_seek (core, oseek, SEEK_SET);
}
processed_cmd = true;
} else {
ut32 bsz = core->blocksize;
RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset, R_ANAL_FCN_TYPE_ROOT);
if (!f) {
f = r_anal_get_fcn_in (core->anal, core->offset, 0);
}
RListIter *locs_it = NULL;
if (f && input[2] == 'j') { // "pdfj"
RAnalBlock *b;
ut32 fcn_size = r_anal_function_realsize (f);
const char *orig_bb_middle = r_config_get (core->config, "asm.bbmiddle");
r_config_set_i (core->config, "asm.bbmiddle", false);
pj = pj_new ();
if (!pj) {
break;
}
pj_o (pj);
pj_ks (pj, "name", f->name);
pj_kn (pj, "size", fcn_size);
pj_kn (pj, "addr", f->addr);
pj_k (pj, "ops");
pj_a (pj);
r_list_sort (f->bbs, bb_cmpaddr);
r_list_foreach (f->bbs, locs_it, b) {
ut8 *buf = malloc (b->size);
if (buf) {
r_io_read_at (core->io, b->addr, buf, b->size);
r_core_print_disasm_json (core, b->addr, buf, b->size, 0, pj);
free (buf);
} else {
eprintf ("cannot allocate %"PFMT64u" byte(s)\n", b->size);
}
}
pj_end (pj);
pj_end (pj);
r_cons_printf ("%s\n", pj_string (pj));
pj_free (pj);
pd_result = 0;
r_config_set (core->config, "asm.bbmiddle", orig_bb_middle);
} else if (f) {
ut64 linearsz = r_anal_function_linear_size (f);
ut64 realsz = r_anal_function_realsize (f);
if (realsz + 4096 < linearsz) {
eprintf ("Linear size differs too much from the bbsum, please use pdr instead.\n");
} else {
ut64 at = f->addr; // TODO: should be min from r_anal_function_get_range()?
ut64 sz = R_MAX (linearsz, realsz);
ut8 *buf = calloc (sz, 1);
if (buf) {
(void)r_io_read_at (core->io, at, buf, sz);
int dislen = r_core_print_disasm (core, at, buf, sz, sz, 0, NULL, true, false, NULL, f);
r_core_return_code (core, dislen);
free (buf);
// r_core_cmdf (core, "pD %d @ 0x%08" PFMT64x, f->_size > 0 ? f->_size: r_anal_function_realsize (f), f->addr);
}
}
pd_result = 0;
} else {
eprintf ("pdf: Cannot find function at 0x%08"PFMT64x "\n", core->offset);
processed_cmd = true;
r_core_return_code (core, 0);
}
if (bsz != core->blocksize) {
r_core_block_size (core, bsz);
}
}
l = 0;
break;
case 'p': // "pdp"
processed_cmd = true;
if (input[2] == '?') {
r_core_cmd_help (core, help_msg_pdp);
pd_result = true;
break;
};
disasm_ropchain (core, core->offset, 'D');
pd_result = true;
break;
case 'l': // "pdl"
processed_cmd = true;
{
RAsmOp asmop;
int j, ret;
if (!l) {
l = len;
}
r_cons_break_push (NULL, NULL);
for (i = j = 0; i < core->blocksize && j < l; i += ret, j++) {
ret = r_asm_disassemble (core->rasm, &asmop, block + i, len - i);
if (r_cons_is_breaked ()) {
break;
}
r_cons_printf ("%d\n", ret);
if (ret < 1) {
ret = 1;
}
}
r_cons_break_pop ();
pd_result = 0;
}
break;
case 'j': // pdj
processed_cmd = true;
if (*input == 'D') {
cmd_pDj (core, input + 2);
} else {
cmd_pdj (core, input + 2, block);
}
pd_result = 0;
break;
case 'J': // pdJ
formatted_json = true;
break;
case 0: // "pd"
/* "pd" -> will disassemble blocksize/4 instructions */
if (!core->fixedblock && *input == 'd') {
l /= 4;
}
break;
case '?': // "pd?"
processed_cmd = true;
r_core_cmd_help (core, help_msg_pd);
pd_result = 0;
case '.':
case '-':
case '+':
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '$':
case '9':
case ' ':
break;
default:
eprintf ("Invalid pd subcommand.\n");
return 0;
}
if (formatted_json) {
if (r_cons_context ()->is_html) {
r_cons_context ()->is_html = false;
r_cons_context ()->was_html = true;
}
}
if (!processed_cmd) {
ut64 addr = core->offset;
ut8 *block1 = NULL;
ut64 start;
if (bw_disassemble) {
block1 = malloc (core->blocksize);
if (l < 0) {
l = -l;
}
if (block1) {
if (*input == 'D') { // pD
free (block1);
if (!(block1 = malloc (l))) {
break;
}
r_io_read_at (core->io, addr - l, block1, l); // core->blocksize);
int dislen = r_core_print_disasm (core, addr - l, block1, l, l, 0, NULL, true, formatted_json, NULL, NULL);
r_core_return_code (core, dislen);
} else { // pd
int instr_len;
if (!r_core_prevop_addr (core, core->offset, l, &start)) {
// anal ignorance.
start = r_core_prevop_addr_force (core, core->offset, l);
}
instr_len = core->offset - start;
ut64 prevaddr = core->offset;
int bs = core->blocksize, bs1 = addrbytes * instr_len;
if (bs1 > bs) {
ut8 *tmpblock = realloc (block1, bs1);
if (!tmpblock) {
eprintf ("Memory reallocation failed.\n");
free (block1);
break;
}
block1 = tmpblock;
}
r_core_seek (core, prevaddr - instr_len, true);
memcpy (block1, block, bs);
if (bs1 > bs) {
r_io_read_at (core->io, addr + bs / addrbytes,
block1 + (bs - bs % addrbytes),
bs1 - (bs - bs % addrbytes));
}
int dislen = r_core_print_disasm (core,
core->offset, block1,
R_MAX (bs, bs1), l, 0, NULL,
false, formatted_json, NULL,
NULL);
r_core_return_code (core, dislen);
r_core_seek (core, prevaddr, true);
}
}
} else {
// XXX: issue with small blocks
if (*input == 'D' && use_blocksize > 0) {
l = use_blocksize;
if (l > R_CORE_MAX_DISASM) { // pD
eprintf ("Block size too big\n");
return 1;
}
block1 = malloc (addrbytes * l);
if (block1) {
r_io_read_at (core->io, addr, block1, addrbytes * l);
int dislen = r_core_print_disasm (core,
addr, block1, addrbytes * l, l,
0, NULL, true, formatted_json,
NULL, NULL);
r_core_return_code (core, dislen);
} else {
eprintf ("Cannot allocate %" PFMT64d " byte(s)\n", addrbytes * l);
}
} else {
ut8 *buf = core->block;
const int buf_size = core->blocksize;
if (buf) {
if (!l) {
l = use_blocksize;
if (!core->fixedblock) {
l /= 4;
}
}
core->num->value = r_core_print_disasm (core,
addr, buf, buf_size, l, 0, NULL,
false, formatted_json, NULL, NULL);
}
}
}
free (block1);
if (formatted_json) {
r_cons_newline ();
}
}
if (processed_cmd) {
ret = pd_result;
goto beach;
}
}
break;
case 'p': // "pp"
__printPattern (core, input + 1);
break;
case 's': // "ps"
switch (input[1]) {
case '?': // "ps?"
