radare2/libr/main/rasm2.c

1086 lines
26 KiB
C

/* radare - LGPL - Copyright 2009-2022 - pancake, nibble, maijin */
#include <r_anal.h>
#include <r_asm.h>
#include <r_lib.h>
#include <r_main.h>
typedef struct {
RLib *l;
RAsm *a;
RAnal *anal;
bool oneliner;
bool coutput;
bool json;
bool quiet;
} RAsmState;
static void __load_plugins(RAsmState *as);
static void __as_set_archbits(RAsmState *as) {
r_asm_use (as->a, R_SYS_ARCH);
r_anal_use (as->anal, R_SYS_ARCH);
int sysbits = (R_SYS_BITS & R_SYS_BITS_64)? 64: 32;
r_asm_set_bits (as->a, sysbits);
r_anal_set_bits (as->anal, sysbits);
}
static RAsmState *__as_new(void) {
RAsmState *as = R_NEW0 (RAsmState);
if (as) {
as->l = r_lib_new (NULL, NULL);
as->a = r_asm_new ();
as->anal = r_anal_new ();
r_unref (as->anal->config);
as->a->num = r_num_new (NULL, NULL, NULL);
as->anal->config = r_ref (as->a->config);
r_anal_bind (as->anal, &as->a->analb);
__load_plugins (as);
__as_set_archbits (as);
}
return as;
}
static void __as_free(RAsmState *as) {
if (as) {
if (as->a) {
r_num_free (as->a->num);
}
r_asm_free (as->a);
r_anal_free (as->anal);
r_lib_free (as->l);
free (as);
}
}
static char *stackop2str(int type) {
switch (type) {
case R_ANAL_STACK_NULL: return strdup ("null");
case R_ANAL_STACK_NOP: return strdup ("nop");
//case R_ANAL_STACK_INCSTACK: return strdup ("incstack");
case R_ANAL_STACK_GET: return strdup ("get");
case R_ANAL_STACK_SET: return strdup ("set");
}
return strdup ("unknown");
}
static int showanal(RAsmState *as, RAnalOp *op, ut64 offset, ut8 *buf, int len, PJ *pj) {
int ret = r_anal_op (as->anal, op, offset, buf, len, R_ANAL_OP_MASK_ESIL);
if (ret < 1) {
return ret;
}
char *stackop = stackop2str (op->stackop);
const char *optype = r_anal_optype_to_string (op->type);
char *bytes = r_hex_bin2strdup (buf, ret);
if (as->json) {
pj_o (pj);
pj_kn (pj, "opcode", offset);
pj_ks (pj, "bytes", bytes);
pj_ks (pj, "type", optype);
if (op->jump != UT64_MAX) {
pj_kn (pj, "jump", op->jump);
}
if (op->fail != UT64_MAX) {
pj_kn (pj, "fail", op->fail);
}
if (op->val != UT64_MAX) {
pj_kn (pj, "val", op->val);
}
if (op->ptr != UT64_MAX) {
pj_kn (pj, "ptr", op->ptr);
}
pj_ks (pj, "stackop", stackop);
pj_ks (pj, "esil", r_strbuf_get (&op->esil));
pj_kn (pj, "stackptr", op->stackptr);
pj_end (pj);
} else {
printf ("offset: 0x%08" PFMT64x "\n", offset);
printf ("bytes: %s\n", bytes);
printf ("type: %s\n", optype);
if (op->jump != -1LL) {
printf ("jump: 0x%08" PFMT64x "\n", op->jump);
}
if (op->fail != -1LL) {
printf ("fail: 0x%08" PFMT64x "\n", op->fail);
}
//if (op->ref != -1LL)
// printf ("ref: 0x%08"PFMT64x"\n", op->ref);
if (op->val != -1LL) {
printf ("value: 0x%08" PFMT64x "\n", op->val);
}
printf ("stackop: %s\n", stackop);
printf ("esil: %s\n", r_strbuf_get (&op->esil));
printf ("stackptr: %" PFMT64d "\n", op->stackptr);
// produces (null) printf ("decode str: %s\n", r_anal_op_to_string (anal, op));
printf ("\n");
}
free (stackop);
free (bytes);
return ret;
}
