radare2/libr/core/cmd_print.c
Khairul Azhar Kasmiran 1c9d10f6c0 asm.strenc (utf8, guess) (#7849)
* Fix #7674 - fix escaping of \u

* asm.strenc (utf8, guess)
2017-07-02 09:46:59 +02:00

5458 lines
151 KiB
C

/* radare - LGPL - Copyright 2009-2017 - pancake */
#include "r_asm.h"
#include "r_core.h"
#include "r_config.h"
#include "r_print.h"
#include "r_types.h"
#include "r_util.h"
#include <limits.h>
#define R_CORE_MAX_DISASM (1024 * 1024 * 8)
#define PF_USAGE_STR "pf[.k[.f[=v]]|[v]]|[n]|[0|cnt][fmt] [a0 a1 ...]"
static ut32 colormap[256] = {
0x000000, 0x560000, 0x640000, 0x750000, 0x870000, 0x9b0000, 0xb00000, 0xc60000, 0xdd0000, 0xf50000, 0xff0f0f, 0xff2828, 0xff4343, 0xff5e5e, 0xff7979, 0xfe9595,
0x4c1600, 0x561900, 0x641e00, 0x752300, 0x872800, 0x9b2e00, 0xb03400, 0xc63b00, 0xdd4200, 0xf54900, 0xff570f, 0xff6928, 0xff7b43, 0xff8e5e, 0xffa179, 0xfeb595,
0x4c3900, 0x564000, 0x644b00, 0x755700, 0x876500, 0x9b7400, 0xb08400, 0xc69400, 0xdda600, 0xf5b800, 0xffc30f, 0xffc928, 0xffd043, 0xffd65e, 0xffdd79, 0xfee495,
0x4c4c00, 0x565600, 0x646400, 0x757500, 0x878700, 0x9b9b00, 0xb0b000, 0xc6c600, 0xdddd00, 0xf5f500, 0xffff0f, 0xffff28, 0xffff43, 0xffff5e, 0xffff79, 0xfffe95,
0x324c00, 0x395600, 0x426400, 0x4e7500, 0x5a8700, 0x679b00, 0x75b000, 0x84c600, 0x93dd00, 0xa3f500, 0xafff0f, 0xb7ff28, 0xc0ff43, 0xc9ff5e, 0xd2ff79, 0xdbfe95,
0x1f4c00, 0x235600, 0x296400, 0x307500, 0x388700, 0x409b00, 0x49b000, 0x52c600, 0x5cdd00, 0x66f500, 0x73ff0f, 0x82ff28, 0x91ff43, 0xa1ff5e, 0xb1ff79, 0xc1fe95,
0x004c00, 0x005600, 0x006400, 0x007500, 0x008700, 0x009b00, 0x00b000, 0x00c600, 0x00dd00, 0x00f500, 0x0fff0f, 0x28ff28, 0x43ff43, 0x5eff5e, 0x79ff79, 0x95fe95,
0x004c19, 0x00561c, 0x006421, 0x007527, 0x00872d, 0x009b33, 0x00b03a, 0x00c642, 0x00dd49, 0x00f551, 0x0fff5f, 0x28ff70, 0x43ff81, 0x5eff93, 0x79ffa6, 0x95feb8,
0x004c4c, 0x005656, 0x006464, 0x007575, 0x008787, 0x009b9b, 0x00b0b0, 0x00c6c6, 0x00dddd, 0x00f5f5, 0x0ffffe, 0x28fffe, 0x43fffe, 0x5efffe, 0x79ffff, 0x95fffe,
0x00394c, 0x004056, 0x004b64, 0x005775, 0x006587, 0x00749b, 0x0084b0, 0x0094c6, 0x00a6dd, 0x00b8f5, 0x0fc3ff, 0x28c9ff, 0x43d0ff, 0x5ed6ff, 0x79ddff, 0x95e4fe,
0x00264c, 0x002b56, 0x003264, 0x003a75, 0x004387, 0x004d9b, 0x0058b0, 0x0063c6, 0x006edd, 0x007af5, 0x0f87ff, 0x2893ff, 0x43a1ff, 0x5eaeff, 0x79bcff, 0x95cafe,
0x00134c, 0x001556, 0x001964, 0x001d75, 0x002187, 0x00269b, 0x002cb0, 0x0031c6, 0x0037dd, 0x003df5, 0x0f4bff, 0x285eff, 0x4372ff, 0x5e86ff, 0x799aff, 0x95b0fe,
0x19004c, 0x1c0056, 0x210064, 0x270075, 0x2d0087, 0x33009b, 0x3a00b0, 0x4200c6, 0x4900dd, 0x5100f5, 0x5f0fff, 0x7028ff, 0x8143ff, 0x935eff, 0xa679ff, 0xb895fe,
0x33004c, 0x390056, 0x420064, 0x4e0075, 0x5a0087, 0x67009b, 0x7500b0, 0x8400c6, 0x9300dd, 0xa300f5, 0xaf0fff, 0xb728ff, 0xc043ff, 0xc95eff, 0xd279ff, 0xdb95fe,
0x4c004c, 0x560056, 0x640064, 0x750075, 0x870087, 0x9b009b, 0xb000b0, 0xc600c6, 0xdd00dd, 0xf500f5, 0xfe0fff, 0xfe28ff, 0xfe43ff, 0xfe5eff, 0xfe79ff, 0xfe95fe,
0x4c0032, 0x560039, 0x640042, 0x75004e, 0x87005a, 0x9b0067, 0xb00075, 0xc60084, 0xdd0093, 0xf500a3, 0xff0faf, 0xff28b7, 0xff43c0, 0xff5ec9, 0xff79d2, 0xffffff,
};
// colordump
static void cmd_prc (RCore *core, int len) {
bool square = true; //false;
int i, j;
char ch, ch2, *color;
int cols = r_config_get_i (core->config, "hex.pcols") + core->print->cols; // * 3.5;
bool show_color = r_config_get_i (core->config, "scr.color");
bool show_flags = r_config_get_i (core->config, "asm.flags");
bool show_cursor = core->print->cur_enabled;
if (cols < 1) {
cols = 1;
}
cols /= 2;
for (i = 0; i < len; i += cols) {
r_print_addr (core->print, core->offset + i);
for (j = i; j < i + cols; j ++) {
ut8 *p = (ut8 *) core->block + j;
if (j >= len) {
break;
}
if (show_color) {
char *str = r_str_newf ("rgb:fff rgb:%06x", colormap[*p]);
color = r_cons_pal_parse (str);
free (str);
} else {
color = strdup ("");
}
if (show_cursor && core->print->cur == j) {
ch = '_';
} else {
ch = ' ';
}
if (square) {
if (show_flags) {
RFlagItem *fi = r_flag_get_i (core->flags, core->offset + j);
if (fi) {
ch = fi->name[0];
ch2 = fi->name[1];
} else {
ch2 = ch;
}
} else {
ch2 = ch;
}
r_cons_printf ("%s%c%c", color, ch, ch2);
} else {
r_cons_printf ("%s%c", color, ch);
}
free (color);
}
r_cons_printf (Color_RESET);
r_cons_newline ();
}
}
static void cmd_pCd(RCore *core, const char *input) {
int h, w = r_cons_get_size (&h);