r_core_cmd_help (core, help_msg_ps);
break;
case 'i': // "psi"
if (l > 0) {
ut8 *buf = malloc (1024 + 1);
int delta = 512;
ut8 *p, *e, *b;
if (!buf) {
return 0;
}
buf[1024] = 0;
if (core->offset < delta) {
delta = core->offset;
}
p = buf + delta;
r_io_read_at (core->io, core->offset - delta, buf, 1024);
for (b = p; b > buf; b--) {
if (!IS_PRINTABLE (*b)) {
b++;
break;
}
}
for (e = p; e < (buf + 1024); e++) {
if (!IS_PRINTABLE (*b)) {
*e = 0;
e--;
break;
}
}
r_cons_strcat ((const char *) b);
r_cons_newline ();
// r_print_string (core->print, core->offset, b,
// (size_t)(e-b), 0);
free (buf);
}
break;
case 'x': // "psx"
if (l > 0) {
r_print_string (core->print, core->offset, block, len, R_PRINT_STRING_ESC_NL);
}
break;
case 'a': // "psa"
cmd_psa (core, input + 1);
break;
case 'b': // "psb"
if (l > 0) {
int quiet = input[2] == 'q'; // "psbq"
char *s = malloc (core->blocksize + 1);
int i, j, hasnl = 0;
if (s) {
if (!quiet) {
r_print_offset (core->print, core->offset, 0, 0, NULL);
}
// TODO: filter more chars?
for (i = j = 0; i < core->blocksize; i++) {
char ch = (char) block[i];
if (!ch) {
if (!hasnl) {
s[j] = 0;
if (*s) {
r_cons_println (s);
if (!quiet) {
r_print_offset (core->print, core->offset + i, 0, 0, NULL);
}
}
j = 0;
s[0] = 0;
}
hasnl = 1;
continue;
}
hasnl = 0;
if (IS_PRINTABLE (ch)) {
s[j++] = ch;
}
}
s[j] = 0;
r_cons_print (s); // TODO: missing newline?
free (s);
}
}
break;
case 'z': // "psz"
if (l > 0) {
ut8 *s = decode_text (core, core->offset, l, true);
if (input[2] == 'j') { // pszj
print_json_string (core, (const char *) s,
r_str_nlen ((const char*)s, l), NULL);
} else if (input[2] == '*') {
char *a = r_str_ndup ((const char*)s, l);
char *b = r_base64_encode_dyn (a, -1);
r_cons_printf ("w6e %s\n", b);
free (b);
free (a);
} else if (input[2] == '?') {
r_core_cmd_help (core, help_msg_psz);
} else if (input[2] == 'c' || input[2] == 'l') {
r_cons_printf ("%d\n", (int)r_str_nlen ((const char*)s, l));
} else {
r_print_string (core->print, core->offset, s, l, R_PRINT_STRING_ZEROEND);
}
free (s);
}
break;
case 'p': // "psp"
if (l > 0) {
int mylen = core->block[0];
// TODO: add support for 2-4 byte length pascal strings
if (mylen < core->blocksize) {
if (input[2] == 'j') { // pspj
print_json_string (core, (const char *) core->block + 1, mylen, NULL);
} else {
r_print_string (core->print, core->offset,
core->block + 1, mylen, R_PRINT_STRING_ZEROEND);
}
core->num->value = mylen;
} else {
core->num->value = 0; // error
}
}
break;
case 'w': // "psw"
if (l > 0) {
if (input[2] == 'j') { // pswj
print_json_string (core, (const char *) core->block, len, "wide");
} else {
r_print_string (core->print, core->offset, core->block, len,
R_PRINT_STRING_WIDE | R_PRINT_STRING_ZEROEND);
}
}
break;
case 'W': // "psW"
if (l > 0) {
if (input[2] == 'j') { // psWj
print_json_string (core, (const char *) core->block, len, "wide32");
} else {
r_print_string (core->print, core->offset, core->block, len,
R_PRINT_STRING_WIDE32 | R_PRINT_STRING_ZEROEND);
}
}
break;
case 'j': // "psj"
{
ut8 *s = decode_text (core, core->offset, l, false);
print_json_string (core, (const char *) s, l, NULL);
free (s);
}
break;
case ' ': // "ps"
{
ut8 *s = decode_text (core, core->offset, l, false);
r_print_string (core->print, core->offset, s, l, 0);
free (s);
break;
}
case 'u': // "psu"
if (l > 0) {
bool json = input[2] == 'j'; // "psuj"
if (input[2] == 'z') { // "psuz"
int i, z;
const char* p = (const char *) core->block;
for (i = 0, z = 0; i < len; i++) {
// looking for double zeros '\0\0'.