// TODO: add israw/len
static int show_analinfo(RAsmState *as, const char *arg, ut64 offset) {
ut8 *buf = (ut8 *)strdup ((const char *)arg);
int ret, len = r_hex_str2bin ((char *)buf, buf);
PJ *pj = pj_new ();
if (!pj) {
free (buf);
return 0;
}
RAnalOp aop = {0};
if (as->json) {
pj_a (pj);
}
for (ret = 0; ret < len;) {
aop.size = 0;
if (r_anal_op (as->anal, &aop, offset, buf + ret, len - ret, R_ANAL_OP_MASK_BASIC) < 1) {
eprintf ("Error analyzing instruction at 0x%08"PFMT64x"\n", offset);
break;
}
if (aop.size < 1) {
if (as->json) {
pj_o (pj);
pj_ks (pj, "bytes", r_hex_bin2strdup (buf, ret));
pj_ks (pj, "type", "Invalid");
pj_end (pj);
} else {
eprintf ("Invalid\n");
}
break;
}
showanal (as, &aop, offset, buf + ret, len - ret, pj);
ret += aop.size;
r_anal_op_fini (&aop);
}
if (as->json) {
pj_end (pj);
printf ("%s\n", pj_string (pj));
pj_free (pj);
}
free (buf);
return ret;
}
static const char *has_esil(RAsmState *as, const char *name) {
if (as && name) {
RListIter *iter;
RAnalPlugin *h;
r_list_foreach (as->anal->plugins, iter, h) {
if (h->name && !strcmp (name, h->name)) {
return h->esil? "Ae": "A_";
}
}
}
return "__";
}
static void ranal2_list(RAsmState *as, const char *arch) {
char bits[32];
RAnalPlugin *h;
RListIter *iter;
PJ *pj = NULL;
if (as->json) {
pj = pj_new ();
pj_a (pj);
}
r_list_foreach (as->anal->plugins, iter, h) {
bits[0] = 0;
if (h->bits == 27) {
strcat (bits, "27");
} else if (h->bits == 0) {
strcat (bits, "any");
} else {
if (h->bits & 4) {
strcat (bits, "4 ");
}
if (h->bits & 8) {
strcat (bits, "8 ");
}
if (h->bits & 16) {
strcat (bits, "16 ");
}
if (h->bits & 32) {
strcat (bits, "32 ");
}
if (h->bits & 64) {
strcat (bits, "64 ");
}
}
const char *feat = "__";
const char *feat2 = has_esil (as, h->name);
if (as->quiet) {
printf ("%s\n", h->name);
} else if (as->json) {
pj_o (pj);
pj_ks (pj, "name", h->name);
pj_k (pj, "bits");
pj_a (pj);
pj_i (pj, 32);
pj_i (pj, 64);
pj_end (pj);
pj_ks (pj, "license", r_str_get_fail (h->license, "unknown"));
pj_ks (pj, "description", h->desc);
pj_ks (pj, "features", feat);
pj_end (pj);
} else {
printf ("%s%s %-11s %-11s %-7s %s",
feat, feat2, bits, h->name,
r_str_get_fail (h->license, "unknown"), h->desc);
if (h->author) {
printf (" (by %s)", h->author);
}
if (h->version) {
printf (" v%s", h->version);
}
printf ("\n");
}
}
if (as->json) {
pj_end (pj);
printf ("%s\n", pj_string (pj));
}
pj_free (pj);
}
static void rasm2_list(RAsmState *as, const char *arch) {
int i;
char bits[32];
const char *feat2, *feat;
RAsmPlugin *h;
RListIter *iter;
PJ *pj = pj_new ();
if (!pj) {
return;
}
if (as->json) {
pj_a (pj);
}
r_list_foreach (as->a->plugins, iter, h) {
if (arch) {
if (h->cpus && !strcmp (arch, h->name)) {
char *c = strdup (h->cpus);
int n = r_str_split (c, ',');
for (i = 0; i < n; i++) {
printf ("%s\n", r_str_word_get0 (c, i));
}
free (c);
break;
}
} else {
bits[0] = 0;
if (h->bits == 27) {
strcat (bits, "27");
} else if (h->bits == 0) {
strcat (bits, "any");