int colwidth = r_config_get_i (core->config, "hex.cols") * 2.5;
int i, columns = w / colwidth;
int rows = h - 2;
int obsz = core->blocksize;
int user_rows = r_num_math (core->num, input);
bool asm_minicols = r_config_get_i (core->config, "asm.minicols");
char *o_ao = strdup (r_config_get (core->config, "asm.offset"));
char *o_ab = strdup (r_config_get (core->config, "asm.bytes"));
if (asm_minicols) {
r_config_set (core->config, "asm.offset", "false");
// r_config_set (core->config, "asm.bytes", "false");
}
r_config_set (core->config, "asm.bytes", "false");
if (user_rows > 0) {
rows = user_rows + 1;
}
r_cons_push ();
RConsCanvas *c = r_cons_canvas_new (w, rows);
ut64 osek = core->offset;
c->color = r_config_get_i (core->config, "scr.color");
r_core_block_size (core, rows * 32);
for (i = 0; i < columns; i++) {
(void) r_cons_canvas_gotoxy (c, i * (w / columns), 0);
char *cmd = r_str_newf ("pid %d @i:%d", rows, rows * i);
char *dis = r_core_cmd_str (core, cmd);
r_cons_canvas_write (c, dis);
free (cmd);
free (dis);
}
r_core_block_size (core, obsz);
r_core_seek (core, osek, 1);
r_cons_pop ();
r_cons_canvas_print (c);
r_cons_canvas_free (c);
if (asm_minicols) {
r_config_set (core->config, "asm.offset", o_ao);
r_config_set (core->config, "asm.bytes", o_ab);
}
r_config_set (core->config, "asm.bytes", o_ab);
free (o_ao);
free (o_ab);
}
static void findMethodBounds(RList *methods, ut64 *min, ut64 *max) {
RBinSymbol *sym;
RListIter *iter;
ut64 at_min = UT64_MAX;
ut64 at_max = 0LL;
r_list_foreach (methods, iter, sym) {
if (sym->vaddr) {
if (sym->vaddr < at_min) {
at_min = sym->vaddr;
}
if (sym->vaddr + sym->size > at_max) {
at_max = sym->vaddr + sym->size;
}
}
}
*min = at_min;
*max = at_max;
}
static ut64 findClassBounds(RCore *core, const char *input, int *len) {
ut64 min = 0, max = 0;
RListIter *iter;
RBinClass *c;
RList *cs = r_bin_get_classes (core->bin);
if (input && *input) {
// resolve by name
r_list_foreach (cs, iter, c) {
if (!c || !c->name || !c->name[0]) {
continue;
}
findMethodBounds (c->methods, &min, &max);
if (len) {
*len = (max - min);
}
return min;
}
} else {
// resolve by core->offset
r_list_foreach (cs, iter, c) {
if (!c || !c->name || !c->name[0]) {
continue;
}
findMethodBounds (c->methods, &min, &max);
if (len) {
*len = (max - min);
}
return min;
}
}
return 0;
}
static void cmd_pCD(RCore *core, const char *input) {
int h, w = r_cons_get_size (&h);
int colwidth = r_config_get_i (core->config, "hex.cols") * 2.5;
int i, columns = w / colwidth / 2;
int rows = h - 2;
int obsz = core->blocksize;
int user_rows = r_num_math (core->num, input);
bool asm_minicols = r_config_get_i (core->config, "asm.minicols");
char *o_ao = strdup (r_config_get (core->config, "asm.offset"));
char *o_ab = strdup (r_config_get (core->config, "asm.bytes"));
if (asm_minicols) {
r_config_set (core->config, "asm.offset", "false");
r_config_set (core->config, "asm.bytes", "false");
}
r_config_set (core->config, "asm.bytes", "false");
if (user_rows > 0) {
rows = user_rows + 1;
}
r_cons_push ();
RConsCanvas *c = r_cons_canvas_new (w, rows);
ut64 osek = core->offset;
c->color = r_config_get_i (core->config, "scr.color");
r_core_block_size (core, rows * 32);
char *cmd = NULL;
columns = 2;
for (i = 0; i < columns; i++) {
switch (i) {
case 0:
(void) r_cons_canvas_gotoxy (c, 0, 0);
cmd = r_str_newf ("dr;?e;?e backtrace:;dbt");
break;
case 1:
(void) r_cons_canvas_gotoxy (c, 28, 0);
// cmd = r_str_newf ("pxw 128@r:SP;pd@r:PC");
cmd = r_str_newf ("pxq 128@r:SP;pd@ 0x%"PFMT64x, osek);
break;
}
char *dis = r_core_cmd_str (core, cmd);
r_cons_canvas_write (c, dis);
free (cmd);
free (dis);
}
r_core_block_size (core, obsz);
r_core_seek (core, osek, 1);
r_cons_pop ();
r_cons_canvas_print (c);
r_cons_canvas_free (c);
if (asm_minicols) {
r_config_set (core->config, "asm.offset", o_ao);
r_config_set (core->config, "asm.bytes", o_ab);
}
r_config_set (core->config, "asm.bytes", o_ab);
free (o_ao);
free (o_ab);
}
static void cmd_pCx(RCore *core, const char *input, const char *xcmd) {
int h, w = r_cons_get_size (&h);
int hex_cols = r_config_get_i (core->config, "hex.cols");
int colwidth = hex_cols * 5;
int i, columns = w / (colwidth * 0.9);
int rows = h - 2;
int user_rows = r_num_math (core->num, input);
r_config_set_i (core->config, "hex.cols", colwidth / 5);
if (user_rows > 0) {
rows = user_rows + 1;
