radare2/libr/debug/debug.c

1344 lines
34 KiB
C

/* radare - LGPL - Copyright 2009-2017 - pancake, jduck, TheLemonMan, saucec0de */
#include <r_debug.h>
#include <r_core.h>
#include <signal.h>
#if __WINDOWS__
void w32_break_process(void *);
#endif
R_LIB_VERSION(r_debug);
// Size of the lookahead buffers used in r_debug functions
#define DBG_BUF_SIZE 512
R_API RDebugInfo *r_debug_info(RDebug *dbg, const char *arg) {
if (!dbg || !dbg->h || !dbg->h->info) {
return NULL;
}
return dbg->h->info (dbg, arg);
}
R_API void r_debug_info_free (RDebugInfo *rdi) {
free (rdi->cwd);
free (rdi->exe);
free (rdi->cmdline);
free (rdi->libname);
}
/*
* Recoiling after a breakpoint has two stages:
* 1. remove the breakpoint and fix the program counter.
* 2. on resume, single step once and then replace the breakpoint.
*
* Thus, we have two functions to handle these situations.
* r_debug_bp_hit handles stage 1.
* r_debug_recoil handles stage 2.
*/
static int r_debug_bp_hit(RDebug *dbg, RRegItem *pc_ri, ut64 pc, RBreakpointItem **pb) {
RBreakpointItem *b;
if (!pb) {
eprintf ("BreakpointItem is NULL!\n");
return false;
}
/* initialize the output parameter */
*pb = NULL;
/* if we are tracing, update the tracing data */
if (dbg->trace->enabled) {
r_debug_trace_pc (dbg, pc);
}
/* remove all sw breakpoints for now. we'll set them back in stage 2
*
* this is necessary because while stopped we don't want any breakpoints in
* the code messing up our analysis.
*/
if (!r_bp_restore (dbg->bp, false)) { // unset sw breakpoints
return false;
}
/* if we are recoiling, tell r_debug_step that we ignored a breakpoint
* event */
if (!dbg->swstep && dbg->recoil_mode != R_DBG_RECOIL_NONE) {
dbg->reason.bp_addr = 0;
return true;
}
/* The MIPS ptrace has a different behaviour */
# if __mips__
/* see if we really have a breakpoint here... */
b = r_bp_get_at (dbg->bp, pc);
if (!b) { /* we don't. nothing left to do */
return true;
}
# else
/* see if we really have a breakpoint here... */
b = r_bp_get_at (dbg->bp, pc - dbg->bpsize);
if (!b) { /* we don't. nothing left to do */
return true;
}
/* set the pc value back */
pc -= b->size;
if (!r_reg_set_value (dbg->reg, pc_ri, pc)) {
eprintf ("failed to set PC!\n");
return false;
}
if (!r_debug_reg_sync (dbg, R_REG_TYPE_GPR, true)) {
eprintf ("cannot set registers!\n");
return false;
}
# endif
*pb = b;
/* if we are on a software stepping breakpoint, we hide what is going on... */
if (b->swstep) {
dbg->reason.bp_addr = 0;
return true;
}
/* setup our stage 2 */
dbg->reason.bp_addr = b->addr;
/* inform the user of what happened */
if (dbg->hitinfo) {
eprintf ("hit %spoint at: %"PFMT64x "\n",
b->trace ? "trace" : "break", pc);
}
/* now that we've cleaned up after the breakpoint, call the other
* potential breakpoint handlers
*/
if (dbg->corebind.core && dbg->corebind.bphit) {
dbg->corebind.bphit (dbg->corebind.core, b);
}
return true;
}
/* enable all software breakpoints */
static int r_debug_bps_enable(RDebug *dbg) {
/* restore all sw breakpoints. we are about to step/continue so these need
* to be in place. */
if (!r_bp_restore (dbg->bp, true))
return false;
/* done recoiling... */
dbg->recoil_mode = R_DBG_RECOIL_NONE;
return true;
}
/*
* replace breakpoints before we continue execution
*
* this is called from r_debug_step_hard or r_debug_continue_kill
*
* this is a trick process because of breakpoints/tracepoints.
*
* if a breakpoint was just hit, we need step over that instruction before
* allowing the caller to proceed as desired.
*
* if the user wants to step, the single step here does the job.
*/
static int r_debug_recoil(RDebug *dbg, RDebugRecoilMode rc_mode) {
/* if bp_addr is not set, we must not have actually hit a breakpoint */
if (!dbg->reason.bp_addr) {
return r_debug_bps_enable (dbg);
}
/* don't do anything if we already are recoiling */
if (dbg->recoil_mode != R_DBG_RECOIL_NONE) {
/* the first time recoil is called with swstep, we just need to
* look up the bp and step past it.
* the second time it's called, the new sw breakpoint should exist
* so we just restore all except what we originally hit and reset.
*/
if (dbg->swstep) {
if (!r_bp_restore_except (dbg->bp, true, dbg->reason.bp_addr)) {
return false;
}
return true;
}
/* otherwise, avoid recursion */
return true;
}
/* we have entered recoil! */
dbg->recoil_mode = rc_mode;
/* step over the place with the breakpoint and let the caller resume */
if (r_debug_step (dbg, 1) != 1) {
return false;
}
/* when stepping away from a breakpoint during recoil in stepping mode,
* the r_debug_bp_hit function tells us that it was called
* innapropriately by setting bp_addr back to zero. however, recoil_mode
* is still set. we use this condition to know not to proceed but
* pretend as if we had.
