radare2/libr/util/hex.c

499 lines
9.9 KiB
C

/* radare - LGPL - Copyright 2007-2016 - pancake */
#include "r_types.h"
#include "r_util.h"
#include <stdio.h>
#include <ctype.h>
/* int c; ret = hex_to_byte(&c, 'c'); */
R_API int r_hex_to_byte(ut8 *val, ut8 c) {
if (IS_DIGIT(c)) {
*val = (ut8)(*val) * 16 + (c - '0');
} else if (c >= 'A' && c <= 'F') {
*val = (ut8)(*val) * 16 + (c - 'A' + 10);
} else if (c >= 'a' && c <= 'f') {
*val = (ut8)(*val) * 16 + (c - 'a' + 10);
} else {
return 1;
}
return 0;
}
R_API char *r_hex_from_py_str(char *out, const char *code) {
if (!strncmp (code, "'''", 3)) {
const char *s = code + 2;
return r_hex_from_c_str (out, &s);
}
return r_hex_from_c_str (out, &code);
}
static const char *skip_comment_py(const char *code) {
if (*code != '#') {
return code;
}
char *end = strchr (code, '\n');
if (end) {
code = end;
}
return code + 1;
}
R_API char *r_hex_from_py_array(char *out, const char *code) {
const char abc[] = "0123456789abcdef";
if (*code != '[' || !strchr (code, ']')) {
return NULL;
}
code++;
for (; *code; code++) {
char *comma = strchr (code, ',');
if (!comma) {
comma = strchr (code, ']');
}
if (!comma) {
break;
}
char * _word = r_str_ndup (code, comma - code);
const char *word = _word;
while (*word == ' ' || *word == '\t' || *word == '\n') {
word++;
word = skip_comment_py (word);
}
if (IS_DIGIT (*word)) {
ut8 n = (ut8)r_num_math (NULL, word);
*out++ = abc[(n >> 4) & 0xf];
*out++ = abc[n & 0xf];
}
free (_word);
code = comma;
if (*code == ']') {
break;
}
}
return out;
}
R_API char* r_hex_from_py(const char *code) {
if (!code) {
return NULL;
}
char * const ret = malloc (strlen (code) * 3);
if (!ret) {
return NULL;
}
*ret = '\0';
char *out = ret;
const char *tmp_code = strchr (code, '=');
if (tmp_code) {
code = tmp_code;
}
for (; *code && *code != '[' && *code != '\''
&& *code != '"'; code++) {
code = skip_comment_py (code);
}
if (*code == '[') {
out = r_hex_from_py_array (out, code);
} else if (*code == '"' || *code == '\'') {
out = r_hex_from_py_str (out, code);
}
if (!out) {
free (ret);
return NULL;
}
*out = '\0';
return ret;
}
R_API char *r_hex_from_c_str(char *out, const char **code) {
const char abc[] = "0123456789abcdefABCDEF";
const char *iter = *code;
if (*iter != '\'' && *iter != '"') {
return NULL;
}
const char end_char = *iter;
iter++;
for (; *iter && *iter != end_char; iter++) {
if (*iter == '\\') {
iter++;
switch (iter[0]) {
case 'e': *out++='1';*out++='b';break;
case 'r': *out++='0';*out++='d';break;
case 'n': *out++='0';*out++='a';break;
case 'x': {
char c1 = iter[1];
char c2 = iter[2];
iter += 2;
if (c1 == '\0' || c2 == '\0') {
return NULL;
} else if (strchr (abc, c1) && strchr (abc, c2)) {
*out++ = tolower (c1);
*out++ = tolower (c2);
} else {
return NULL;
}
break;
}
default:
if (iter[0] == end_char) {
*out++ = abc[*iter >> 4];
*out++ = abc[*iter & 0xf];
}
return NULL;
}
} else {
*out++ = abc[*iter >> 4];
*out++ = abc[*iter & 0xf];
}
}
*code = iter;
return out;
}
const char *skip_comment_c(const char *code) {
if (!strncmp (code, "/*", 2)) {
char *end = strstr (code, "*/");
if (end) {
code = end + 2;
} else {