}
r_cons_push ();
RConsCanvas *c = r_cons_canvas_new (w, rows);
ut64 tsek = core->offset;
c->color = r_config_get_i (core->config, "scr.color");
int bsize = hex_cols * rows;
if (!strcmp (xcmd, "pxA")) {
bsize *= 12;
}
for (i = 0; i < columns; i++) {
(void) r_cons_canvas_gotoxy (c, i * (w / columns), 0);
char *cmd = r_str_newf ("%s %d @ %"PFMT64d, xcmd, bsize, tsek);
char *dis = r_core_cmd_str (core, cmd);
r_cons_canvas_write (c, dis);
free (cmd);
free (dis);
tsek += bsize - 32;
}
r_cons_pop ();
r_cons_canvas_print (c);
r_cons_canvas_free (c);
r_config_set_i (core->config, "hex.cols", hex_cols);
}
static char get_string_type(const ut8 *buf, ut64 len){
ut64 needle = 0;
int rc, i;
char str_type = 0;
if (!buf) {
return '?';
}
while (needle < len) {
rc = r_utf8_decode (buf + needle, len - needle, NULL);
if (!rc) {
needle++;
continue;
}
if (needle + rc + 2 < len &&
buf[needle + rc + 0] == 0x00 &&
buf[needle + rc + 1] == 0x00 &&
buf[needle + rc + 2] == 0x00) {
str_type = 'w';
} else {
str_type = 'a';
}
for (rc = i = 0; needle < len; i += rc) {
RRune r;
if (str_type == 'w') {
if (needle + 1 < len) {
r = buf[needle + 1] << 8 | buf[needle];
rc = 2;
} else {
break;
}
} else {
rc = r_utf8_decode (buf + needle, len - needle, &r);
if (rc > 1) {
str_type = 'u';
}
}
/*Invalid sequence detected*/
if (!rc) {
needle++;
break;
}
needle += rc;
}
}
return str_type;
}
static void cmd_print_eq_dict(RCore *core, const ut8 *block, int bsz) {
int i;
int min = 0;
int max = 0;
int dict = 0;
int range = 0;
bool histogram[0xff + 1];
for (i = 0; i < 0xff; i++) {
histogram[i] = false;
}
for (i = 0; i < bsz; i++) {
histogram[block[i]] = true;
}
for (i = 0; i < 0xff; i++) {
if (histogram[i]) {
if (min == 0) {
min = i;
}
max = i;
dict++;
}
}
range = max - min;
r_cons_printf ("min: %d 0x%x\n", min, min);
r_cons_printf ("max: %d 0x%x\n", max, max);
r_cons_printf ("dict: %d 0x%x\n", dict, dict);
r_cons_printf ("range: %d 0x%x\n", range, range);
r_cons_printf ("size: %d 0x%x\n", bsz, bsz);
}
R_API void r_core_set_asm_configs(RCore *core, char *arch, ut32 bits, int segoff){
r_config_set (core->config, "asm.arch", arch);
r_config_set_i (core->config, "asm.bits", bits);
// XXX - this needs to be done here, because
// if arch == x86 and bits == 16, segoff automatically changes
r_config_set_i (core->config, "asm.segoff", segoff);
}
static void cmd_pDj(RCore *core, const char *arg) {
int bsize = r_num_math (core->num, arg);
if (bsize < 0) {
bsize = -bsize;
}
r_cons_print ("[");
if (bsize <= core->blocksize) {
r_core_print_disasm_json (core, core->offset, core->block,
bsize, 0);
} else {
ut8 *buf = malloc (bsize);
if (buf) {
r_io_read_at (core->io, core->offset, buf, bsize);
r_core_print_disasm_json (core, core->offset, buf, bsize, 0);
free (buf);
} else {
eprintf ("cannot allocate %d bytes\n", bsize);
}
}
r_cons_print ("]");
}
static void cmd_pdj(RCore *core, const char *arg) {
int nblines = r_num_math (core->num, arg);
r_cons_print ("[");
r_core_print_disasm_json (core, core->offset, core->block, core->blocksize, nblines);
r_cons_print ("]\n");
}
static int process_input(RCore *core, const char *input, ut64 *blocksize, char **asm_arch, ut32 *bits) {
// input: start of the input string e.g. after the command symbols have been consumed
// size: blocksize if present, otherwise -1
// asm_arch: asm_arch to interpret as if present and valid, otherwise NULL;
// bits: bits to use if present, otherwise -1
int result = false;
char *input_one = NULL, *input_two = NULL, *input_three = NULL;
char *str_clone = NULL, *ptr_str_clone = NULL, *trimmed_clone = NULL;
if (!input || !blocksize || !asm_arch || !bits) {
return false;
}
str_clone = strdup (input);
trimmed_clone = r_str_trim_head_tail (str_clone);
input_one = trimmed_clone;
ptr_str_clone = strchr (trimmed_clone, ' ');
// terminate input_one
if (ptr_str_clone) {
*ptr_str_clone = '\0';
input_two = (++ptr_str_clone);
ptr_str_clone = strchr (input_two, ' ');
}
// terminate input_two
if (ptr_str_clone && input_two) {
*ptr_str_clone = '\0';
input_three = (++ptr_str_clone);
ptr_str_clone = strchr (input_three, ' ');
}
// terminate input_three
if (ptr_str_clone && input_three) {
*ptr_str_clone = '\0';
ptr_str_clone = strchr (input_three, ' ');
}
// command formats
// <size> <arch> <bits>
// <size> <arch>
// <size> <bits>
// <arch> <bits>
// <arch>
// initialize