*/
if (!dbg->reason.bp_addr && dbg->recoil_mode == R_DBG_RECOIL_STEP) {
return true;
}
return r_debug_bps_enable (dbg);
}
static int get_bpsz_arch(RDebug *dbg) {
#define CMP_ARCH(x) strncmp (dbg->arch, (x), R_MIN (len_arch, strlen ((x))))
int bpsz , len_arch = strlen (dbg->arch);
if (!CMP_ARCH ("arm")) {
//TODO add better handle arm/thumb
bpsz = 4;
} else if (!CMP_ARCH ("mips")) {
bpsz = 4;
} else if (!CMP_ARCH ("ppc")) {
bpsz = 4;
} else if (!CMP_ARCH ("sparc")) {
bpsz = 4;
} else if (!CMP_ARCH ("sh")) {
bpsz = 2;
} else {
bpsz = 1;
}
return bpsz;
}
/* add a breakpoint with some typical values */
R_API RBreakpointItem *r_debug_bp_add(RDebug *dbg, ut64 addr, int hw, char *module, st64 m_delta) {
int bpsz = get_bpsz_arch (dbg);
RBreakpointItem *bpi;
const char *module_name = module;
RListIter *iter;
RDebugMap *map;
if (!addr && module) {
bool detect_module, valid = false;
int perm;
if (m_delta) {
detect_module = false;
RList *list = r_debug_modules_list (dbg);
r_list_foreach (list, iter, map) {
if (strstr (map->file, module)) {
addr = map->addr + m_delta;
module_name = map->file;
break;
}
}
} else {
//module holds the address
addr = (ut64)r_num_math (dbg->num, module);
if (!addr) return NULL;
detect_module = true;
}
r_debug_map_sync (dbg);
r_list_foreach (dbg->maps, iter, map) {
if (addr >= map->addr && addr < map->addr_end) {
valid = true;
if (detect_module) {
module_name = map->file;
m_delta = addr - map->addr;
}
perm = ((map->perm & 1) << 2) | (map->perm & 2) | ((map->perm & 4) >> 2);
if (!(perm & R_BP_PROT_EXEC))
eprintf ("WARNING: setting bp within mapped memory without exec perm\n");
break;
}
}
if (!valid) {
eprintf ("WARNING: module's base addr + delta is not a valid address\n");
return NULL;
}
}
if (!module) {
//express db breakpoints as dbm due to ASLR when saving into project
r_debug_map_sync (dbg);
r_list_foreach (dbg->maps, iter, map) {
if (addr >= map->addr && addr < map->addr_end) {
module_name = map->file;
m_delta = addr - map->addr;
break;
}
}
}
bpi = hw
? r_bp_add_hw (dbg->bp, addr, bpsz, R_BP_PROT_EXEC)
: r_bp_add_sw (dbg->bp, addr, bpsz, R_BP_PROT_EXEC);
if (bpi) {
if (module_name) {
bpi->module_name = strdup (module_name);
bpi->name = r_str_newf ("%s+0x%" PFMT64x, module_name, m_delta);
}
bpi->module_delta = m_delta;
}
return bpi;
}
static const char *r_debug_str_callback(RNum *userptr, ut64 off, int *ok) {
// RDebug *dbg = (RDebug *)userptr;
eprintf ("STR CALLBACK WTF WTF WTF\n");
return NULL;
}
R_API RDebug *r_debug_new(int hard) {
RDebug *dbg = R_NEW0 (RDebug);
if (!dbg) {
return NULL;
}
// R_SYS_ARCH
dbg->arch = strdup (R_SYS_ARCH);
dbg->bits = R_SYS_BITS;
dbg->trace_forks = 1;
dbg->forked_pid = -1;
dbg->trace_clone = 0;
dbg->trace_aftersyscall = true;
dbg->follow_child = false;
R_FREE (dbg->btalgo);
dbg->trace_execs = 0;
dbg->anal = NULL;
dbg->snaps = r_list_newf (r_debug_snap_free);
dbg->sessions = r_list_newf (r_debug_session_free);
dbg->pid = -1;
dbg->bpsize = 1;
dbg->tid = -1;
dbg->tree = r_tree_new ();
dbg->tracenodes = sdb_new0 ();
dbg->swstep = 0;
dbg->stop_all_threads = false;
dbg->trace = r_debug_trace_new ();
dbg->cb_printf = (void *)printf;
dbg->reg = r_reg_new ();
dbg->num = r_num_new (r_debug_num_callback, r_debug_str_callback, dbg);
dbg->h = NULL;
dbg->threads = NULL;
dbg->hitinfo = 1;
/* TODO: needs a redesign? */
dbg->maps = r_debug_map_list_new ();
dbg->maps_user = r_debug_map_list_new ();
r_debug_signal_init (dbg);
if (hard) {
dbg->bp = r_bp_new ();
r_debug_plugin_init (dbg);
dbg->bp->iob.init = false;
}
return dbg;
}
static int free_tracenodes_entry (RDebug *dbg, const char *k, const char *v) {
ut64 v_num = r_num_get (NULL, v);
free((void *)(size_t)v_num);
return true;
}
R_API void r_debug_tracenodes_reset (RDebug *dbg) {
sdb_foreach (dbg->tracenodes, (SdbForeachCallback)free_tracenodes_entry, dbg);
sdb_reset (dbg->tracenodes);
}
R_API RDebug *r_debug_free(RDebug *dbg) {
if (dbg) {
// TODO: free it correctly.. we must ensure this is an instance and not a reference..