if (!p[i] && !z) z = 1;
else if (!p[i] && z) {
len = i - 1;
break;
}
}
json = input[3] == 'j'; // "psuzj"
}
if (json) { // psuj
print_json_string (core, (const char *) core->block, len, "utf16");
} else {
char *str = r_str_utf16_encode ((const char *) core->block, len);
r_cons_println (str);
free (str);
}
}
break;
case 'q': // "psq"
r_core_cmd0 (core, "pqs");
break;
case 's': // "pss"
if (l > 0) {
int h, w = r_cons_get_size (&h);
int colwidth = r_config_get_i (core->config, "hex.cols") * 2;
core->print->width = (colwidth == 32)?w: colwidth; // w;
int bs = core->blocksize;
if (len == bs) {
len = (h * w) / 3;
r_core_block_size (core, len);
}
r_print_string (core->print, core->offset, core->block,
len, R_PRINT_STRING_WRAP);
r_core_block_size (core, bs);
}
break;
case '+': // "ps+"
if (l > 0) {
const bool json = input[2] == 'j'; // ps+j
ut64 bitness = r_config_get_i (core->config, "asm.bits");
if (bitness != 32 && bitness != 64) {
eprintf ("Error: bitness of %" PFMT64u " not supported\n", bitness);
break;
}
if (*core->block & 0x1) { // "long" string
if (bitness == 64) {
r_core_cmdf (core, "ps%c @ 0x%" PFMT64x, json ? 'j' : ' ', *((ut64 *)core->block + 2));
} else {
r_core_cmdf (core, "ps%c @ 0x%" PFMT32x, json ? 'j' : ' ', *((ut32 *)core->block + 2));
}
} else if (json) {
print_json_string (core, (const char *) core->block + 1, len, NULL);
} else {
r_print_string (core->print, core->offset, core->block + 1,
len, R_PRINT_STRING_ZEROEND);
}
}
break;
default: // "ps"
{
const char *current_charset = r_config_get (core->config, "cfg.charset");
if (R_STR_ISEMPTY (current_charset)) {
r_print_string (core->print, core->offset, core->block, len, R_PRINT_STRING_ZEROEND);
} else {
if (len > 0) {
size_t out_len = len * 10;
ut8 *out = calloc (len, 10);
if (out) {
ut8 *data = malloc (len);
if (data) {
r_io_read_at (core->io, core->offset, data, len);
(void)r_charset_encode_str (core->print->charset, out, out_len, data, len);
r_print_string (core->print, core->offset,
out, len, R_PRINT_STRING_ZEROEND);
free (data);
}
free (out);
}
}
}
break;
}
}
break;
case 'm': // "pm"
if (input[1] == '?') {
r_cons_printf ("|Usage: pm [file|directory]\n"
"| r_magic will use given file/dir as reference\n"
"| output of those magic can contain expressions like:\n"
"| foo@0x40 # use 'foo' magic file on address 0x40\n"
"| @0x40 # use current magic file on address 0x40\n"
"| \\n # append newline\n"
"| e dir.magic # defaults to " R_JOIN_2_PATHS ("{R2_PREFIX}", R2_SDB_MAGIC) "\n"
"| /m # search for magic signatures\n"
);
} else if (input[1] == 'j') { // "pmj"
const char *filename = r_str_trim_head_ro (input + 2);
PJ *pj = r_core_pj_new (core);
r_core_magic (core, filename, true, pj);
r_cons_println (pj_string (pj));
pj_free (pj);
} else {
// XXX: need cmd_magic header for r_core_magic
const char *filename = r_str_trim_head_ro (input + 1);
r_core_magic (core, filename, true, NULL);
}
break;
case 'u': // "pu"
if (input[1] == '?') {
r_cons_printf ("|Usage: pu[w] [len] print N url"
"encoded bytes (w=wide)\n");
} else {
if (l > 0) {
r_print_string (core->print, core->offset, core->block, len,
R_PRINT_STRING_URLENCODE |
((input[1] == 'w')? R_PRINT_STRING_WIDE: 0));
}
}
break;
case 'c': // "pc"
if (input[1] == '?') {
r_core_cmd_help (core, help_msg_pc);
} else if (l) {
const ut8 *buf = core->block;
int i = 0;
int j = 0;
if (input[1] == 'A') { // "pcA"
r_cons_printf ("sub_0x%08"PFMT64x ":\n", core->offset);
for (i = 0; i < len; i++) {
RAsmOp asmop = {
0
};
(void) r_asm_disassemble (core->rasm, &asmop, buf + i, len - i);
int sz = asmop.size;
if (sz < 1) {
sz = 1;
}
r_cons_printf (" .byte ");
for (j = 0; j < sz; j++) {
r_cons_printf ("%s0x%02x", j? ", ": "", buf[i]);
i++;
}
r_cons_printf (" // %s\n", r_strbuf_get (&asmop.buf_asm));
i--;
}
r_cons_printf (".equ shellcode_len, %d\n", len);
} else {
r_print_code (core->print, core->offset, core->block, len, input[1]);
}
}
break;
case 'C': // "pC"
switch (input[1]) {
case 0:
cmd_pCd (core, "");
break;
case ' ':
case 'd':
cmd_pCd (core, input + 2);
break;
case 'D':
cmd_pCD (core, input + 2);
break;
case 'a':
cmd_pCx (core, input + 2, "pxa");
break;
case 'A':
cmd_pCx (core, input + 2, "pxA");
break;
case 'x':
cmd_pCx (core, input + 2, "px");
break;
case 'w':
cmd_pCx (core, input + 2, "pxw");
break;
case 'c':
cmd_pCx (core, input + 2, "pc");
break;
default:
eprintf ("Usage: pCd\n");
break;
}
break;
case 'r': // "pr"
switch (input[1]) {
case 'i': // "pri" // color raw image
if (input[2] == 'n') {
cmd_printmsg (core, input + 4);
} else {
// TODO: do colormap and palette conversions here
int mode = r_config_get_i (core->config, "scr.color")? 0: 'a';
int cols = r_config_get_i (core->config, "hex.cols");
r_cons_image (core->block, core->blocksize, cols, mode);
}
break;
case 'c': // "prc" // color raw dump
if (input[2] == '?') {
// TODO: change =e to colorized =mode
r_cons_printf ("prc=e # colorblocks of entropy\n");
// TODO: replace pz? help text with "See also"
r_core_cmd0 (core, "pz?");
} else if (input[2] == '=') {
if (input[3] == '?') {
r_core_cmd_help (core, help_msg_p_equal);
} else {
cmd_prc_zoom (core, input + 2);
}
} else {
cmd_prc (core, block, len);
}
break;
case '?':
r_core_cmd_help (core, help_msg_pr);
break;
case 'g': // "prg" // gunzip
switch (input[2]) {
default:
case '?':
r_core_cmd_help (core, help_msg_prg);
break;
case 'l': // "prgl" // lz4
{
ut8 *dst = calloc (len, 4);
if (dst) {
// TODO. hack into lz4 to make it work without knowing the input