} else {
if (h->bits & 4) {
strcat (bits, "4 ");
}
if (h->bits & 8) {
strcat (bits, "8 ");
}
if (h->bits & 16) {
strcat (bits, "16 ");
}
if (h->bits & 32) {
strcat (bits, "32 ");
}
if (h->bits & 64) {
strcat (bits, "64 ");
}
}
feat = "__";
if (h->assemble && h->disassemble) {
feat = "ad";
}
if (h->assemble && !h->disassemble) {
feat = "a_";
}
if (!h->assemble && h->disassemble) {
feat = "_d";
}
feat2 = has_esil (as, h->name);
if (as->quiet) {
printf ("%s\n", h->name);
} else if (as->json) {
pj_o (pj);
pj_ks (pj, "name", h->name);
pj_k (pj, "bits");
pj_a (pj);
pj_i (pj, 32);
pj_i (pj, 64);
pj_end (pj);
pj_ks (pj, "license", r_str_get_fail (h->license, "unknown"));
pj_ks (pj, "description", h->desc);
pj_ks (pj, "features", feat);
pj_end (pj);
} else {
printf ("%s%s %-11s %-11s %-7s %s",
feat, feat2, bits, h->name,
r_str_get_fail (h->license, "unknown"), h->desc);
if (h->author) {
printf (" (by %s)", h->author);
}
if (h->version) {
printf (" v%s", h->version);
}
printf ("\n");
}
}
}
if (as->json) {
pj_end (pj);
printf ("%s\n", pj_string (pj));
pj_free (pj);
}
}
static int rasm_show_help(int v) {
if (v < 2) {
printf ("Usage: rasm2 [-ACdDehLBvw] [-a arch] [-b bits] [-o addr] [-s syntax]\n"
" [-f file] [-F fil:ter] [-i skip] [-l len] 'code'|hex|0101b|-\n");
}
if (v != 1) {
printf (" -a [arch] set architecture to assemble/disassemble (see -L)\n"
" -A show Analysis information from given hexpairs\n"
" -b [bits] set cpu register size (8, 16, 32, 64) (RASM2_BITS)\n"
" -B binary input/output (-l is mandatory for binary input)\n"
" -c [cpu] select specific CPU (depends on arch)\n"
" -C output in C format\n"
" -d, -D disassemble from hexpair bytes (-D show hexpairs)\n"
" -e use big endian instead of little endian\n"
" -E display ESIL expression (same input as in -d)\n"
" -f [file] read data from file\n"
" -F [in:out] specify input and/or output filters (att2intel, x86.pseudo, ...)\n"
" -h, -hh show this help, -hh for long\n"
" -i [len] ignore/skip N bytes of the input buffer\n"
" -j output in json format\n"
" -k [kernel] select operating system (linux, windows, darwin, ..)\n"
" -l [len] input/Output length\n"
" -L list RAsm plugins: (a=asm, d=disasm, A=analyze, e=ESIL)\n"
" -LL list RAnal plugins\n"
" -o,-@ [addr] set start address for code (default 0)\n"
" -O [file] output file name (rasm2 -Bf a.asm -O a)\n"
" -p run SPP over input for assembly\n"
" -q quiet mode\n"
" -r output in radare commands\n"
" -s [syntax] select syntax (intel, att)\n"
" -v show version information\n"
" -x use hex dwords instead of hex pairs when assembling.\n"
" -w what's this instruction for? describe opcode\n"
" If '-l' value is greater than output length, output is padded with nops\n"
" If the last argument is '-' reads from stdin\n");
printf ("Environment:\n"
" RASM2_NOPLUGINS do not load shared plugins (speedup loading)\n"
" RASM2_ARCH same as rasm2 -a\n"
" RASM2_BITS same as rasm2 -b\n"
" R2_DEBUG if defined, show error messages and crash signal\n"