r_bp_free (dbg->bp);
//r_reg_free(&dbg->reg);
r_list_free (dbg->snaps);
r_list_free (dbg->sessions);
r_list_free (dbg->maps);
r_list_free (dbg->maps_user);
r_list_free (dbg->threads);
r_num_free (dbg->num);
sdb_free (dbg->sgnls);
r_tree_free (dbg->tree);
sdb_foreach (dbg->tracenodes, (SdbForeachCallback)free_tracenodes_entry, dbg);
sdb_free (dbg->tracenodes);
r_list_free (dbg->plugins);
free (dbg->btalgo);
r_debug_trace_free (dbg->trace);
dbg->trace = NULL;
free (dbg->arch);
free (dbg->glob_libs);
free (dbg->glob_unlibs);
free (dbg);
}
return NULL;
}
R_API int r_debug_attach(RDebug *dbg, int pid) {
int ret = false;
if (dbg && dbg->h && dbg->h->attach) {
ret = dbg->h->attach (dbg, pid);
if (ret != -1) {
r_debug_select (dbg, pid, ret); //dbg->pid, dbg->tid);
}
}
return ret;
}
/* stop execution of child process */
R_API int r_debug_stop(RDebug *dbg) {
if (dbg && dbg->h && dbg->h->stop) {
return dbg->h->stop (dbg);
}
return false;
}
R_API bool r_debug_set_arch(RDebug *dbg, const char *arch, int bits) {
if (arch && dbg && dbg->h) {
bool rc = r_sys_arch_match (dbg->h->arch, arch);
if (rc) {
switch (bits) {
case 32:
if (dbg->h->bits & R_SYS_BITS_32) {
dbg->bits = R_SYS_BITS_32;
}
break;
case 64:
dbg->bits = R_SYS_BITS_64;
break;
}
if (!dbg->h->bits) {
dbg->bits = dbg->h->bits;
} else if (!(dbg->h->bits & dbg->bits)) {
dbg->bits = dbg->h->bits & R_SYS_BITS_64;
if (!dbg->bits) {
dbg->bits = dbg->h->bits & R_SYS_BITS_32;
}
if (!dbg->bits) {
dbg->bits = R_SYS_BITS_32;
}
}
free (dbg->arch);
dbg->arch = strdup (arch);
return true;
}
}
return false;
}
/*
* Save 4096 bytes from %esp
* TODO: Add support for reverse stack architectures
* Also known as r_debug_inject()
*/
R_API ut64 r_debug_execute(RDebug *dbg, const ut8 *buf, int len, int restore) {
int orig_sz;
ut8 stackbackup[4096];
ut8 *backup, *orig = NULL;
RRegItem *ri, *risp, *ripc;
ut64 rsp, rpc, ra0 = 0LL;
if (r_debug_is_dead (dbg))
return false;
ripc = r_reg_get (dbg->reg, dbg->reg->name[R_REG_NAME_PC], R_REG_TYPE_GPR);
risp = r_reg_get (dbg->reg, dbg->reg->name[R_REG_NAME_SP], R_REG_TYPE_GPR);
if (ripc) {
r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false);
orig = r_reg_get_bytes (dbg->reg, -1, &orig_sz);
if (!orig) {
eprintf ("Cannot get register arena bytes\n");
return 0LL;
}
rpc = r_reg_get_value (dbg->reg, ripc);
rsp = r_reg_get_value (dbg->reg, risp);
backup = malloc (len);
if (!backup) {
free (orig);
return 0LL;
}
dbg->iob.read_at (dbg->iob.io, rpc, backup, len);
dbg->iob.read_at (dbg->iob.io, rsp, stackbackup, len);
r_bp_add_sw (dbg->bp, rpc+len, dbg->bpsize, R_BP_PROT_EXEC);
/* execute code here */
dbg->iob.write_at (dbg->iob.io, rpc, buf, len);
//r_bp_add_sw (dbg->bp, rpc+len, 4, R_BP_PROT_EXEC);
r_debug_continue (dbg);
//r_bp_del (dbg->bp, rpc+len);
/* TODO: check if stopped in breakpoint or not */
r_bp_del (dbg->bp, rpc+len);
dbg->iob.write_at (dbg->iob.io, rpc, backup, len);
if (restore) {
dbg->iob.write_at (dbg->iob.io, rsp, stackbackup, len);
}
r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false);
ri = r_reg_get (dbg->reg, dbg->reg->name[R_REG_NAME_A0], R_REG_TYPE_GPR);
ra0 = r_reg_get_value (dbg->reg, ri);
if (restore) {
r_reg_read_regs (dbg->reg, orig, orig_sz);
} else {
r_reg_set_value (dbg->reg, ripc, rpc);
}
r_debug_reg_sync (dbg, R_REG_TYPE_GPR, true);
free (backup);
free (orig);
eprintf ("ra0=0x%08"PFMT64x"\n", ra0);
} else eprintf ("r_debug_execute: Cannot get program counter\n");
return (ra0);
}
R_API int r_debug_startv(struct r_debug_t *dbg, int argc, char **argv) {
/* TODO : r_debug_startv unimplemented */
return false;
}
R_API int r_debug_start(RDebug *dbg, const char *cmd) {
/* TODO: this argc/argv parser is done in r_io */
// TODO: parse cmd and generate argc and argv
return false;
}
R_API int r_debug_detach(RDebug *dbg, int pid) {
if (dbg->h && dbg->h->detach)
return dbg->h->detach (dbg, pid);
return false;
}