int consumed = 0;
int olen = 0;
ut8 *obuf = r_inflate_lz4 (core->block, len, &consumed, &olen);
if (obuf) {
for (i = 0; i < olen; i += 32) {
int left = R_MIN (olen - i, 32);
r_cons_printf ("wx+");
r_print_bytes (core->print, obuf + i, left, "%02x");
}
} else {
eprintf ("Invalid input size %d\n", olen);
}
free (dst);
}
}
break;
case 'i': // "prgi"
{
int outlen = 0;
int inConsumed = 0;
ut8 *out;
out = r_inflate (block, core->blocksize, &inConsumed, &outlen);
r_cons_printf ("%d\n", inConsumed);
free (out);
}
break;
case 'o': // "prgo"
{
int outlen = 0;
ut8 *out;
out = r_inflate (block, core->blocksize, NULL, &outlen);
r_cons_printf ("%d\n", outlen);
free (out);
}
break;
case 0:
case ' ':
{
int outlen = 0;
ut8 *out;
out = r_inflate (block, core->blocksize, NULL, &outlen);
if (out) {
r_cons_write ((const char *) out, outlen);
}
free (out);
}
}
break;
/* TODO: compact */
case 'l': // "prl"
if (l != 0) {
printraw (core, len, 1);
}
break;
case 'x': // "prx"
#if 0
if (l != 0) {
printraw (core, len, 2);
}
#else
{
int a = r_config_get_i (core->config, "hex.bytes");
r_config_set_i (core->config, "hex.bytes", false);
r_core_cmdf (core, "px%s", input + 1);
r_config_set_i (core->config, "hex.bytes", a);
}
#endif
break;
case 'z': // "prz"
if (l != 0) {
printraw (core, strlen ((const char *) core->block), 0);
}
break;
default:
if (l != 0) {
printraw (core, len, 0);
}
break;
}
break;
case '3': // "p3" [file]
if (input[1] == '?') {
eprintf ("Usage: p3 [file] - print 3D stereogram image of current block\n");
} else if (input[1] == ' ') {
char *data = r_file_slurp (input + 2, NULL);
if (!data) {
eprintf ("Could not open '%s'.\n", input + 2);
break;
}
char *res = r_print_stereogram (data, 78, 20);
r_print_stereogram_print (core->print, res);
// if (data) eprintf ("%s\n", data);
free (res);
free (data);
} else {
char *res = r_print_stereogram_bytes (block, core->blocksize);
r_print_stereogram_print (core->print, res);
free (res);
}
break;
case 'o': // "po"
cmd_print_op (core, input);
break;
case 'x': // "px"
if (input[1] == '-' && input[2] == '-') {
int rowsize = r_config_get_i (core->config, "hex.cols");
int ctxlines = r_num_math (core->num, input + 3);
if (ctxlines < 0) {
ctxlines = 0;
}
int size = rowsize + (rowsize * ctxlines * 2);
ut64 addr = core->offset - (rowsize * ctxlines);
r_core_cmdf (core, "px %d@0x%08"PFMT64x, size, addr);
break;
} else {
bool show_offset = r_config_get_i (core->config, "hex.offset");
if (show_offset) {
core->print->flags |= R_PRINT_FLAGS_OFFSET;
} else {
core->print->flags &= ~R_PRINT_FLAGS_OFFSET;
}
int show_header = r_config_get_i (core->config, "hex.header");
if (show_header) {
core->print->flags |= R_PRINT_FLAGS_HEADER;
} else {
core->print->flags &= ~R_PRINT_FLAGS_HEADER;
}
/* Don't show comments in default case */
core->print->use_comments = false;
}
r_cons_break_push (NULL, NULL);
switch (input[1]) {
case 'j': // "pxj"
if (len < core->blocksize) {
r_print_jsondump (core->print, core->block, R_MIN (core->blocksize, len), 8);
} else {
ut8 *data = malloc (len + 1);
if (data) {
memset (data, core->io->Oxff, len + 1);
r_io_read_at (core->io, core->offset, data, len);
r_print_jsondump (core->print, data, len, 8);
free (data);
}
}
break;
case '/': // "px/"
r_core_print_examine (core, input + 2);
break;
case '?':
r_core_cmd_help (core, help_msg_px);
break;
case '0': // "px0"
if (l) {
int len = r_str_nlen ((const char *)core->block, core->blocksize);
r_print_bytes (core->print, core->block, len, "%02x");
}
break;
case 'a': // "pxa"
if (l != 0) {
if (len % 16) {
len += 16 - (len % 16);
}
annotated_hexdump (core, input + 2, len);
}
break;
case 'x': // "pxx"
if (l != 0) {
core->print->flags |= R_PRINT_FLAGS_NONHEX;
r_print_hexdump (core->print, core->offset,
core->block, len, 8, 1, 1);
core->print->flags &= ~R_PRINT_FLAGS_NONHEX;
}
break;
case 'X': // "pxX"
if (l != 0) {
ut8 *buf = calloc (len, 4);
if (buf) {
r_io_read_at (core->io, core->offset, buf, len * 4);
core->print->flags |= R_PRINT_FLAGS_NONHEX;
r_print_hexdump (core->print, core->offset, buf, len * 4, 8, 1, 1);
core->print->flags &= ~R_PRINT_FLAGS_NONHEX;
free (buf);
}
}
break;
case 'A': // "pxA"
if (input[2] == '?') {
r_core_cmd_help (core, help_msg_pxA);
} else if (l) {
cmd_print_pxA (core, len, input + 2);
}
break;
case 'b': // "pxb"
if (l) {
ut32 n;
int i, c;
char buf[32];
for (i = c = 0; i < len; i++, c++) {
if (c == 0) {
ut64 ea = core->offset + i;
if (core->print->pava) {
ut64 va = r_io_p2v (core->io, ea);
if (va != UT64_MAX) {
ea = va;
}
}
r_print_section (core->print, ea);
r_print_offset (core->print, ea, 0, 0, NULL);
}
r_str_bits (buf, core->block + i, 8, NULL);
// split bits
memmove (buf + 5, buf + 4, 5);
buf[4] = 0;
r_print_cursor (core->print, i, 1, 1);
r_cons_printf ("%s.%s ", buf, buf + 5);
r_print_cursor (core->print, i, 1, 0);
if (c == 3) {
const ut8 *b = core->block + i - 3;
int (*k) (const ut8 *, int) = cmd_pxb_k;
char (*p) (char) = cmd_pxb_p;
n = k (b, 0) | k (b, 1) | k (b, 2) | k (b, 3);
r_cons_printf ("0x%08x %c%c%c%c\n",
n, p (b[0]), p (b[1]), p (b[2]), p (b[3]));
c = -1;
}
}
}
break;
case 'c': // "pxc"
{
int ocomments = core->print->use_comments;
core->print->use_comments = core->print->flags & R_PRINT_FLAGS_COMMENT;
if (l) {
ut64 from = r_config_get_i (core->config, "diff.from");
ut64 to = r_config_get_i (core->config, "diff.to");
if (from == to && !from) {
r_core_block_size (core, len);
len = core->blocksize;
r_print_hexdump (core->print, core->offset,