*asm_arch = NULL;
*blocksize = *bits = -1;
if (input_one && input_two && input_three) {
// <size> <arch> <bits>
*blocksize = r_num_is_valid_input (core->num, input_one)? r_num_get_input_value (core->num, input_one): 0;
*asm_arch = r_asm_is_valid (core->assembler, input_two)? strdup (input_two): NULL;
*bits = r_num_get_input_value (core->num, input_three);
result = true;
} else if (input_one && input_two) {
*blocksize = r_num_is_valid_input (core->num, input_one)? r_num_get_input_value (core->num, input_one): 0;
if (!r_num_is_valid_input (core->num, input_one)) {
// input_one can only be one other thing
*asm_arch = r_asm_is_valid (core->assembler, input_one)? strdup (input_one): NULL;
*bits = r_num_is_valid_input (core->num, input_two)? r_num_get_input_value (core->num, input_two): -1;
} else {
if (r_str_contains_macro (input_two)) {
r_str_truncate_cmd (input_two);
}
*bits = r_num_is_valid_input (core->num, input_two)? r_num_get_input_value (core->num, input_two): -1;
*asm_arch = r_asm_is_valid (core->assembler, input_two)? strdup (input_two): NULL;
}
result = true;
} else if (input_one) {
*blocksize = r_num_is_valid_input (core->num, input_one)? r_num_get_input_value (core->num, input_one): 0;
if (!r_num_is_valid_input (core->num, input_one)) {
// input_one can only be one other thing
if (r_str_contains_macro (input_one)) {
r_str_truncate_cmd (input_one);
}
*asm_arch = r_asm_is_valid (core->assembler, input_one)? strdup (input_one): NULL;
}
result = true;
}
free (str_clone);
return result;
}
/* This function is not necessary anymore, but it's kept for discussion */
R_API int r_core_process_input_pade(RCore *core, const char *input, char **hex, char **asm_arch, ut32 *bits) {
// input: start of the input string e.g. after the command symbols have been consumed
// size: hex if present, otherwise -1
// asm_arch: asm_arch to interpret as if present and valid, otherwise NULL;
// bits: bits to use if present, otherwise -1
int result = false;
char *input_one = NULL, *input_two = NULL, *input_three = NULL;
char *str_clone = NULL,
*trimmed_clone = NULL;
if (!input || !hex || !asm_arch || !bits) {
return false;
}
str_clone = strdup (input);
trimmed_clone = r_str_trim_head_tail (str_clone);
input_one = trimmed_clone;
#if 0
char *ptr_str_clone = NULL;
ptr_str_clone = strchr (trimmed_clone, ' ');
// terminate input_one
if (ptr_str_clone) {
*ptr_str_clone = '\0';
input_two = (++ptr_str_clone);
ptr_str_clone = strchr (input_two, ' ');
}
// terminate input_two
if (ptr_str_clone && input_two) {
*ptr_str_clone = '\0';
input_three = (++ptr_str_clone);
ptr_str_clone = strchr (input_three, ' ');
}
// terminate input_three
if (ptr_str_clone && input_three) {
*ptr_str_clone = '\0';
ptr_str_clone = strchr (input_three, ' ');
}
#endif
// command formats
// <hex> <arch> <bits>
// <hex> <arch>
// <hex> <bits>
// <hex>
// initialize
*hex = *asm_arch = NULL;
*bits = -1;
if (input_one && input_two && input_three) {
// <size> <arch> <bits>
*hex = input_one;
*asm_arch = r_asm_is_valid (core->assembler, input_two)? strdup (input_two): NULL;
*bits = r_num_get_input_value (core->num, input_three);
result = true;
} else if (input_one && input_two) {
*hex = input_one;
if (r_str_contains_macro (input_two)) {
r_str_truncate_cmd (input_two);
}
*bits = r_num_is_valid_input (core->num, input_two)? r_num_get_input_value (core->num, input_two): -1;
*asm_arch = r_asm_is_valid (core->assembler, input_two)? strdup (input_two): NULL;
result = true;
} else if (input_one) {
*hex = input_one;
result = true;
} else {
free (input_one);
}
return result;
}
static void helpCmdTasks(RCore *core) {
const char *help_msg[] = {
"Usage:", "&[-|<cmd>]", "Manage tasks",
"&", "", "list all running threads",
"&=", "", "show output of all tasks",
"&=", " 3", "show output of task 3",
"&j", "", "list all running threads (in JSON)",
"&?", "", "show this help",
"&+", " aa", "push to the task list",
"&-", " 1", "delete task #1",
"&", "-*", "delete all threads",
"&", " aa", "run analysis in background",
"&", " &&", "run all tasks in background",
"&&", "", "run all pendings tasks (and join threads)",
"&&&", "", "run all pendings tasks until ^C",
"", "", "TODO: last command should honor asm.bits",
"", "", "WARN: this feature is very experimental. Use it with caution",
NULL
};
// TODO: integrate with =h& and bg anal/string/searchs/..