R_API int r_debug_select(RDebug *dbg, int pid, int tid) {
if (tid < 0) {
tid = pid;
}
if (pid != -1 && tid != -1) {
if (pid != dbg->pid || tid != dbg->tid) {
eprintf ("= attach %d %d\n", pid, tid);
}
} else {
if (dbg->pid != -1)
eprintf ("Child %d is dead\n", dbg->pid);
}
if (dbg->h && dbg->h->select && !dbg->h->select (pid, tid))
return false;
r_io_system (dbg->iob.io, sdb_fmt (0, "pid %d", pid));
dbg->pid = pid;
dbg->tid = tid;
return true;
}
R_API const char *r_debug_reason_to_string(int type) {
switch (type) {
case R_DEBUG_REASON_DEAD: return "dead";
case R_DEBUG_REASON_ABORT: return "abort";
case R_DEBUG_REASON_SEGFAULT: return "segfault";
case R_DEBUG_REASON_NONE: return "none";
case R_DEBUG_REASON_SIGNAL: return "signal";
case R_DEBUG_REASON_BREAKPOINT: return "breakpoint";
case R_DEBUG_REASON_TRACEPOINT: return "tracepoint";
case R_DEBUG_REASON_READERR: return "read-error";
case R_DEBUG_REASON_WRITERR: return "write-error";
case R_DEBUG_REASON_DIVBYZERO: return "div-by-zero";
case R_DEBUG_REASON_ILLEGAL: return "illegal";
case R_DEBUG_REASON_UNKNOWN: return "unknown";
case R_DEBUG_REASON_ERROR: return "error";
case R_DEBUG_REASON_NEW_PID: return "new-pid";
case R_DEBUG_REASON_NEW_TID: return "new-tid";
case R_DEBUG_REASON_NEW_LIB: return "new-lib";
case R_DEBUG_REASON_EXIT_PID: return "exit-pid";
case R_DEBUG_REASON_EXIT_TID: return "exit-tid";
case R_DEBUG_REASON_EXIT_LIB: return "exit-lib";
case R_DEBUG_REASON_TRAP: return "trap";
case R_DEBUG_REASON_SWI: return "software-interrupt";
case R_DEBUG_REASON_INT: return "interrupt";
case R_DEBUG_REASON_FPU: return "fpu";
case R_DEBUG_REASON_STEP: return "step";
}
return "unhandled";
}
R_API RDebugReasonType r_debug_stop_reason(RDebug *dbg) {
// TODO: return reason to stop debugging
// - new process
// - trap instruction
// - illegal instruction
// - fpu exception
// return dbg->reason
return dbg->reason.type;
}
/*
* wait for an event to happen on the selected pid/tid
*
* Returns R_DEBUG_REASON_*
*/
R_API RDebugReasonType r_debug_wait(RDebug *dbg, RBreakpointItem **bp) {
RDebugReasonType reason = R_DEBUG_REASON_ERROR;
if (!dbg) {
return reason;
}
if (bp) {
*bp = NULL;
}
/* default to unknown */
dbg->reason.type = R_DEBUG_REASON_UNKNOWN;
if (r_debug_is_dead (dbg)) {
return R_DEBUG_REASON_DEAD;
}
/* if our debugger plugin has wait */
if (dbg->h && dbg->h->wait) {
reason = dbg->h->wait (dbg, dbg->pid);
if (reason == R_DEBUG_REASON_DEAD) {
eprintf ("\n==> Process finished\n\n");
// XXX(jjd): TODO: handle fallback or something else
//r_debug_select (dbg, -1, -1);
return R_DEBUG_REASON_DEAD;
}
/* propagate errors from the plugin */
if (reason == R_DEBUG_REASON_ERROR) {
return R_DEBUG_REASON_ERROR;
}
/* read general purpose registers */
if (!r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false)) {
return R_DEBUG_REASON_ERROR;
}
bool libs_bp = (dbg->glob_libs || dbg->glob_unlibs) ? true : false;
/* if the underlying stop reason is a breakpoint, call the handlers */
if (reason == R_DEBUG_REASON_BREAKPOINT || reason == R_DEBUG_REASON_STEP ||
(libs_bp &&
((reason == R_DEBUG_REASON_NEW_LIB) || (reason == R_DEBUG_REASON_EXIT_LIB)))) {
RRegItem *pc_ri;
RBreakpointItem *b = NULL;
ut64 pc;
/* get the program coounter */
pc_ri = r_reg_get (dbg->reg, dbg->reg->name[R_REG_NAME_PC], -1);
if (!pc_ri) { /* couldn't find PC?! */
return R_DEBUG_REASON_ERROR;
}
/* get the value */
pc = r_reg_get_value (dbg->reg, pc_ri);
if (!r_debug_bp_hit (dbg, pc_ri, pc, &b)) {
return R_DEBUG_REASON_ERROR;
}
/* if we hit a tracing breakpoint, we need to continue in
* whatever mode the user desired. */
if (dbg->corebind.core && b && b->cond) {
if (bp) {
*bp = b;
}
reason = R_DEBUG_REASON_COND;
}
if (b && b->trace) {
reason = R_DEBUG_REASON_TRACEPOINT;
}
}
dbg->reason.type = reason;
if (reason == R_DEBUG_REASON_SIGNAL && dbg->reason.signum != -1) {
/* handle signal on continuations here */