" R2_DEBUG_ASSERT=1 lldb -- r2 to get proper backtrace of the runtime assert\n"
"");
}
if (v == 2) {
printf ("Preprocessor directives:\n");
r_asm_list_directives ();
printf ("Assembler directives:\n");
printf (".intel_syntax\n"
".att_syntax sets e asm.syntax=att to use AT&T syntax parser\n"
".endian [0,1] default endian is system endian, 0=little, 1=big\n"
".big_endian call e cfg.bigendian=true, same as .endian 1\n"
".lil_endian call e cfg.bigendian=false, same as .endian 0\n"
".asciz \"msg\" zero byte terminated string\n"
".string non-null terminated string\n"
".ascii same as .string\n"
".align force a specific alignment when writing code\n"
".arm set asm.bits=32 when asm.arch=arm\n"
".thumb set asm.bits=16 when asm.arch=arm\n"
".arch [mips] specify asm.arch\n"
".bits [32|64] specify 8,16,32,64 e asm.bits\n"
".fill [count] fill N bytes with zeroes\n"
".kernel [ios] set asm.os=linux,windows,macos,...\n"
".cpu [name] set asm.cpu=?\n"
".os [os] same as .kernel\n"
".hex 102030 set bytes in linear hexpair string, no endian applied\n"
".int16 [num] write int16 number honoring endian\n"
".int32 [num] same for 32bit\n"
".int64 [num] same for 64bit\n"
".size n/a\n"
".section n/a\n"
".byte 0x10,0x20 space or comma separated list of byte values\n"
".glob n/a\n"
".equ K=V define K to be replaced with V in the lines below\n"
".org change the PC=$$ to make relative instructions work\n"
".text tell the linker where the code starts\n"
".data tell the linker where the data starts\n"
".incbin foo.bin include binary file\n"
);
}
return 0;
}
static int bin_len(const char *s) {
int len = 0;
while (*s) {
if (*s == '_') {
s++;
} else {
if (*s != '0' && *s != '1') {
break;
}
len++;
s++;
}
}
return len? len: -1;
}
static int is_binary(const char *s) {
if (r_str_startswith (s, "Bx")) {
return bin_len (s + 2);
}
if (r_str_startswith (s, "0b") && (bin_len (s + 2) % 8) == 0) {
return bin_len (s + 2);
}
int len = 0;
while (*s) {
if (*s == '_') {
s++;
continue;
}
if (*s != '0' && *s != '1') {
if (*s == 'b' && !s[1] && (len % 8) == 0) {
return len;
}
return 0;
}
s++;
len++;
}
return 0;
}
static int rasm_disasm(RAsmState *as, ut64 addr, const char *buf, int len, int bits, int bin, int hex) {
RAsmCode *acode;
ut8 *data = NULL;
int ret = 0;
ut64 clen = 0;
if (bits == 1) {
len /= 8;
}
ut8 bbuf[8] = {0};
int blen = is_binary (buf);
if (blen) {
char *nstr = r_str_newf ("0b%s", buf);
if (nstr[strlen (nstr)-1] == 'b') {
nstr[strlen (nstr)-1] = 0;
}
ut64 n = r_num_get (NULL, nstr);
free (nstr);
memcpy (bbuf, &n, 8);
buf = (const char*)&bbuf;
bin = true;
hex = false;
if (blen > 32) {
r_write_ble64 (&bbuf, n, !R_SYS_ENDIAN);
len = 8;
} else {
r_write_ble32 (&bbuf, n, !R_SYS_ENDIAN);
len = 4;
}
}
if (bin) {
if (len < 0) {
return false;
}
clen = len; // XXX
data = (ut8 *)buf;
} else {
clen = r_hex_str2bin (buf, NULL);
if ((int)clen < 1 || !(data = malloc (clen))) {
ret = 0;
goto beach;
}
r_hex_str2bin (buf, data);