r_core_cmd_help (core, help_msg);
}
static void helpCmdForeach(RCore *core) {
const char *help_msg[] = {
"@@", "", " # foreach iterator command:",
"Repeat a command over a list of offsets", "", "",
"x", " @@ sym.*", "run 'x' over all flags matching 'sym.' in current flagspace",
"x", " @@dbt[abs]", "run a command on every backtrace address, bp or sp",
"x", " @@.file", "\"\" over the offsets specified in the file (one offset per line)",
"x", " @@=off1 off2 ..", "manual list of offsets",
"x", " @@/x 9090", "temporary set cmd.hit to run a command on each search result",
"x", " @@k sdbquery", "\"\" on all offsets returned by that sdbquery",
"x", " @@t", "\"\" on all threads (see dp)",
"x", " @@b", "\"\" on all basic blocks of current function (see afb)",
"x", " @@i", "\"\" on all instructions of the current function (see pdr)",
"x", " @@f", "\"\" on all functions (see aflq)",
"x", " @@f:write", "\"\" on all functions matching write in the name",
"x", " @@c:cmd", "the same as @@=`` without the backticks",
"x", " @@=`pdf~call[0]`", "run 'x' at every call offset of the current function",
// TODO: Add @@k sdb-query-expression-here
NULL
};
r_core_cmd_help (core, help_msg);
}
static void helpCmdAt(RCore *core) {
const char *help_msg[] = {
"Usage: [.][#]<cmd>[*] [`cmd`] [@ addr] [~grep] [|syscmd] [>[>]file]", "", "",
"0", "", "alias for 's 0'",
"0x", "addr", "alias for 's 0x..'",
"#", "cmd", "if # is a number repeat the command # times",
"/*", "", "start multiline comment",
"*/", "", "end multiline comment",
".", "cmd", "execute output of command as r2 script",
".:", "8080", "wait for commands on port 8080",
".!", "rabin2 -re $FILE", "run command output as r2 script",
"*", "", "output of command in r2 script format (CC*)",
"j", "", "output of command in JSON format (pdj)",
"~", "?", "count number of lines (like wc -l)",
"~", "??", "show internal grep help",
"~", "..", "internal less",
"~", "{}", "json indent",
"~", "{}..", "json indent and less",
"~", "word", "grep for lines matching word",
"~", "!word", "grep for lines NOT matching word",
"~", "word[2]", "grep 3rd column of lines matching word",
"~", "word:3[0]", "grep 1st column from the 4th line matching word",
"@", " 0x1024", "temporary seek to this address (sym.main+3)",
"@", " addr[!blocksize]", "temporary set a new blocksize",
"@a:", "arch[:bits]", "temporary set arch and bits",
"@b:", "bits", "temporary set asm.bits",
"@e:", "k=v,k=v", "temporary change eval vars",
"@r:", "reg", "tmp seek to reg value (f.ex pd@r:PC)",
"@i:", "nth.op", "temporary seek to the Nth relative instruction",
"@f:", "file", "temporary replace block with file contents",
"@o:", "fd", "temporary switch to another fd",
"@s:", "string", "same as above but from a string",
"@x:", "909192", "from hex pairs string",
"@..", "from to", "temporary set from and to for commands supporting ranges",
"@@=", "1 2 3", "run the previous command at offsets 1, 2 and 3",
"@@", " hit*", "run the command on every flag matching 'hit*'",
"@@?", "[ktfb..]", "show help for the iterator operator",
"@@@", " [type]", "run a command on every [type] (see @@@? for help)",
">", "file", "pipe output of command to file",
">>", "file", "append to file",
"H>", "file", "pipe output of command to file in HTML",
"H>>", "file", "append to file with the output of command in HTML",
"`", "pdi~push:0[0]`", "replace output of command inside the line",
"|", "cmd", "pipe output to command (pd|less) (.dr*)",
NULL
};
r_core_cmd_help (core, help_msg);
}
static void print_format_help(RCore *core) {
const char *help_msg[] = {
"pf:", PF_USAGE_STR, "",
"Commands:", "", "",
"pf", "?", "Show this help",
"pf", "??", "Format characters",
"pf", "???", "pf usage examples",
"pf", " fmt", "Show data using the given format-string. See 'pf\?\?' and 'pf\?\?\?'.",
"pf.", "fmt_name", "Show data using named format",
"pf.", "fmt_name.field_name", "Show specific data field using named format",
"pfj ", "fmt_name|fmt", "Show data using (named) format in JSON",
"pf* ", "fmt_name|fmt", "Show data using (named) format as r2 flag create commands",
"pfd.", "fmt_name", "Show data using named format as graphviz commands",
"pf.", "name [0|cnt]fmt", "Define a new named format",
"pf.", "", "List all format definitions",
"pf?", "fmt_name", "Show the definition of a named format",
"pfo", "", "List all format definition files (fdf)",
"pfo", " fdf_name", "Load a Format Definition File (fdf)",
"pf.", "fmt_name.field_name=33", "Set new value for the specified field in named format",
"pfv.", "fmt_name[.field]", "Print value(s) only for named format. Useful for one-liners",
"pfs", " fmt_name|fmt", "Print the size of (named) format in bytes",
NULL
};
r_core_cmd_help (core, help_msg);
}
static void print_format_help_help(RCore *core) {
const char *help_msg[] = {
"pf:", PF_USAGE_STR, "",
"Format:", "", "",
" ", "b", "byte (unsigned)",
" ", "B", "resolve enum bitfield (see t?)",
" ", "c", "char (signed byte)",