eprintf ("got signal...\n");
int what = r_debug_signal_what (dbg, dbg->reason.signum);
const char *name = r_signal_to_string (dbg->reason.signum);
if (name && strcmp ("SIGTRAP", name)) {
r_cons_printf ("[+] signal %d aka %s received %d\n",
dbg->reason.signum, name, what);
}
}
}
return reason;
}
R_API int r_debug_step_soft(RDebug *dbg) {
ut8 buf[32];
ut64 pc, sp, r;
ut64 next[2];
RAnalOp op;
int br, i, ret;
union {
ut64 r64;
ut32 r32[2];
} sp_top;
union {
ut64 r64;
ut32 r32[2];
} memval;
if (dbg->recoil_mode == R_DBG_RECOIL_NONE) {
dbg->recoil_mode = R_DBG_RECOIL_STEP;
}
if (r_debug_is_dead (dbg)) {
return false;
}
pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]);
sp = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_SP]);
if (!dbg->iob.read_at) {
return false;
}
if (dbg->iob.read_at (dbg->iob.io, pc, buf, sizeof (buf)) < 0) {
return false;
}
if (!r_anal_op (dbg->anal, &op, pc, buf, sizeof (buf))) {
return false;
}
if (op.type == R_ANAL_OP_TYPE_ILL) {
return false;
}
switch (op.type) {
case R_ANAL_OP_TYPE_RET:
dbg->iob.read_at (dbg->iob.io, sp, (ut8 *)&sp_top, 8);
next[0] = (dbg->bits == R_SYS_BITS_32) ? sp_top.r32[0] : sp_top.r64;
br = 1;
break;
case R_ANAL_OP_TYPE_CJMP:
case R_ANAL_OP_TYPE_CCALL:
next[0] = op.jump;
next[1] = op.fail;
br = 2;
break;
case R_ANAL_OP_TYPE_CALL:
case R_ANAL_OP_TYPE_JMP:
next[0] = op.jump;
br = 1;
break;
case R_ANAL_OP_TYPE_RJMP:
case R_ANAL_OP_TYPE_RCALL:
r = r_debug_reg_get (dbg,op.reg);
next[0] = r;
br = 1;
break;
case R_ANAL_OP_TYPE_IRCALL:
case R_ANAL_OP_TYPE_IRJMP:
r = r_debug_reg_get (dbg,op.reg);
if (dbg->iob.read_at (dbg->iob.io, r, (ut8*)&memval, 8) <0 ) {
next[0] = op.addr + op.size;
} else {
next[0] = (dbg->bits == R_SYS_BITS_32) ? memval.r32[0] : memval.r64;
}
br = 1;
break;
case R_ANAL_OP_TYPE_UCALL:
case R_ANAL_OP_TYPE_MJMP:
if (op.ireg) {
r = r_debug_reg_get (dbg,op.ireg);
} else {
r = 0;
}
if (dbg->iob.read_at (dbg->iob.io,
r*op.scale + op.disp, (ut8*)&memval, 8) <0 ) {
next[0] = op.addr + op.size;
} else {
next[0] = (dbg->bits == R_SYS_BITS_32) ? memval.r32[0] : memval.r64;
}
br = 1;
break;
case R_ANAL_OP_TYPE_UJMP:
default:
next[0] = op.addr + op.size;
br = 1;
break;
}
for (i = 0; i < br; i++) {
RBreakpointItem *bpi = r_bp_add_sw (dbg->bp, next[i], dbg->bpsize, R_BP_PROT_EXEC);
if (bpi) {
bpi->swstep = true;
}
}
ret = r_debug_continue (dbg);
for (i = 0; i < br; i++) {
r_bp_del (dbg->bp, next[i]);
}
return ret;
}
R_API int r_debug_step_hard(RDebug *dbg) {
RDebugReasonType reason;
dbg->reason.type = R_DEBUG_REASON_STEP;
if (r_debug_is_dead (dbg)) {
return false;
}
/* only handle recoils when not already in recoil mode. */
if (dbg->recoil_mode == R_DBG_RECOIL_NONE) {
/* handle the stage-2 of breakpoints */
if (!r_debug_recoil (dbg, R_DBG_RECOIL_STEP)) {
return false;
}
/* recoil already stepped once, so we don't step again. */
if (dbg->recoil_mode == R_DBG_RECOIL_STEP) {
dbg->recoil_mode = R_DBG_RECOIL_NONE;
return true;
}
}
if (!dbg->h->step (dbg)) {
return false;
}
reason = r_debug_wait (dbg, NULL);
/* TODO: handle better */
if (reason == R_DEBUG_REASON_ERROR) {
return false;
}
if (reason == R_DEBUG_REASON_DEAD || r_debug_is_dead (dbg)) {
return false;
}
return true;
}
R_API int r_debug_step(RDebug *dbg, int steps) {
int ret, steps_taken = 0;
/* who calls this without giving a positive number? */
if (steps < 1) {
steps = 1;
}
if (!dbg || !dbg->h) {
return steps_taken;
}
if (r_debug_is_dead (dbg)) {
return steps_taken;
}
dbg->reason.type = R_DEBUG_REASON_STEP;
for (; steps_taken < steps; steps_taken++) {
if (dbg->swstep) {
ret = r_debug_step_soft (dbg);
} else {
ret = r_debug_step_hard (dbg);
}
if (!ret) {
eprintf ("Stepping failed!\n");
return steps_taken;
}
dbg->steps++;
dbg->reason.type = R_DEBUG_REASON_STEP;
}
return steps_taken;
}
R_API void r_debug_io_bind(RDebug *dbg, RIO *io) {
r_io_bind (io, &dbg->bp->iob);
r_io_bind (io, &dbg->iob);