eprintf ("Missing closing comment\n");
}
} else if (!strncmp (code, "//", 2)) {
char *end = strchr (code, '\n');
if (end) {
code = end + 2;
}
}
return code;
}
R_API char *r_hex_from_c_array(char *out, const char *code) {
const char abc[] = "0123456789abcdef";
if (*code != '{' || !strchr(code, '}')) {
return NULL;
}
code++;
for (; *code; code++) {
const char *comma = strchr (code, ',');
if (!comma) {
comma = strchr (code, '}');
}
char * _word = r_str_ndup (code, comma - code);
const char *word = _word;
word = skip_comment_c (word);
while (*word == ' ' || *word == '\t' || *word == '\n') {
word++;
word = skip_comment_c (word);
}
if (IS_DIGIT (*word)) {
ut8 n = (ut8)r_num_math (NULL, word);
*out++ = abc[(n >> 4) & 0xf];
*out++ = abc[n & 0xf];
}
free (_word);
code = comma;
if (*code == '}') {
break;
}
}
return out;
}
/* convert:
* char *foo = "\x41\x23\x42\x1b";
* into:
* 4123421b
*/
R_API char *r_hex_from_c(const char *code) {
if (!code) {
return NULL;
}
char * const ret = malloc (strlen (code) * 3);
if (!ret) {
return NULL;
}
*ret = '\0';
char *out = ret;
const char *tmp_code = strchr (code, '=');
if (tmp_code) {
code = tmp_code;
}
for (; *code != '\0' && *code != '{' && *code != '"'; code++) {
code = skip_comment_c (code);
}
if (*code == '{') {
out = r_hex_from_c_array (out, code);
} else if (*code == '"') {
const char *s1, *s2;
s1 = code;
do {
code = s1;
out = r_hex_from_c_str (out, &code);
if (!out) {
break;
}
s1 = strchr (code + 1, '"');
s2 = strchr (code + 1, ';');
} while (s1 && s2 && (s1 <= s2));
}
if (!out) {
free (ret);
return NULL;
}
*out = '\0';
return ret;
}
R_API char *r_hex_from_js(const char *code) {
char * s1 = strchr (code, '\'');
char * s2 = strchr (code, '"');
/* there are no strings in the input */
if (!(s1 || s2)) {
return NULL;
}
char * start, * end;
if (s1 < s2) {
start = s1;
end = strchr (start + 1, '\'');
} else {
start = s2;
end = strchr (start + 1, '"');
}
/* the string isn't properly terminated */
if (!end) {
return NULL;
}
char * str = r_str_ndup (start + 1, end - start - 1);
/* assuming base64 input, output will always be shorter */
ut8 *b64d = malloc (end - start);
if (!b64d) {
free (str);
return NULL;
}
r_base64_decode (b64d, str, end - start - 1);
if (!b64d) {
free (str);
free (b64d);
return NULL;
}
// TODO: use r_str_bin2hex
int i, len = strlen ((const char *)b64d);
char * out = malloc (len * 2 + 1);
if (!out) {
free (str);
free (b64d);
return NULL;
}
for (i = 0; i < len; i++) {
sprintf (&out[i * 2], "%02x", b64d[i]);
}
out[len * 2] = '\0';
free (str);
free (b64d);
return out;
}
/* convert
* "\x41\x23\x42\x1b"
* "\x41\x23\x42\x1b"
* into
* 4123421b4123421b
*/
R_API char *r_hex_no_code(const char *code) {
if (!code) {
return NULL;
}
char * const ret = malloc (strlen (code) * 3);
if (!ret) {
return NULL;
}
*ret = '\0';
char *out = ret;
out = r_hex_from_c_str (out, &code);
code = strchr (code + 1, '"');
if (!out) {
free (ret);
return NULL;
}
*out = '\0';
while (out && code) {
*out = '\0';
out = r_hex_from_c_str (out, &code);
code = strchr (code + 1, '"');
}
return ret;
}
R_API char *r_hex_from_code(const char *code) {
if (!strchr (code, '=')) {