" ", "d", "0x%%08x hexadecimal value (4 bytes) (see %%i and %%x)",
" ", "D", "disassemble one opcode",
" ", "e", "temporally swap endian",
" ", "E", "resolve enum name (see t?)",
" ", "f", "float value (4 bytes)",
" ", "i", "%%i signed integer value (4 bytes) (see %%d and %%x)",
" ", "n", "next char specifies size of signed value (1, 2, 4 or 8 byte(s))",
" ", "N", "next char specifies size of unsigned value (1, 2, 4 or 8 byte(s))",
" ", "o", "0x%%08o octal value (4 byte)",
" ", "p", "pointer reference (2, 4 or 8 bytes)",
" ", "q", "quadword (8 bytes)",
" ", "r", "CPU register `pf r (eax)plop`",
" ", "s", "32bit pointer to string (4 bytes)",
" ", "S", "64bit pointer to string (8 bytes)",
" ", "t", "UNIX timestamp (4 bytes)",
" ", "T", "show Ten first bytes of buffer",
" ", "u", "uleb128 (variable length)",
" ", "w", "word (2 bytes unsigned short in hex)",
" ", "x", "0x%%08x hex value and flag (fd @ addr) (see %%d and %%i)",
" ", "X", "show formatted hexpairs",
" ", "z", "\\0 terminated string",
" ", "Z", "\\0 terminated wide string",
" ", "?", "data structure `pf ? (struct_name)example_name`",
" ", "*", "next char is pointer (honors asm.bits)",
" ", "+", "toggle show flags for each offset",
" ", ":", "skip 4 bytes",
" ", ".", "skip 1 byte",
NULL
};
r_core_cmd_help (core, help_msg);
}
static void print_format_help_help_help(RCore *core) {
const char *help_msg[] = {
"pf:", PF_USAGE_STR, "",
"Examples:", "", "",
"pf", " 3xi foo bar", "3-array of struct, each with named fields: 'foo' as hex, and 'bar' as int",
"pf", " B (BitFldType)arg_name`", "bitfield type",
"pf", " E (EnumType)arg_name`", "enum type",
"pf.", "obj xxdz prev next size name", "Define the obj format as xxdz",
"pf", " obj=xxdz prev next size name", "Same as above",
"pf", " iwq foo bar troll", "Print the iwq format with foo, bar, troll as the respective names for the fields",
"pf", " 0iwq foo bar troll", "Same as above, but considered as a union (all fields at offset 0)",
"pf.", "plop ? (troll)mystruct", "Use structure troll previously defined",
"pf", " 10xiz pointer length string", "Print a size 10 array of the xiz struct with its field names",
"pf", " {integer}? (bifc)", "Print integer times the following format (bifc)",
"pf", " [4]w[7]i", "Print an array of 4 words and then an array of 7 integers",
"pf", " ic...?i foo bar \"(pf xw yo foo)troll\" yo", "Print nested anonymous structres",
"pf", "n2", "print signed short (2 bytes) value. Use N insted of n for printing unsigned values",
NULL
};
r_core_cmd_help (core, help_msg);
}
static void print_format_help_help_help_help(RCore *core) {
const char *help_msg[] = {
" STAHP IT!!!", "", "",
NULL
};
r_core_cmd_help (core, help_msg);
}
static void cmd_print_format(RCore *core, const char *_input, int len) {
char *input;
int mode = R_PRINT_MUSTSEE;
switch (_input[1]) {
case '*':
_input++;
mode = R_PRINT_SEEFLAGS;
break;
case 'd':
_input++;
mode = R_PRINT_DOT;
break;
case 'j':
_input++;
mode = R_PRINT_JSON;
break;
case 'v':
_input++;
mode = R_PRINT_VALUE | R_PRINT_MUSTSEE;
break;
case 's':
{
const char *val = NULL;
_input += 2;
if (*_input == '.') {
_input++;
val = sdb_get (core->print->formats, _input, NULL);
if (val != NULL) {
r_cons_printf ("%d bytes\n", r_print_format_struct_size (val, core->print, mode));
} else {
eprintf ("Struct %s not defined\nUsage: pfs.struct_name | pfs format\n", _input);
}
} else if (*_input == ' ') {
while (*_input == ' ' && *_input != '\0') {
_input++;
}
if (*_input) {
r_cons_printf ("%d bytes\n", r_print_format_struct_size (_input, core->print, mode));
} else {
eprintf ("Struct %s not defined\nUsage: pfs.struct_name | pfs format\n", _input);
}
} else {
eprintf ("Usage: pfs.struct_name | pfs format\n");
}
}
return;
case '?':
_input += 2;
if (*_input) {
if (*_input == '?') {
_input++;
if (_input && *_input == '?') {
_input++;
if (_input && *_input == '?') {
print_format_help_help_help_help (core);
} else {
print_format_help_help_help (core);
}
} else {
print_format_help_help (core);
}
} else {
SdbListIter *iter;
Sdb *sht = core->print->formats;
SdbKv *kv;
SdbList *sdbls = sdb_foreach_list (sht, false);
ls_foreach (sdbls, iter, kv) {
r_cons_println (kv->value);
}
}
} else {
print_format_help (core);
}
return;
}
input = strdup (_input);
// "pfo" // open formatted thing
if (input[1] == 'o') { // "pfo"
if (input[2] == '?') {
eprintf ("|Usage: pfo [format-file]\n"
" ~/.config/radare2/format\n"
" "R2_DATDIR "/radare2/"R2_VERSION "/format/\n");
} else if (input[2] == ' ') {
char *home, path[512];
// XXX hardcoded path here
snprintf (path, sizeof (path), ".config/radare2/format/%s", input + 3);
home = r_str_home (path);
snprintf (path, sizeof (path), R2_DATDIR "/radare2/"
R2_VERSION "/format/%s", input + 3);
if (!r_core_cmd_file (core, home) && !r_core_cmd_file (core, path)) {
if (!r_core_cmd_file (core, input + 3)) {
eprintf ("ecf: cannot open colorscheme profile (%s)\n", path);
}
}
free (home);