core->block, core->blocksize, 16, 1, 1);
} else {
r_core_print_cmp (core, from, to);
}
core->num->value = len;
}
core->print->use_comments = ocomments;
}
break;
case 'i': // "pxi"
if (l != 0) {
core->print->show_offset = r_config_get_i (core->config, "hex.offset");
r_print_hexii (core->print, core->offset, core->block,
core->blocksize, r_config_get_i (core->config, "hex.cols"));
}
break;
case 'o': // "pxo"
if (l != 0) {
r_print_hexdump (core->print, core->offset,
core->block, len, 8, 1, 1);
}
break;
case 't': // "pxt"
{
ut64 origin = core->offset;
const char *arg = strchr (input, ' ');
if (arg) {
origin = r_num_math (core->num, arg + 1);
}
// _pointer_table does r_core_cmd with @, so it modifies core->block
// and this results in an UAF access when iterating over the jmptable
// so we do a new allocation to avoid that issue
ut8 *block = calloc (len, 1);
if (block) {
memcpy (block, core->block, len);
_pointer_table (core, origin, core->offset, block, len, 4, input[2]);
free (block);
}
}
break;
case 'd': // "pxd"
if (input[2] == '?') {
r_core_cmd_help (core, help_msg_pxd);
} else if (l != 0) {
switch (input[2]) {
case '1':
// 1 byte signed words (byte)
if (input[3] == 'j') {
r_print_jsondump (core->print, core->block,
len, 8);
} else {
r_print_hexdump (core->print, core->offset,
core->block, len, -1, 4, 1);
}
break;
case '2':
// 2 byte signed words (short)
if (input[3] == 'j') {
r_print_jsondump (core->print, core->block,
len, 16);
} else {
r_print_hexdump (core->print, core->offset,
core->block, len, -10, 2, 1);
}
break;
case '8':
if (input[3] == 'j') {
r_print_jsondump (core->print, core->block,
len, 64);
} else {
r_print_hexdump (core->print, core->offset,
core->block, len, -8, 4, 1);
}
break;
case '4':
case ' ':
case 'j':
case 0:
// 4 byte signed words
if (input[2] == 'j' || (input[2] && input[3] == 'j')) {
r_print_jsondump (core->print, core->block,
len, 32);
} else {
r_print_hexdump (core->print, core->offset,
core->block, len, 10, 4, 1);
}
break;
default:
r_core_cmd_help (core, help_msg_pxd);
break;
}
}
break;
case 'w': // "pxw"
if (l != 0) {
if (input[2] == 'j') {
r_print_jsondump (core->print, core->block, len, 32);
} else {
r_print_hexdump (core->print, core->offset, core->block, len, 32, 4, 1);
}
}
break;
case 'W': // "pxW"
if (l) {
bool printOffset = (input[2] != 'q' && r_config_get_i (core->config, "hex.offset"));
len = len - (len % 4);
for (i = 0; i < len; i += 4) {
const char *a, *b;
char *fn;
RPrint *p = core->print;
RFlagItem *f;
ut32 v = r_read_ble32 (core->block + i, core->print->big_endian);
if (p && p->colorfor) {
a = p->colorfor (p->user, core->offset + i, v, true);
if (a && *a) {
b = Color_RESET;
} else {
a = b = "";
}
} else {
a = b = "";
}
f = r_flag_get_at (core->flags, v, true);
fn = NULL;
if (f) {
st64 delta = (v - f->offset);
if (delta >= 0 && delta < 8192) {
if (v == f->offset) {
fn = strdup (f->name);
} else {
fn = r_str_newf ("%s+%" PFMT64d,
f->name, v - f->offset);
}
}
}
if (printOffset) {
r_print_section (core->print, core->offset +i);
r_cons_printf ("0x%08"PFMT64x " %s0x%08"PFMT64x "%s%s%s\n",
(ut64) core->offset + i, a, (ut64) v,
b, fn? " ": "", r_str_get (fn));
} else {
r_cons_printf ("%s0x%08"PFMT64x "%s\n", a, (ut64) v, b);
}
free (fn);
}
}
break;
case 'r': // "pxr"
if (l) {
int mode = input[2];
int wordsize = core->anal->config->bits / 8;
if (mode == '?') {
eprintf ("Usage: pxr[1248][*,jq] [length]\n");
break;
}
if (mode && isdigit (mode)) {
char tmp[2] = {input[2], 0};
wordsize = atoi (tmp);
mode = input[3];
}
switch (wordsize) {
case 1:
case 2:
case 4:
case 8:
cmd_pxr (core, len, mode, wordsize, mode? strchr (input, mode): NULL);
break;
default:
eprintf ("Invalid word size. Use 1, 2, 4 or 8.\n");
break;
}
}
break;
case 'h': // "pxh"
if (l) {
if (input[2] == 'j') {
r_print_jsondump (core->print, core->block, len, 16);
} else {
r_print_hexdump (core->print, core->offset,
core->block, len, 32, 2, 1);
}
}
break;
case 'H': // "pxH"
if (l != 0) {
len = len - (len % 2);
for (i = 0; i < len; i += 2) {
const char *a, *b;
char *fn;
RPrint *p = core->print;
RFlagItem *f;
ut64 v = (ut64) r_read_ble16 (core->block + i, p->big_endian);
if (p && p->colorfor) {
a = p->colorfor (p->user, core->offset + i, v, true);
if (a && *a) {
b = Color_RESET;
} else {
a = b = "";
}
} else {
a = b = "";
}
f = r_flag_get_at (core->flags, v, true);
fn = NULL;
if (f) {
st64 delta = (v - f->offset);
if (delta >= 0 && delta < 8192) {
if (v == f->offset) {
fn = strdup (f->name);
} else {
fn = r_str_newf ("%s+%"PFMT64d, f->name, v - f->offset);
}
}
}
r_cons_printf ("0x%08"PFMT64x " %s0x%04"PFMT64x "%s %s\n",
(ut64) core->offset + i, a, v, b, r_str_get (fn));
free (fn);
}
}
break;
case 'q': // "pxq"
if (l) {
if (input[2] == 'j') {
r_print_jsondump (core->print, core->block, len, 64);
} else {
r_print_hexdump (core->print, core->offset, core->block, len, 64, 8, 1);
}
}
break;
case 'Q': // "pxQ"
// TODO. show if flag name, or inside function
if (l) {
bool printOffset = (input[2] != 'q' && r_config_get_i (core->config, "hex.offset"));
len = len - (len % 8);
for (i = 0; i < len; i += 8) {
const char *a, *b;
char *fn;
RPrint *p = core->print;
RFlagItem *f;
ut64 v = r_read_ble64 (core->block + i, p->big_endian);
if (p && p->colorfor) {
a = p->colorfor (p->user, core->offset + i, v, true);
if (a && *a) {
b = Color_RESET;
} else {
a = b = "";
}
} else {
a = b = "";
}
f = r_flag_get_at (core->flags, v, true);
fn = NULL;
if (f) {