}
R_API int r_debug_step_over(RDebug *dbg, int steps) {
RAnalOp op;
ut64 buf_pc, pc, ins_size;
ut8 buf[DBG_BUF_SIZE];
int steps_taken = 0;
if (r_debug_is_dead (dbg)) {
return steps_taken;
}
if (steps < 1) {
steps = 1;
}
if (dbg->h && dbg->h->step_over) {
for (; steps_taken < steps; steps_taken++)
if (!dbg->h->step_over (dbg))
return steps_taken;
return steps_taken;
}
if (!dbg->anal || !dbg->reg)
return steps_taken;
// Initial refill
buf_pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]);
dbg->iob.read_at (dbg->iob.io, buf_pc, buf, sizeof (buf));
for (; steps_taken < steps; steps_taken++) {
pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]);
// Try to keep the buffer full
if (pc - buf_pc > sizeof (buf)) {
buf_pc = pc;
dbg->iob.read_at (dbg->iob.io, buf_pc, buf, sizeof (buf));
}
// Analyze the opcode
if (!r_anal_op (dbg->anal, &op, pc, buf + (pc - buf_pc), sizeof (buf) - (pc - buf_pc))) {
eprintf ("Decode error at %"PFMT64x"\n", pc);
return steps_taken;
}
if (op.fail == -1) {
ins_size = pc + op.size;
} else {
// Use op.fail here instead of pc+op.size to enforce anal backends to fill in this field
ins_size = op.fail;
}
// Skip over all the subroutine calls
if ((op.type & R_ANAL_OP_TYPE_MASK) == R_ANAL_OP_TYPE_CALL ||
(op.type & R_ANAL_OP_TYPE_MASK) == R_ANAL_OP_TYPE_UCALL) {
if (!r_debug_continue_until (dbg, ins_size)) {
eprintf ("Could not step over call @ 0x%"PFMT64x"\n", pc);
return steps_taken;
}
} else if ((op.prefix & (R_ANAL_OP_PREFIX_REP | R_ANAL_OP_PREFIX_REPNE | R_ANAL_OP_PREFIX_LOCK))) {
//eprintf ("REP: skip to next instruction...\n");
if (!r_debug_continue_until (dbg, ins_size)) {
eprintf ("step over failed over rep\n");
return steps_taken;
}
} else {
r_debug_step (dbg, 1);
}
}
return steps_taken;
}
R_API int r_debug_step_back(RDebug *dbg) {
ut64 pc, end;
ut8 buf[32];
RAnalOp op;
RDebugSession *before;
if (r_debug_is_dead (dbg)) {
return 0;
}
if (!dbg->anal || !dbg->reg)
return 0;
end = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]);
/* rollback to previous state */
before = r_debug_session_get (dbg, end);
if (!before) {
return 0;
}
//eprintf ("before session (%d) 0x%08"PFMT64x"\n", before->key.id, before->key.addr);
r_debug_session_set (dbg, before);
pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]);
//eprintf ("execute from 0x%08"PFMT64x" to 0x%08"PFMT64x"\n", pc, end);
for (;;) {
if (r_debug_is_dead (dbg))
break;
pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]);
r_io_read_at (dbg->iob.io, pc, buf, sizeof (buf));
r_anal_op (dbg->anal, &op, pc, buf, sizeof (buf));
//eprintf ("executing [0x%08"PFMT64x",0x%08"PFMT64x"]\n", pc, pc + op.size);
if (pc + op.size == end)
return 1;
if (!r_debug_step (dbg, 1))
break;
}
return 0;
}
R_API int r_debug_continue_kill(RDebug *dbg, int sig) {
RDebugReasonType reason, ret = false;
RBreakpointItem *bp = NULL;
if (!dbg) {
return false;
}
#if __WINDOWS__
r_cons_break_push (w32_break_process, dbg);
#endif
repeat:
if (r_debug_is_dead (dbg)) {
return false;
}
if (dbg->h && dbg->h->cont) {
/* handle the stage-2 of breakpoints */
if (!r_debug_recoil (dbg, R_DBG_RECOIL_CONTINUE)) {
#if __WINDOWS__
r_cons_break_pop ();
#endif
return false;
}
/* tell the inferior to go! */
ret = dbg->h->cont (dbg, dbg->pid, dbg->tid, sig);
//XXX(jjd): why? //dbg->reason.signum = 0;
reason = r_debug_wait (dbg, &bp);
if (dbg->corebind.core) {
RCore *core = (RCore *)dbg->corebind.core;
RNum *num = core->num;
if (reason == R_DEBUG_REASON_COND) {
if (bp && bp->cond && dbg->corebind.cmd) {
dbg->corebind.cmd (dbg->corebind.core, bp->cond);
}
if (num->value) {
goto repeat;
}
}
}
#if __linux__
if (reason == R_DEBUG_REASON_NEW_PID && dbg->follow_child) {
#if DEBUGGER
void linux_attach_new_process (RDebug *dbg);
linux_attach_new_process (dbg);
#endif
goto repeat;
}
#endif
#if __WINDOWS__
if (reason != R_DEBUG_REASON_DEAD) {
// XXX(jjd): returning a thread id?!