} else {
RList *files;
RListIter *iter;
const char *fn;
char *home = r_str_home (".config/radare2/format/");
if (home) {
files = r_sys_dir (home);
r_list_foreach (files, iter, fn) {
if (*fn && *fn != '.') {
r_cons_println (fn);
}
}
r_list_free (files);
free (home);
}
files = r_sys_dir (R2_DATDIR "/radare2/"R2_VERSION "/format/");
r_list_foreach (files, iter, fn) {
if (*fn && *fn != '.') {
r_cons_println (fn);
}
}
r_list_free (files);
}
free (input);
return;
}
/* syntax aliasing bridge for 'pf foo=xxd' -> 'pf.foo xxd' */
if (input[1] == ' ') {
char *eq = strchr (input + 2, '=');
if (eq) {
input[1] = '.';
*eq = ' ';
}
}
int listFormats = 0;
if (input[1] == '.') {
listFormats = 1;
}
if (!strcmp (input, "*") && mode == R_PRINT_SEEFLAGS) {
listFormats = 1;
}
core->print->reg = core->dbg->reg;
core->print->get_register = r_reg_get;
core->print->get_register_value = r_reg_get_value;
int o_blocksize = core->blocksize;
if (listFormats) {
core->print->num = core->num;
/* print all stored format */
if (!input[1] || !input[2]) {
SdbListIter *iter;
SdbKv *kv;
SdbList *sdbls = sdb_foreach_list (core->print->formats, false);
ls_foreach (sdbls, iter, kv) {
r_cons_printf ("pf.%s %s\n", kv->key, kv->value);
}
/* delete a format */
} else if (input[1] && input[2] == '-') {
if (input[3] == '*') {
sdb_free (core->print->formats);
core->print->formats = sdb_new0 ();
} else {
sdb_unset (core->print->formats, input + 3, 0);
}
} else {
char *name = strdup (input + (input[1]? 2: 1));
char *space = strchr (name, ' ');
char *eq = strchr (name, '=');
char *dot = strchr (name, '.');
if (eq && !dot) {
*eq = ' ';
space = eq;
eq = NULL;
}
/* store a new format */
if (space && (!eq || space < eq)) {
// char *fields = NULL;
*space++ = 0;
// fields = strchr (space, ' ');
if (strchr (name, '.') != NULL) {// || (fields != NULL && strchr(fields, '.') != NULL)) // if anon struct, then field can have '.'
eprintf ("Struct or fields name can not contain dot symbol (.)\n");
} else {
sdb_set (core->print->formats, name, space, 0);
}
free (name);
free (input);
return;
}
if (!strchr (name, '.') &&
!sdb_get (core->print->formats, name, NULL)) {
eprintf ("Cannot find '%s' format.\n", name);
free (name);
free (input);
return;
}
/* Load format from name into fmt to get the size */
/* This make sure the whole structure will be printed */
const char *fmt = NULL;
fmt = sdb_get (core->print->formats, name, NULL);
if (fmt != NULL) {
int size = r_print_format_struct_size (fmt, core->print, mode) + 10;
if (size > core->blocksize) {
r_core_block_size (core, size);
}
}
/* display a format */
if (dot) {
*dot++ = 0;
eq = strchr (dot, '=');
if (eq) { // Write mode (pf.field=value)
*eq++ = 0;
mode = R_PRINT_MUSTSET;
r_print_format (core->print, core->offset,
core->block, core->blocksize, name, mode, eq, dot);
} else {
r_print_format (core->print, core->offset,
core->block, core->blocksize, name, mode, NULL, dot);
}
} else {
r_print_format (core->print, core->offset,
core->block, core->blocksize, name, mode, NULL, NULL);
}
free (name);
}
} else {
/* This make sure the structure will be printed entirely */
char *fmt = input + 1;
while (*fmt && ISWHITECHAR (*fmt)) fmt++;
int size = r_print_format_struct_size (fmt, core->print, mode) + 10;
if (size > core->blocksize) {
r_core_block_size (core, size);
}
/* check if fmt is '\d+ \d+<...>', common mistake due to usage string*/
bool syntax_ok = true;
char *args = strdup (fmt);
if (!args) {
r_cons_printf ("Error: Mem Allocation.");
free (args);
goto stage_left;
}
const char *arg1 = strtok (args, " ");
if (arg1 && r_str_isnumber (arg1)) {
syntax_ok = false;
r_cons_printf ("Usage: pf [0|cnt][format-string]\n");
}
free (args);
if (syntax_ok) {
r_print_format (core->print, core->offset,
core->block, core->blocksize, fmt, mode, NULL, NULL);
}
}
stage_left:
free (input);
r_core_block_size (core, o_blocksize);
}
// > pxa
/* In this function, most of the buffers have 4 times
* the required length. This is because we supports colours,
* that are 4 chars long. */
#define append(x, y) { strcat (x, y); x += strlen (y); }
static void annotated_hexdump(RCore *core, const char *str, int len) {
const int usecolor = r_config_get_i (core->config, "scr.color");
int nb_cols = r_config_get_i (core->config, "hex.cols");
core->print->use_comments = r_config_get_i (core->config, "hex.comments");
int flagsz = r_config_get_i (core->config, "hex.flagsz");
const ut8 *buf = core->block;
ut64 addr = core->offset;
int color_idx = 0;
char *bytes, *chars;
char *ebytes, *echars; // They'll walk over the vars above
ut64 fend = UT64_MAX;
char *comment;
int i, j, low, max, here, rows;
bool marks = false, setcolor = true, hascolor = false;
ut8 ch;
const char *colors[10] = {NULL};
for (i = 0; i < 10; i++) {
colors[i] = r_cons_rainbow_get (i, 10, false);
}
const int col = core->print->col;
RFlagItem *flag, *current_flag = NULL;
char **note;
int html = r_config_get_i (core->config, "scr.html");