st64 delta = (v - f->offset);
if (delta >= 0 && delta < 8192) {
if (v == f->offset) {
fn = strdup (f->name);
} else {
fn = r_str_newf ("%s+%" PFMT64d, f->name, v - f->offset);
}
}
}
if (printOffset) {
r_print_section (core->print, core->offset +i);
r_cons_printf ("0x%08"PFMT64x " %s0x%016"PFMT64x "%s %s\n",
(ut64) core->offset + i, a, v, b, r_str_get (fn));
} else {
r_cons_printf ("%s0x%016"PFMT64x "%s\n", a, v, b);
}
free (fn);
}
}
break;
case 's': // "pxs"
if (l) {
core->print->flags |= R_PRINT_FLAGS_SPARSE;
r_print_hexdump (core->print, core->offset, core->block, len, 16, 1, 1);
core->print->flags &= (((ut32) - 1) & (~R_PRINT_FLAGS_SPARSE));
}
break;
case 'e': // "pxe" // emoji dump
if (l != 0) {
int j;
char emoji[] = {
'\x8c', '\x80', '\x8c', '\x82', '\x8c', '\x85', '\x8c', '\x88',
'\x8c', '\x99', '\x8c', '\x9e', '\x8c', '\x9f', '\x8c', '\xa0',
'\x8c', '\xb0', '\x8c', '\xb1', '\x8c', '\xb2', '\x8c', '\xb3',
'\x8c', '\xb4', '\x8c', '\xb5', '\x8c', '\xb7', '\x8c', '\xb8',
'\x8c', '\xb9', '\x8c', '\xba', '\x8c', '\xbb', '\x8c', '\xbc',
'\x8c', '\xbd', '\x8c', '\xbe', '\x8c', '\xbf', '\x8d', '\x80',
'\x8d', '\x81', '\x8d', '\x82', '\x8d', '\x83', '\x8d', '\x84',
'\x8d', '\x85', '\x8d', '\x86', '\x8d', '\x87', '\x8d', '\x88',
'\x8d', '\x89', '\x8d', '\x8a', '\x8d', '\x8b', '\x8d', '\x8c',
'\x8d', '\x8d', '\x8d', '\x8e', '\x8d', '\x8f', '\x8d', '\x90',
'\x8d', '\x91', '\x8d', '\x92', '\x8d', '\x93', '\x8d', '\x94',
'\x8d', '\x95', '\x8d', '\x96', '\x8d', '\x97', '\x8d', '\x98',
'\x8d', '\x9c', '\x8d', '\x9d', '\x8d', '\x9e', '\x8d', '\x9f',
'\x8d', '\xa0', '\x8d', '\xa1', '\x8d', '\xa2', '\x8d', '\xa3',
'\x8d', '\xa4', '\x8d', '\xa5', '\x8d', '\xa6', '\x8d', '\xa7',
'\x8d', '\xa8', '\x8d', '\xa9', '\x8d', '\xaa', '\x8d', '\xab',
'\x8d', '\xac', '\x8d', '\xad', '\x8d', '\xae', '\x8d', '\xaf',
'\x8d', '\xb0', '\x8d', '\xb1', '\x8d', '\xb2', '\x8d', '\xb3',
'\x8d', '\xb4', '\x8d', '\xb5', '\x8d', '\xb6', '\x8d', '\xb7',
'\x8d', '\xb8', '\x8d', '\xb9', '\x8d', '\xba', '\x8d', '\xbb',
'\x8d', '\xbc', '\x8e', '\x80', '\x8e', '\x81', '\x8e', '\x82',
'\x8e', '\x83', '\x8e', '\x84', '\x8e', '\x85', '\x8e', '\x88',
'\x8e', '\x89', '\x8e', '\x8a', '\x8e', '\x8b', '\x8e', '\x8c',
'\x8e', '\x8d', '\x8e', '\x8e', '\x8e', '\x8f', '\x8e', '\x92',
'\x8e', '\x93', '\x8e', '\xa0', '\x8e', '\xa1', '\x8e', '\xa2',
'\x8e', '\xa3', '\x8e', '\xa4', '\x8e', '\xa5', '\x8e', '\xa6',
'\x8e', '\xa7', '\x8e', '\xa8', '\x8e', '\xa9', '\x8e', '\xaa',
'\x8e', '\xab', '\x8e', '\xac', '\x8e', '\xad', '\x8e', '\xae',
'\x8e', '\xaf', '\x8e', '\xb0', '\x8e', '\xb1', '\x8e', '\xb2',
'\x8e', '\xb3', '\x8e', '\xb4', '\x8e', '\xb5', '\x8e', '\xb7',
'\x8e', '\xb8', '\x8e', '\xb9', '\x8e', '\xba', '\x8e', '\xbb',
'\x8e', '\xbd', '\x8e', '\xbe', '\x8e', '\xbf', '\x8f', '\x80',
'\x8f', '\x81', '\x8f', '\x82', '\x8f', '\x83', '\x8f', '\x84',
'\x8f', '\x86', '\x8f', '\x87', '\x8f', '\x88', '\x8f', '\x89',
'\x8f', '\x8a', '\x90', '\x80', '\x90', '\x81', '\x90', '\x82',
'\x90', '\x83', '\x90', '\x84', '\x90', '\x85', '\x90', '\x86',
'\x90', '\x87', '\x90', '\x88', '\x90', '\x89', '\x90', '\x8a',
'\x90', '\x8b', '\x90', '\x8c', '\x90', '\x8d', '\x90', '\x8e',
'\x90', '\x8f', '\x90', '\x90', '\x90', '\x91', '\x90', '\x92',
'\x90', '\x93', '\x90', '\x94', '\x90', '\x95', '\x90', '\x96',
'\x90', '\x97', '\x90', '\x98', '\x90', '\x99', '\x90', '\x9a',
'\x90', '\x9b', '\x90', '\x9c', '\x90', '\x9d', '\x90', '\x9e',
'\x90', '\x9f', '\x90', '\xa0', '\x90', '\xa1', '\x90', '\xa2',
'\x90', '\xa3', '\x90', '\xa4', '\x90', '\xa5', '\x90', '\xa6',
'\x90', '\xa7', '\x90', '\xa8', '\x90', '\xa9', '\x90', '\xaa',
'\x90', '\xab', '\x90', '\xac', '\x90', '\xad', '\x90', '\xae',
'\x90', '\xaf', '\x90', '\xb0', '\x90', '\xb1', '\x90', '\xb2',
'\x90', '\xb3', '\x90', '\xb4', '\x90', '\xb5', '\x90', '\xb6',
'\x90', '\xb7', '\x90', '\xb8', '\x90', '\xb9', '\x90', '\xba',
'\x90', '\xbb', '\x90', '\xbc', '\x90', '\xbd', '\x90', '\xbe',
'\x91', '\x80', '\x91', '\x82', '\x91', '\x83', '\x91', '\x84',
'\x91', '\x85', '\x91', '\x86', '\x91', '\x87', '\x91', '\x88',
'\x91', '\x89', '\x91', '\x8a', '\x91', '\x8b', '\x91', '\x8c',
'\x91', '\x8d', '\x91', '\x8e', '\x91', '\x8f', '\x91', '\x90',
'\x91', '\x91', '\x91', '\x92', '\x91', '\x93', '\x91', '\x94',
'\x91', '\x95', '\x91', '\x96', '\x91', '\x97', '\x91', '\x98',
'\x91', '\x99', '\x91', '\x9a', '\x91', '\x9b', '\x91', '\x9c',
'\x91', '\x9d', '\x91', '\x9e', '\x91', '\x9f', '\x91', '\xa0',
'\x91', '\xa1', '\x91', '\xa2', '\x91', '\xa3', '\x91', '\xa4',
'\x91', '\xa5', '\x91', '\xa6', '\x91', '\xa7', '\x91', '\xa8',
'\x91', '\xa9', '\x91', '\xaa', '\x91', '\xae', '\x91', '\xaf',
'\x91', '\xba', '\x91', '\xbb', '\x91', '\xbc', '\x91', '\xbd',
'\x91', '\xbe', '\x91', '\xbf', '\x92', '\x80', '\x92', '\x81',
'\x92', '\x82', '\x92', '\x83', '\x92', '\x84', '\x92', '\x85'
};
int cols = core->print->cols;
if (cols < 1) {
cols = 1;
}
for (i = 0; i < len; i += cols) {
r_print_addr (core->print, core->offset + i);
for (j = i; j < i + cols; j += 1) {
ut8 *p = (ut8 *) core->block + j;
if (j < len) {
r_cons_printf ("\xf0\x9f%c%c ", emoji[*p * 2], emoji[*p * 2 + 1]);
} else {
r_cons_print (" ");
}
}
r_cons_print (" ");
for (j = i; j < len && j < i + cols; j += 1) {
ut8 *p = (ut8 *) core->block + j;
r_print_byte (core->print, core->offset + j, "%c", j, *p);
}
r_cons_newline ();
}
}
break;
case 'l': // "pxl"
len = core->print->cols * len;
/* fallthrough */
default:
if (l) {