return r_hex_no_code (code);
}
/* C language */
if (strstr (code, "char") || strstr (code, "int")) {
return r_hex_from_c (code);
}
/* JavaScript */
if (strstr (code, "var")) {
return r_hex_from_js (code);
}
/* Python */
return r_hex_from_py (code);
}
/* int byte = hexpair2bin("A0"); */
// (0A) => 10 || -1 (on error)
R_API int r_hex_pair2bin(const char *arg) {
ut8 *ptr, c = 0, d = 0;
ut32 j = 0;
for (ptr = (ut8*)arg; ;ptr = ptr + 1) {
if (!*ptr || *ptr==' ' || j==2) {
break;
}
d = c;
if (*ptr!='.' && r_hex_to_byte (&c, *ptr)) {
eprintf ("Invalid hexa string at char '%c' (%s).\n",
*ptr, arg);
return -1;
}
c |= d;
if (j++ == 0) {
c <<= 4;
}
}
return (int)c;
}
R_API int r_hex_bin2str(const ut8 *in, int len, char *out) {
int i, idx;
char tmp[8];
if (len < 0) {
return 0;
}
for (idx = i = 0; i < len; i++, idx += 2) {
snprintf (tmp, sizeof (tmp), "%02x", in[i]);
memcpy (out + idx, tmp, 2);
}
out[idx] = 0;
return len;
}
R_API char *r_hex_bin2strdup(const ut8 *in, int len) {
int i, idx;
char tmp[5], *out;
if ((len + 1) * 2 < len) return NULL;
out = malloc ((len + 1) * 2);
if (!out) return NULL;
for (i = idx = 0; i < len; i++, idx += 2) {
snprintf (tmp, sizeof (tmp), "%02x", in[i]);
memcpy (out+idx, tmp, 2);
}
out[idx] = 0;
return out;
}
R_API int r_hex_str2bin(const char *in, ut8 *out) {
long nibbles = 0;
while (in && *in) {
ut8 tmp;
/* skip hex prefix */
if (*in == '0' && in[1] == 'x') {
in += 2;
}
/* read hex digits */
while (!r_hex_to_byte (out ? &out[nibbles/2] : &tmp, *in)) {
nibbles++;
in++;
}
if (*in == '\0') {
break;
}
/* comments */
if (*in == '#' || (*in == '/' && in[1] == '/')) {
if ((in = strchr (in, '\n'))) {
in++;
}
continue;
} else if (*in == '/' && in[1] == '*') {
if ((in = strstr (in, "*/"))) {
in += 2;
}
continue;
} else if (!IS_WHITESPACE (*in) && *in != '\n') {
/* this is not a valid string */
return 0;
}
/* ignore character */
in++;
}
if (nibbles % 2) {
if (out) r_hex_to_byte (&out[nibbles/2], '0');
return -(nibbles+1) / 2;
}
return nibbles / 2;
}
R_API int r_hex_str2binmask(const char *in, ut8 *out, ut8 *mask) {
ut8 *ptr;
int len, ilen = strlen (in)+1;
int has_nibble = 0;
memcpy (out, in, ilen);
for (ptr=out; *ptr; ptr++) if (*ptr=='.') *ptr = '0';
len = r_hex_str2bin ((char*)out, out);
if (len<0) { has_nibble = 1; len = -(len+1); }
if (len != -1) {
memcpy (mask, in, ilen);
if (has_nibble)
memcpy (mask+ilen, "f0", 3);
for (ptr=mask; *ptr; ptr++) *ptr = (*ptr=='.')?'0':'f';
len = r_hex_str2bin ((char*)mask, mask);
if (len<0) len++;
}
return len;
}
R_API st64 r_hex_bin_truncate (ut64 in, int n) {
switch (n) {
case 1:
if ((in&UT8_GT0))
return UT64_8U|in;
return in&UT8_MAX;
case 2:
if ((in&UT16_GT0))
return UT64_16U|in;
return in&UT16_MAX;
case 4:
if ((in&UT32_GT0))
return UT64_32U|in;
return in&UT32_MAX;
case 8:
return in&UT64_MAX;
}
return in;
}
// Check if str contains only hexademical characters and return length of bytes
R_API int r_hex_str_is_valid(const char* str) {
int i;
if (!strncmp (str, "0x", 2)) {
str += 2;
}
for (i = 0; str[i] != '\0' && str[i] != ' '; i++) {
if (IS_HEXCHAR (str[i])) {
continue;
}
return -1; //if we're here, then str isnt valid
}
return i;
}