len = clen;
}
if (!len || clen <= len) {
len = clen;
}
if (hex == 2) {
RAnalOp aop = {0};
while (ret < len) {
aop.size = 0;
if (r_anal_op (as->anal, &aop, addr, data + ret, len - ret, R_ANAL_OP_MASK_ESIL) > 0) {
printf ("%s\n", R_STRBUF_SAFEGET (&aop.esil));
}
if (aop.size < 1) {
eprintf ("Invalid\n");
break;
}
ret += aop.size;
r_anal_op_fini (&aop);
}
} else if (hex) {
RAsmOp op;
r_asm_set_pc (as->a, addr);
while ((len - ret) > 0) {
int dr = r_asm_disassemble (as->a, &op, data + ret, len - ret);
if (dr == -1 || op.size < 1) {
op.size = 1;
r_asm_op_set_asm (&op, "invalid");
}
char *op_hex = r_asm_op_get_hex (&op);
printf ("0x%08" PFMT64x " %2d %24s %s\n",
as->a->pc, op.size, op_hex,
r_asm_op_get_asm (&op));
free (op_hex);
ret += op.size;
r_asm_set_pc (as->a, addr+ ret);
}
} else {
r_asm_set_pc (as->a, addr);
if (!(acode = r_asm_mdisassemble (as->a, data, len))) {
goto beach;
}
if (as->oneliner) {
r_str_replace_char (acode->assembly, '\n', ';');
printf ("%s\"\n", acode->assembly);
} else {
printf ("%s", acode->assembly);
}
ret = acode->len;
r_asm_code_free (acode);
}
beach:
if (data && data != (ut8 *)buf) {
free (data);
}
return ret;
}
static void print_buf(RAsmState *as, char *str) {
int i;
if (as->coutput) {
printf ("\"");
for (i = 1; *str; str += 2, i += 2) {
if (!(i % 41)) {
printf ("\" \\\n\"");
i = 1;
}
printf ("\\x%c%c", *str, str[1]);
}
printf ("\"\n");
} else {
printf ("%s\n", str);
}
}
static bool print_label(void *user, const void *k, const void *v) {
printf ("f label.%s = %s\n", (const char *)k, (const char *)v);
return true;
}
static int rasm_asm(RAsmState *as, const char *buf, ut64 offset, ut64 len, int bits, int bin, bool use_spp, bool hexwords) {
RAsmCode *acode;
int i, j, ret = 0;
r_asm_set_pc (as->a, offset);
if (!(acode = r_asm_rasm_assemble (as->a, buf, use_spp))) {
return 0;
}
if (acode->len) {
ret = acode->len;
if (bin) {
if ((ret = write (1, acode->bytes, acode->len)) != acode->len) {
eprintf ("Failed to write buffer\n");
r_asm_code_free (acode);
return 0;
}
} else {
int b = acode->len;
if (bits == 1) {
int bytes = (b / 8) + 1;
for (i = 0; i < bytes; i++) {
for (j = 0; j < 8 && b--; j++) {
printf ("%c", (acode->bytes[i] & (1 << j))? '1': '0');
}
}
printf ("\n");
} else {
if (hexwords) {
size_t i = 0;
for (i = 0; i < acode->len; i += sizeof (ut32)) {
ut32 dword = r_read_ble32 (acode->bytes + i, R_SYS_ENDIAN);
printf ("0x%08x ", dword);
if ((i/4) == 7) {
printf ("\n");
}
}
printf ("\n");
} else {
char* str = r_asm_code_get_hex (acode);
if (str) {
print_buf (as, str);
free (str);
}
}
}
}
}
r_asm_code_free (acode);
return (ret > 0);
}
/* asm callback */
static int __lib_asm_cb(RLibPlugin *pl, void *user, void *data) {
RAsmPlugin *hand = (RAsmPlugin *)data;
RAsmState *as = (RAsmState *)user;
r_asm_add (as->a, hand);
return true;
}
/* anal callback */
static int __lib_anal_cb(RLibPlugin *pl, void *user, void *data) {
RAnalPlugin *hand = (RAnalPlugin *)data;
RAsmState *as = (RAsmState *)user;