ret = dbg->tid;
}
if (reason == R_DEBUG_REASON_NEW_LIB ||
reason == R_DEBUG_REASON_EXIT_LIB ||
reason == R_DEBUG_REASON_NEW_TID ||
reason == R_DEBUG_REASON_EXIT_TID ) {
goto repeat;
}
#endif
/* if continuing killed the inferior, we won't be able to get
* the registers.. */
if (reason == R_DEBUG_REASON_DEAD || r_debug_is_dead (dbg)) {
#if __WINDOWS__
r_cons_break_pop ();
#endif
return false;
}
/* if we hit a tracing breakpoint, we need to continue in
* whatever mode the user desired. */
if (reason == R_DEBUG_REASON_TRACEPOINT) {
r_debug_step (dbg, 1);
goto repeat;
}
/* choose the thread that was returned from the continue function */
// XXX(jjd): there must be a cleaner way to do this...
r_debug_select (dbg, dbg->pid, ret);
sig = 0; // clear continuation after signal if needed
/* handle general signals here based on the return from the wait
* function */
if (dbg->reason.signum != -1) {
int what = r_debug_signal_what (dbg, dbg->reason.signum);
if (what & R_DBG_SIGNAL_CONT) {
sig = dbg->reason.signum;
eprintf ("Continue into the signal %d handler\n", sig);
goto repeat;
} else if (what & R_DBG_SIGNAL_SKIP) {
// skip signal. requires skipping one instruction
ut8 buf[64];
RAnalOp op = {0};
ut64 pc = r_debug_reg_get (dbg, "PC");
dbg->iob.read_at (dbg->iob.io, pc, buf, sizeof (buf));
r_anal_op (dbg->anal, &op, pc, buf, sizeof (buf));
if (op.size > 0) {
const char *signame = r_signal_to_string (dbg->reason.signum);
r_debug_reg_set (dbg, "PC", pc+op.size);
eprintf ("Skip signal %d handler %s\n",
dbg->reason.signum, signame);
goto repeat;
} else {
ut64 pc = r_debug_reg_get (dbg, "PC");
eprintf ("Stalled with an exception at 0x%08"PFMT64x"\n", pc);
}
}
}
}
#if __WINDOWS__
r_cons_break_pop ();
#endif
return ret;
}
R_API int r_debug_continue(RDebug *dbg) {
return r_debug_continue_kill (dbg, 0); //dbg->reason.signum);
}
#if __WINDOWS__ && !__CYGWIN__
R_API int r_debug_continue_pass_exception(RDebug *dbg) {
return r_debug_continue_kill (dbg, DBG_EXCEPTION_NOT_HANDLED);
}
#endif
R_API int r_debug_continue_until_nontraced(RDebug *dbg) {
eprintf ("TODO\n");
return false;
}
R_API int r_debug_continue_until_optype(RDebug *dbg, int type, int over) {
int ret, n = 0;
ut64 pc, buf_pc = 0;
RAnalOp op;
ut8 buf[DBG_BUF_SIZE];
if (r_debug_is_dead (dbg)) {
return false;
}
if (!dbg->anal || !dbg->reg) {
eprintf ("Undefined pointer at dbg->anal\n");
return false;
}
r_debug_step (dbg, 1);
r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false);
// Initial refill
buf_pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]);
dbg->iob.read_at (dbg->iob.io, buf_pc, buf, sizeof (buf));
// step first, we dont want to check current optype
for (;;) {
if (!r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false))
break;
pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]);
// Try to keep the buffer full
if (pc - buf_pc > sizeof (buf)) {
buf_pc = pc;
dbg->iob.read_at (dbg->iob.io, buf_pc, buf, sizeof (buf));
}
// Analyze the opcode
if (!r_anal_op (dbg->anal, &op, pc, buf + (pc - buf_pc), sizeof (buf) - (pc - buf_pc))) {
eprintf ("Decode error at %"PFMT64x"\n", pc);
return false;
}
if (op.type == type)
break;
// Step over and repeat
ret = over
? r_debug_step_over (dbg, 1)
: r_debug_step (dbg, 1);
if (!ret) {
eprintf ("r_debug_step: failed\n");
break;
}
n++;
}
return n;
}
R_API int r_debug_continue_until(RDebug *dbg, ut64 addr) {
int has_bp;
ut64 pc;
if (r_debug_is_dead (dbg))
return false;
// Check if there was another breakpoint set at addr
has_bp = r_bp_get_in (dbg->bp, addr, R_BP_PROT_EXEC) != NULL;
if (!has_bp)
r_bp_add_sw (dbg->bp, addr, dbg->bpsize, R_BP_PROT_EXEC);
// Continue until the bp is reached
for (;;) {
if (r_debug_is_dead (dbg))
break;
pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]);
if (pc == addr)
break;
if (r_bp_get_at (dbg->bp, pc))
break;
r_debug_continue (dbg);
}
// Clean up if needed
if (!has_bp) {
r_bp_del (dbg->bp, addr);
}
return true;
}
static int show_syscall(RDebug *dbg, const char *sysreg) {
const char *sysname;
char regname[8];
int reg, i, args;
RSyscallItem *si;
reg = (int)r_debug_reg_get (dbg, sysreg);