ut64 from = r_config_get_i (core->config, "diff.from");
ut64 to = r_config_get_i (core->config, "diff.to");
if (from == to && !from) {
const char *sp = NULL;
if (input[1] == '.') {
sp = input + 2;
}
if (IS_DIGIT (input[1])) {
sp = input + 1;
}
if (sp) {
int n = (int) r_num_math (core->num, r_str_trim_head_ro (sp));
if (!n) {
goto beach;
}
len = n;
}
if (!r_core_block_size (core, len)) {
len = core->blocksize;
}
r_core_block_read (core);
r_print_hexdump (core->print, r_core_pava (core, core->offset),
core->block, len, 16, 1, 1);
} else {
r_core_print_cmp (core, from, to);
}
core->num->value = len;
}
break;
}
r_cons_break_pop ();
break;
case '2': // "p2"
if (l) {
if (input[1] == '?') {
r_cons_printf ("|Usage: p2 [number of bytes representing tiles]\n"
"NOTE: Only full tiles will be printed\n");
} else {
RConsContext *c = core->cons->context;
const char **colors = (const char *[]) {
c->pal.mov, //black
c->pal.nop, //dark
c->pal.cmp, //light
c->pal.jmp, //white
};
const int cols = r_config_get_i (core->config, "hex.cols");
r_print_2bpp_tiles (core->print, core->block, len - 1, cols / 4, colors);
}
}
break;
case '6': // "p6"
if (l) {
int malen = (core->blocksize * 4) + 1;
ut8 *buf = malloc (malen);
if (!buf) {
break;
}
memset (buf, 0, malen);
switch (input[1]) {
case 'd': // "p6d"
if (r_base64_decode (buf, (const char *) block, len)) {
r_cons_println ((const char *) buf);
} else {
eprintf ("r_base64_decode: invalid stream\n");
}
break;
case 'e': // "p6e"
len = len > core->blocksize? core->blocksize: len;
r_base64_encode ((char *) buf, block, len);
r_cons_println ((const char *) buf);
break;
case '?':
default:
r_core_cmd_help(core, help_msg_p6);
break;
}
free (buf);
}
break;
case '8': // "p8"
if (input[1] == '?') {
r_cons_printf ("|Usage: p8[fj] [len] 8bit hexpair list of bytes (see pcj)\n");
r_cons_printf (" p8 : print hexpairs string\n");
r_cons_printf (" p8f : print hexpairs of function (linear)\n");
r_cons_printf (" p8j : print hexpairs in JSON array\n");
} else if (l) {
if (!r_core_block_size (core, len)) {
len = core->blocksize;
}
if (input[1] == 'j') { // "p8j"
r_core_cmdf (core, "pcj %s", input + 2);
} else if (input[1] == 'f') { // "p8f"
r_core_cmdf (core, "p8 $FS @ $FB");
} else {
r_core_block_read (core);
block = core->block;
r_print_bytes (core->print, block, len, "%02x");
}
}
break;
case 'g': // "pg"
cmd_print_gadget (core, input + 1);
break;
case 'f': // "pf"
cmd_print_format (core, input, block, len);
break;
case 'F': // "pF"
cmd_print_fromage (core, input + 1, block, len);
break;
case 'k': // "pk"
if (input[1] == '?') {
r_cons_printf ("|Usage: pk [len] print key in randomart\n");
r_cons_printf ("|Usage: pkill [process-name]\n");
} else if (!strncmp (input, "kill", 4)) {
RListIter *iter;
RDebugPid *pid;
const char *arg = strchr (input, ' ');
RList *pids = (core->dbg->h && core->dbg->h->pids)
? core->dbg->h->pids (core->dbg, 0): NULL;
if (arg && *++arg) {
r_list_foreach (pids, iter, pid) {
if (strstr (pid->path, arg)) {
r_cons_printf ("dk 9 %d\n", pid->pid);
}
// r_debug_kill (core->dbg, pid->pid, pid->pid, 9); // kill -9
}
}
r_list_free (pids);
} else if (l > 0) {
len = len > core->blocksize? core->blocksize: len;
char *s = r_print_randomart (block, len, core->offset);
r_cons_println (s);
free (s);
}
break;
case 'K': // "pK"
if (input[1] == '?') {
r_cons_printf ("|Usage: pK [len] print key in randomart mosaic\n");
} else if (l > 0) {
len = len > core->blocksize? core->blocksize: len;
int w, h;
RConsCanvas *c;
w = r_cons_get_size (&h);
ut64 offset0 = core->offset;
int cols = (w / 20);
int rows = (h / 12);
int i, j;
char *s;
if (rows < 1) {
rows = 1;
}
c = r_cons_canvas_new (w, rows * 11);
for (i = 0; i < rows; i++) {
for (j = 0; j < cols; j++) {
r_cons_canvas_gotoxy (c, j * 20, i * 11);
core->offset += len;
r_io_read_at (core->io, core->offset, core->block, len);
s = r_print_randomart (core->block, len, core->offset);
r_cons_canvas_write (c, s);
free (s);
}
}
r_cons_canvas_print (c);
r_cons_canvas_free (c);
r_io_read_at (core->io, offset0, core->block, len);
core->offset = offset0;
r_cons_printf ("\n");
}
break;
case 'n': // easter
eprintf ("easter egg license has expired\n");
break;
case 't': // "pt"
switch (input[1]) {
case '.':
{
char nowstr[64] = {0};
r_print_date_get_now (core->print, nowstr);
r_cons_printf ("%s\n", nowstr);
}
break;
case ' ':
case '\0':
// len must be multiple of 4 since r_mem_copyendian move data in fours - sizeof(ut32)
if (len < sizeof (ut32)) {
eprintf ("You should change the block size: b %d\n", (int) sizeof (ut32));
}
if (len % sizeof (ut32)) {
len = len - (len % sizeof (ut32));
}
for (l = 0; l < len; l += sizeof (ut32)) {
r_print_date_unix (core->print, block + l, sizeof (ut32));
}
break;
case 'h': // "pth"
// len must be multiple of 4 since r_mem_copyendian move data in fours - sizeof(ut32)
if (len < sizeof (ut32)) {
eprintf ("You should change the block size: b %d\n", (int) sizeof (ut32));
}
if (len % sizeof (ut32)) {
len = len - (len % sizeof (ut32));
}
for (l = 0; l < len; l += sizeof (ut32)) {
r_print_date_hfs (core->print, block + l, sizeof (ut32));
}
break;
case 'd': // "ptd"
// len must be multiple of 4 since r_print_date_dos read buf+3
// if block size is 1 or 5 for example it reads beyond the buffer
if (len < sizeof (ut32)) {
eprintf ("You should change the block size: b %d\n", (int) sizeof (ut32));
}
if (len % sizeof (ut32)) {
len = len - (len % sizeof (ut32));
}
for (l = 0; l < len; l += sizeof (ut32)) {