r_anal_add (as->anal, hand);
return true;
}
static int print_assembly_output(RAsmState *as, const char *buf, ut64 offset, ut64 len, int bits, int bin, bool use_spp, bool rad, bool hexwords, const char *arch) {
if (rad) {
printf ("e asm.arch=%s\n", arch? arch: R_SYS_ARCH);
printf ("e asm.bits=%d\n", bits? bits: R_SYS_BITS);
if (offset) {
printf ("s 0x%"PFMT64x"\n", offset);
}
printf ("wx ");
}
int ret = rasm_asm (as, (char *)buf, offset, len, as->a->config->bits, bin, use_spp, hexwords);
if (rad) {
printf ("f entry = $$\n");
printf ("f label.main = $$ + 1\n");
if (as->a->flags) {
ht_pp_foreach (as->a->flags, print_label, NULL);
}
}
return ret;
}
static void __load_plugins(RAsmState *as) {
char *tmp = r_sys_getenv ("RASM2_NOPLUGINS");
if (tmp) {
free (tmp);
return;
}
r_lib_add_handler (as->l, R_LIB_TYPE_ASM, "(dis)assembly plugins", &__lib_asm_cb, NULL, as);
r_lib_add_handler (as->l, R_LIB_TYPE_ANAL, "analysis/emulation plugins", &__lib_anal_cb, NULL, as);
char *path = r_sys_getenv (R_LIB_ENV);
if (path && *path) {
r_lib_opendir (as->l, path);
}
// load plugins from the home directory
char *homeplugindir = r_str_home (R2_HOME_PLUGINS);
r_lib_opendir (as->l, homeplugindir);
free (homeplugindir);
// load plugins from the system directory
char *plugindir = r_str_r2_prefix (R2_PLUGINS);
char *extrasdir = r_str_r2_prefix (R2_EXTRAS);
char *bindingsdir = r_str_r2_prefix (R2_BINDINGS);
r_lib_opendir (as->l, plugindir);
r_lib_opendir (as->l, extrasdir);
r_lib_opendir (as->l, bindingsdir);
free (plugindir);
free (extrasdir);
free (bindingsdir);
free (tmp);
free (path);
}
R_API int r_main_rasm2(int argc, const char *argv[]) {
const char *env_arch = r_sys_getenv ("RASM2_ARCH");
const char *env_bits = r_sys_getenv ("RASM2_BITS");
const char *arch = R_SYS_ARCH;
const char *cpu = NULL;
const char *kernel = NULL;
const char *filters = NULL;
const char *file = NULL;
bool list_plugins = false;
bool list_anal_plugins = false;
bool isbig = false;
bool rad = false;
bool use_spp = false;
bool hexwords = false;
ut64 offset = 0;
int fd = -1, dis = 0, bin = 0, ret = 0, c, whatsop = 0;
int bits = (R_SYS_BITS & R_SYS_BITS_64)? 64: 32;
int help = 0;
ut64 len = 0, idx = 0, skip = 0;
bool analinfo = false;
if (argc < 2) {
return rasm_show_help (1);
}
RAsmState *as = __as_new ();
// TODO set addrbytes
char *r2arch = r_sys_getenv ("R2_ARCH");
if (r2arch) {
arch = r2arch;
}
char *r2bits = r_sys_getenv ("R2_BITS");
if (r2bits) {
bits = r_num_math (NULL, r2bits);
free (r2bits);
}
RGetopt opt;
r_getopt_init (&opt, argc, argv, "a:Ab:Bc:CdDeEf:F:hi:jk:l:L@:o:O:pqrs:vwx");
while ((c = r_getopt_next (&opt)) != -1) {
switch (c) {
case 'a':
arch = opt.arg;
break;
case 'A':
analinfo = true;
break;
case 'b':
bits = r_num_math (NULL, opt.arg);
break;
case 'B':
bin = 1;
break;
case 'c':
cpu = opt.arg;
break;
case 'C':
as->coutput = true;
break;
case 'd':
dis = 1;
break;
case 'D':
dis = 2;
break;
case 'e':
isbig = true;
break;
case 'E':