si = r_syscall_get (dbg->anal->syscall, reg, -1);
if (si) {
sysname = si->name? si->name: "unknown";
args = si->args;
} else {
sysname = "unknown";
args = 3;
}
eprintf ("--> %s 0x%08"PFMT64x" syscall %d %s (", sysreg,
r_debug_reg_get (dbg, "PC"), reg, sysname);
for (i=0; i<args; i++) {
ut64 val;
snprintf (regname, sizeof (regname)-1, "A%d", i);
val = r_debug_reg_get (dbg, regname);
if (((st64)val<0) && ((st64)val>-0xffff)) {
eprintf ("%"PFMT64d"%s", val, (i+1==args)?"":" ");
} else {
eprintf ("0x%"PFMT64x"%s", val, (i+1==args)?"":" ");
}
}
eprintf (")\n");
r_syscall_item_free (si);
return reg;
}
R_API int r_debug_continue_syscalls(RDebug *dbg, int *sc, int n_sc) {
int i, err, reg, ret = false;
if (!dbg || !dbg->h || r_debug_is_dead (dbg)) {
return false;
}
if (!dbg->h->contsc) {
/* user-level syscall tracing */
r_debug_continue_until_optype (dbg, R_ANAL_OP_TYPE_SWI, 0);
return show_syscall (dbg, "A0");
}
if (!r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false)) {
eprintf ("--> cannot read registers\n");
return -1;
}
reg = (int)r_debug_reg_get_err (dbg, "SN", &err, NULL);
if (err) {
eprintf ("Cannot find 'sn' register for current arch-os.\n");
return -1;
}
for (;;) {
RDebugReasonType reason;
if (r_cons_singleton()->breaked)
break;
#if __linux__
// step is needed to avoid dupped contsc results
/* XXX(jjd): actually one stop is before the syscall, the other is
* after. this allows you to inspect the arguments before and the
* return value after... */
r_debug_step (dbg, 1);
#endif
dbg->h->contsc (dbg, dbg->pid, 0); // TODO handle return value
// wait until continuation
reason = r_debug_wait (dbg, NULL);
if (reason == R_DEBUG_REASON_DEAD || r_debug_is_dead (dbg)) {
break;
}
#if 0
if (reason != R_DEBUG_REASON_STEP) {
eprintf ("astep\n");
break;
}
#endif
if (!r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false)) {
eprintf ("--> cannot sync regs, process is probably dead\n");
return -1;
}
reg = show_syscall (dbg, "SN");
if (n_sc == -1) {
continue;
}
if (n_sc == 0) {
break;
}
for (i = 0; i < n_sc; i++) {
if (sc[i] == reg) {
return reg;
}
}
// TODO: must use r_core_cmd(as)..import code from rcore
}
return ret;
}
R_API int r_debug_continue_syscall(RDebug *dbg, int sc) {
return r_debug_continue_syscalls (dbg, &sc, 1);
}
// TODO: remove from here? this is code injection!
R_API int r_debug_syscall(RDebug *dbg, int num) {
bool ret = true;
if (dbg->h->contsc) {
ret = dbg->h->contsc (dbg, dbg->pid, num);
}
eprintf ("TODO: show syscall information\n");
/* r2rc task? ala inject? */
return (int)ret;
}
R_API int r_debug_kill(RDebug *dbg, int pid, int tid, int sig) {
if (r_debug_is_dead (dbg)) {
return false;
}
if (dbg->h && dbg->h->kill) {
return dbg->h->kill (dbg, pid, tid, sig);
}
eprintf ("Backend does not implement kill()\n");
return false;
}
R_API RList *r_debug_frames(RDebug *dbg, ut64 at) {
if (dbg && dbg->h && dbg->h->frames) {
return dbg->h->frames (dbg, at);
}
return NULL;
}
/* TODO: Implement fork and clone */
R_API int r_debug_child_fork(RDebug *dbg) {
//if (dbg && dbg->h && dbg->h->frames)
//return dbg->h->frames (dbg);
return 0;
}
R_API int r_debug_child_clone(RDebug *dbg) {
//if (dbg && dbg->h && dbg->h->frames)
//return dbg->h->frames (dbg);
return 0;
}
R_API int r_debug_is_dead(RDebug *dbg) {
int is_dead = (dbg->pid == -1);
if (!is_dead && dbg->h && dbg->h->kill) {
is_dead = !dbg->h->kill (dbg, dbg->pid, false, 0);
}
if (is_dead) {
dbg->reason.type = R_DEBUG_REASON_DEAD;
}
return is_dead;
}
R_API int r_debug_map_protect(RDebug *dbg, ut64 addr, int size, int perms) {
if (dbg && dbg->h && dbg->h->map_protect) {
return dbg->h->map_protect (dbg, addr, size, perms);
}
return false;
}
R_API void r_debug_drx_list(RDebug *dbg) {
if (dbg && dbg->h && dbg->h->drx) {
dbg->h->drx (dbg, 0, 0, 0, 0, 0);
}
}
R_API int r_debug_drx_set(RDebug *dbg, int idx, ut64 addr, int len, int rwx, int g) {
if (dbg && dbg->h && dbg->h->drx) {
return dbg->h->drx (dbg, idx, addr, len, rwx, g);
}
return false;
}
R_API int r_debug_drx_unset(RDebug *dbg, int idx) {
if (dbg && dbg->h && dbg->h->drx) {
return dbg->h->drx (dbg, idx, 0, -1, 0, 0);
}
return false;
}