r_print_date_dos (core->print, block + l, sizeof (ut32));
}
break;
case 'n': // "ptn"
if (len < sizeof (ut64)) {
eprintf ("You should change the block size: b %d\n", (int) sizeof (ut64));
}
if (len % sizeof (ut64)) {
len = len - (len % sizeof (ut64));
}
for (l = 0; l < len; l += sizeof (ut64)) {
r_print_date_w32 (core->print, block + l, sizeof (ut64));
}
break;
case '?':
r_core_cmd_help (core, help_msg_pt);
break;
}
break;
case 'q': // "pq"
switch (input[1]) {
case '?':
r_core_cmd_help (core, help_msg_pq);
len = 0;
break;
case 's': // "pqs" // TODO pqs or pqz or pq0 :D
case 'z': // for backward compat
len = r_str_nlen ((const char *)block, core->blocksize);
break;
default:
if (len < 1) {
len = 0;
}
if (len > core->blocksize) {
len = core->blocksize;
}
break;
}
if (len > 0) {
bool inverted = (input[1] == 'i'); // pqi -- inverted colors
char *res = r_qrcode_gen (block, len, r_config_get_i (core->config, "scr.utf8"), inverted);
if (res) {
r_cons_printf ("%s\n", res);
free (res);
}
}
break;
case 'z': // "pz"
if (input[1] == '?') {
r_core_cmd_help (core, help_msg_pz);
} else {
RIOMap* map;
RListIter *iter;
RList *list = r_core_get_boundaries_prot (core, -1, NULL, "zoom");
if (list && r_list_length (list) > 0) {
RListIter *iter1 = list->head;
RIOMap* map1 = iter1->data;
from = map1->itv.addr;
r_list_foreach (list, iter, map) {
to = r_io_map_end (map);
}
} else {
from = core->offset;
to = from + core->blocksize;
}
ut64 maxsize = r_config_get_i (core->config, "zoom.maxsz");
int oldva = core->io->va;
char *oldmode = NULL;
bool do_zoom = true;
core->io->va = 0;
if (input[1] && input[1] != ' ') {
oldmode = strdup (r_config_get (core->config, "zoom.byte"));
if (!r_config_set (core->config, "zoom.byte", input + 1)) {
do_zoom = false;
}
}
if (do_zoom && l > 0) {
r_print_zoom (core->print, core, printzoomcallback,
from, to, l, (int) maxsize);
}
if (oldmode) {
r_config_set (core->config, "zoom.byte", oldmode);
}
core->io->va = oldva;
R_FREE (oldmode);
r_list_free (list);
}
break;
default:
r_core_cmd_help (core, help_msg_p);
break;
}
beach:
if (myblock) {
free (block);
}
if (tmpseek != UT64_MAX) {
r_core_seek (core, tmpseek, SEEK_SET);
r_core_block_read (core);
}
if (tbs != core->blocksize) {
r_core_block_size (core, tbs);
}
return ret;
}
static int cmd_hexdump(void *data, const char *input) {
char *pcmd = r_str_newf ("x%s", input);
int rc = cmd_print (data, pcmd);
free (pcmd);
return rc;
}
static int lenof(ut64 off, int two) {
char buf[64];
buf[0] = 0;
if (two) {
snprintf (buf, sizeof (buf), "+0x%"PFMT64x, off);
} else {
snprintf (buf, sizeof (buf), "0x%08"PFMT64x, off);
}
return strlen (buf);
}
R_API void r_print_offset(RPrint *p, ut64 off, int invert, int delta, const char *label) {
int offdec = (p->flags & R_PRINT_FLAGS_ADDRDEC) != 0;
const int offseg = (p->flags & R_PRINT_FLAGS_SEGOFF) != 0;
char space[32] = {
0
};
const char *reset = p->resetbg? Color_RESET: Color_RESET_NOBG;
bool show_color = p->flags & R_PRINT_FLAGS_COLOR;
if (show_color) {
char rgbstr[32];
const char *k = r_cons_singleton ()->context->pal.offset; // TODO etooslow. must cache
const char *inv = invert ? R_CONS_INVERT (true, true) : "";
if (p->flags & R_PRINT_FLAGS_RAINBOW) {
k = r_cons_rgb_str_off (rgbstr, sizeof (rgbstr), off);
}
if (offseg) {
ut32 s, a;
r_num_segaddr (off, p->segbas, p->seggrn, &s, &a);
if (offdec) {
snprintf (space, sizeof (space), "%d:%d", s, a);
r_cons_printf ("%s%s%9s%s", k, inv, space, reset);
} else {
r_cons_printf ("%s%s%04x:%04x%s", k, inv, s, a, reset);
}
} else {
int sz = lenof (off, 0);
int sz2 = lenof (delta, 1);
if (delta > 0 || label) {
if (label) {
const int label_padding = 10;
if (delta > 0) {
const char *pad = r_str_pad (' ', sz - sz2 + label_padding);
if (offdec) {
r_cons_printf ("%s%s%s%s+%d%s", k, inv, label, reset, delta, pad);
} else {
r_cons_printf ("%s%s%s%s+0x%x%s", k, inv, label, reset, delta, pad);
}
} else {
const char *pad = r_str_pad (' ', sz + label_padding);
r_cons_printf ("%s%s%s%s%s", k, inv, label, reset, pad);
}
} else {
const char *pad = r_str_pad (' ', sz - sz2);
if (offdec) {
r_cons_printf ("%s+%d%s", pad, delta, reset);
} else {
r_cons_printf ("%s+0x%x%s", pad, delta, reset);
}
}
} else {
if (offdec) {
snprintf (space, sizeof (space), "%"PFMT64u, off);
r_cons_printf ("%s%s%10s%s", k, inv, space, reset);
} else {
if (p->wide_offsets) {
r_cons_printf ("%s%s0x%016"PFMT64x "%s", k, inv, off, reset);
} else {
r_cons_printf ("%s%s0x%08"PFMT64x "%s", k, inv, off, reset);
}
}
}
}
r_cons_print (" ");
} else {
if (offseg) {
ut32 s, a;
r_num_segaddr (off, p->segbas, p->seggrn, &s, &a);
if (offdec) {
snprintf (space, sizeof (space), "%d:%d", s & 0xffff, a & 0xffff);
r_cons_printf ("%9s%s", space, reset);
} else {
r_cons_printf ("%04x:%04x", s & 0xFFFF, a & 0xFFFF);
}
} else {
int sz = lenof (off, 0);
int sz2 = lenof (delta, 1);
const char *pad = r_str_pad (' ', sz - 5 - sz2 - 3);
if (delta > 0) {
if (offdec) {
r_cons_printf ("%s+%d%s", pad, delta, reset);
} else {
r_cons_printf ("%s+0x%x%s", pad, delta, reset);
}
} else {
if (offdec) {
snprintf (space, sizeof (space), "%"PFMT64u, off);
r_cons_printf ("%10s", space);
} else {
r_cons_printf ("0x%08"PFMT64x " ", off);
}
}
}
}
}
#if 0
// TODO : move to r_util? .. depends on r_cons...
// XXX: dupe of r_print_addr
R_API void r_print_offset(RPrint *p, ut64 off, int invert, int offseg, int offdec, int delta, const char *label) {
r_print_offset_sg(p, off, invert, offseg, 4, offdec, delta, label);
}
#endif