dis = 3;
break;
case 'f':
file = opt.arg;
break;
case 'F':
filters = opt.arg;
break;
case 'h':
help++;
case 'i':
skip = r_num_math (NULL, opt.arg);
break;
case 'j':
as->json = true;
break;
case 'k':
kernel = opt.arg;
break;
case 'l':
len = r_num_math (NULL, opt.arg);
break;
case 'L':
if (list_plugins) {
list_anal_plugins = true;
} else {
list_plugins = true;
}
break;
case '@':
case 'o':
offset = r_num_math (NULL, opt.arg);
break;
case 'O':
fd = open (opt.arg, O_TRUNC | O_RDWR | O_CREAT, 0644);
#ifndef __wasi__
if (fd != -1) {
dup2 (fd, 1);
}
#endif
break;
case 'p':
use_spp = true;
break;
case 'q':
as->quiet = true;
break;
case 'r':
rad = true;
break;
case 's':
if (*opt.arg == '?') {
printf ("att\nintel\nmasm\njz\nregnum\n");
__as_free (as);
return 0;
} else {
int syntax = r_asm_syntax_from_string (opt.arg);
if (syntax == -1) {
__as_free (as);
return 1;
}
r_asm_set_syntax (as->a, syntax);
}
break;
case 'v':
if (as->quiet) {
printf ("%s\n", R2_VERSION);
} else {
ret = r_main_version_print ("rasm2");
}
goto beach;
case 'w':
whatsop = true;
break;
case 'x':
hexwords = true;
break;
default:
ret = rasm_show_help (0);
goto beach;
}
}
if (help > 0) {
ret = rasm_show_help (help > 1? 2: 0);
goto beach;
}
if (list_anal_plugins) {
ranal2_list (as, opt.argv[opt.ind]);
ret = 1;
goto beach;
}
if (list_plugins) {
rasm2_list (as, opt.argv[opt.ind]);
ret = 1;
goto beach;
}
if (arch) {
if (!r_asm_use (as->a, arch)) {
eprintf ("rasm2: Unknown asm plugin '%s'\n", arch);
ret = 0;
goto beach;
}
r_anal_use (as->anal, arch);
} else if (env_arch) {
if (!r_asm_use (as->a, env_arch)) {
eprintf ("rasm2: Unknown asm plugin '%s'\n", env_arch);
ret = 0;
goto beach;
}
} else if (!r_asm_use (as->a, R_SYS_ARCH)) {
eprintf ("rasm2: Cannot find asm.x86 plugin\n");
ret = 0;
goto beach;
}
if (cpu) {
r_asm_set_cpu (as->a, cpu);
}
r_asm_set_bits (as->a, (env_bits && *env_bits)? atoi (env_bits): bits);
r_anal_set_bits (as->anal, (env_bits && *env_bits)? atoi (env_bits): bits);
as->a->syscall = r_syscall_new ();
r_syscall_setup (as->a->syscall, arch, bits, cpu, kernel);
{
bool canbebig = r_asm_set_big_endian (as->a, isbig);
if (isbig && !canbebig) {
eprintf ("Warning: This architecture can't swap to big endian.\n");
}
}
if (whatsop) {
const char *s = r_asm_describe (as->a, opt.argv[opt.ind]);
ret = 1;
if (s) {
printf ("%s\n", s);
ret = 0;
}
goto beach;
}
if (filters) {
char *p = strchr (filters, ':');
if (p) {
*p = 0;
if (*filters) {
r_asm_sub_names_input (as->a, filters);
}
if (p[1]) {
r_asm_sub_names_output (as->a, p + 1);
}
*p = ':';
} else {
if (dis) {
r_asm_sub_names_output (as->a, filters);
} else {
r_asm_sub_names_input (as->a, filters);
}
}
}
if (file) {
char *content;
size_t length = 0;
const int bits = as->a->config->bits;
if (!strcmp (file, "-")) {
int sz = 0;
ut8 *buf = (ut8 *)r_stdin_slurp (&sz);
if (!buf || sz < 1) {
eprintf ("Nothing to do.\n");
free (buf);
goto beach;
}
len = (ut64)sz;
if (dis) {
if (skip && length > skip) {
if (bin) {
memmove (buf, buf + skip, length - skip);
length -= skip;
}
}
ret = rasm_disasm (as, offset, (char *)buf, len, bits, bin, dis - 1);
} else if (analinfo) {
ret = show_analinfo (as, (const char *)buf, offset);
} else {
ret = print_assembly_output (as, (char *)buf, offset, len,
bits, bin, use_spp, rad, hexwords, arch);
}
ret = !ret;
free (buf);
} else {
content = r_file_slurp (file, &length);
if (content) {
if (length > ST32_MAX) {
eprintf ("rasm2: File %s is too big\n", file);
ret = 1;
} else {
if (len && len > 0 && len < length) {
length = len;
}
content[length] = '\0';
if (skip && length > skip) {
if (bin) {
memmove (content, content + skip, length - skip);
length -= skip;
}
}
if (dis) {
ret = rasm_disasm (as, offset, content,
length, bits, bin, dis - 1);
} else if (analinfo) {
ret = show_analinfo (as, (const char *)content, offset);
} else {
ret = print_assembly_output (as, content, offset, length,
bits, bin, use_spp, rad, hexwords, arch);
}
ret = !ret;
}
free (content);
} else {
eprintf ("rasm2: Cannot open file %s\n", file);
ret = 1;
}
}
} else if (opt.argv[opt.ind]) {
if (!strcmp (opt.argv[opt.ind], "-")) {
int length;
do {
char buf[1024]; // TODO: use(implement) r_stdin_line() or so
length = read (0, buf, sizeof (buf) - 1);
if (length < 1) {
break;
}
if (len > 0 && len < length) {
length = len;
}
buf[length] = 0;
if ((!bin || !dis) && feof (stdin)) {
break;
}
if (skip && length > skip) {
if (bin) {
memmove (buf, buf + skip, length - skip + 1);
length -= skip;
}
}
if (!bin || !dis) {
int buflen = strlen ((const char *)buf);
if (buf[buflen] == '\n') {
buf[buflen - 1] = '\0';
}
}
if (dis) {
ret = rasm_disasm (as, offset, (char *)buf, length, bits, bin, dis - 1);
} else if (analinfo) {
ret = show_analinfo (as, (const char *)buf, offset);
} else {
ret = rasm_asm (as, (const char *)buf, offset, length, bits, bin, use_spp, hexwords);
}
idx += ret;
offset += ret;
if (!ret) {
goto beach;
}
} while (!len || idx < length);
ret = idx;
goto beach;
}
if (dis) {
char *usrstr = strdup (opt.argv[opt.ind]);
len = strlen (usrstr);
if (skip && len > skip) {
skip *= 2;
//eprintf ("SKIP (%s) (%lld)\n", usrstr, skip);
memmove (usrstr, usrstr + skip, len - skip);
len -= skip;
usrstr[len] = 0;
}
// XXX this is a wrong usage of endianness
if (!strncmp (usrstr, "0x", 2)) {
memmove (usrstr, usrstr + 2, strlen (usrstr + 2) + 1);
}
if (rad) {
as->oneliner = true;
printf ("e asm.arch=%s\n", arch? arch: R_SYS_ARCH);
printf ("e asm.bits=%d\n", bits);
printf ("\"wa ");
}
ret = rasm_disasm (as, offset, (char *)usrstr, len,
as->a->config->bits, bin, dis - 1);
free (usrstr);
} else if (analinfo) {
ret = show_analinfo (as, (const char *)opt.argv[opt.ind], offset);
} else {
ret = print_assembly_output (as, opt.argv[opt.ind], offset, len, as->a->config->bits,
bin, use_spp, rad, hexwords, arch);
}
if (!ret) {
eprintf ("invalid\n");
}
ret = !ret;
}
beach:
__as_free (as);
free (r2arch);
if (fd != -1) {
close (fd);
}
return ret;
}