int nb_cons_cols;
// Adjust the number of columns
if (nb_cols < 1) {
nb_cols = 16;
}
nb_cols -= (nb_cols % 2); // nb_cols should be even
nb_cons_cols = 12 + nb_cols * 2 + (nb_cols / 2);
nb_cons_cols += 17;
rows = len / nb_cols;
chars = calloc (nb_cols * 20, sizeof (char));
if (!chars) {
return;
}
note = calloc (nb_cols, sizeof (char *));
if (!note) {
free (chars);
return;
}
bytes = calloc (nb_cons_cols * 20, sizeof (char));
if (!bytes) {
free (chars);
free (note);
return;
}
#if 1
int addrpadlen = strlen (sdb_fmt (0, "%08"PFMT64x, addr)) - 8;
char addrpad[32];
if (addrpadlen > 0) {
memset (addrpad, ' ', addrpadlen);
addrpad[addrpadlen] = 0;
// Compute, then show the legend
strcpy (bytes, addrpad);
} else {
*addrpad = 0;
addrpadlen = 0;
}
strcpy (bytes + addrpadlen, "- offset - ");
#endif
j = strlen (bytes);
for (i = 0; i < nb_cols; i += 2) {
sprintf (bytes + j, " %X %X ", (i & 0xf), (i + 1) & 0xf);
j += 5;
}
sprintf (bytes + j + i, " ");
j++;
for (i = 0; i < nb_cols; i++) {
sprintf (bytes + j + i, "%0X", i % 17);
}
if (usecolor) {
r_cons_strcat (Color_GREEN);
}
r_cons_strcat (bytes);
if (usecolor) {
r_cons_strcat (Color_RESET);
}
r_cons_newline ();
// hexdump
for (i = 0; i < rows; i++) {
bytes[0] = '\0';
chars[0] = '\0';
ebytes = bytes;
echars = chars;
hascolor = false;
if (usecolor) {
append (ebytes, core->cons->pal.offset);
}
ebytes += sprintf (ebytes, "0x%08"PFMT64x, addr);
if (usecolor) {
append (ebytes, Color_RESET);
}
append (ebytes, (col == 1)? " |": " ");
for (j = 0; j < nb_cols; j++) {
setcolor = true;
free (note[j]);
note[j] = NULL;
// collect comments
comment = r_meta_get_string (core->anal, R_META_TYPE_COMMENT, addr + j);
if (comment) {
comment = r_str_prefix (comment, ";");
note[j] = comment;
marks = true;
}
// collect flags
flag = r_flag_get_i (core->flags, addr + j);
if (flag) { // Beginning of a flag
if (flagsz) {
fend = addr + flagsz; // core->blocksize;
} else {
fend = addr + j + flag->size;
}
note[j] = r_str_prefix (strdup (flag->name), "/");
marks = true;
color_idx++;
color_idx %= 10;
current_flag = flag;
} else {
// Are we past the current flag?
if (current_flag && addr + j > (current_flag->offset + current_flag->size)) {
setcolor = false;
current_flag = NULL;
}
// Turn colour off if we're at the end of the current flag
if (fend == UT64_MAX || fend <= addr + j) {
setcolor = false;
}
}
if (setcolor && !hascolor) {
hascolor = true;
if (usecolor) {
if (current_flag && current_flag->color) {
char *ansicolor = r_cons_pal_parse (current_flag->color);
append (ebytes, ansicolor);
append (echars, ansicolor);
free (ansicolor);
} else { // Use "random" colours
append (ebytes, colors[color_idx]);
append (echars, colors[color_idx]);
}
} else {
if (html) {
append (ebytes, "[");
} else {
append (ebytes, Color_INVERT);
}
}
}
here = R_MIN ((i * nb_cols) + j, core->blocksize);
ch = buf[here];
if (core->print->ocur != -1) {
low = R_MIN (core->print->cur, core->print->ocur);
max = R_MAX (core->print->cur, core->print->ocur);
} else {
low = max = core->print->cur;
}
if (core->print->cur_enabled) {
if (low == max) {
if (low == here) {
if (html) {
append (ebytes, "[");
append (echars, "[");
} else {
append (echars, Color_INVERT);
append (ebytes, Color_INVERT);
}
}
} else {
if (here >= low && here < max) {
if (html) {
append (ebytes, "[");
append (echars, "[");
} else {
append (ebytes, Color_INVERT);
append (echars, Color_INVERT);
}
}
}
}
sprintf (ebytes, "%02x", ch);
ebytes += strlen (ebytes);
sprintf (echars, "%c", IS_PRINTABLE (ch)? ch: '.');
echars++;
if (core->print->cur_enabled && max == here) {
if (!html) {
append (ebytes, Color_RESET);
append (echars, Color_RESET);
}
hascolor = false;
}
if (j < (nb_cols - 1) && (j % 2)) {
append (ebytes, " ");
}
if (fend != UT64_MAX && fend == addr + j + 1) {
if (!html) {
append (ebytes, Color_RESET);
append (echars, Color_RESET);
}
fend = UT64_MAX;
hascolor = false;
}
}
if (!html) {
append (ebytes, Color_RESET);
append (echars, Color_RESET);
}
append (ebytes, (col == 1)? "| ": (col == 2)? " |": " ");
if (col == 2) {
append (echars, "|");
}
if (marks) { // show comments and flags
int hasline = 0;
int out_sz = nb_cons_cols + 20;
char *out = calloc (out_sz, sizeof(char));
memset (out, ' ', nb_cons_cols - 1);
for (j = 0; j < nb_cols; j++) {
if (note[j]) {
int off = (j * 3) - (j / 2) + 13;
int notej_len = strlen (note[j]);
int sz = R_MIN (notej_len, nb_cons_cols - off);
if (j % 2) {
off--;
}
memcpy (out + off, note[j], sz);
if (sz < notej_len) {
out[off + sz - 2] = '.';
out[off + sz - 1] = '.';
}
hasline = (out[off] != ' ');
R_FREE (note[j]);
}
}
out[out_sz - 1] = 0;
if (hasline) {
r_cons_strcat (addrpad);
r_cons_strcat (out);
r_cons_newline ();
}
marks = false;
free (out);
}
r_cons_strcat (bytes);
r_cons_strcat (chars);
if (core->print->use_comments) {
for (j = 0; j < nb_cols; j++) {
const char *comment = core->print->get_comments (core->print->user, addr + j);
if (comment) {
r_cons_printf (" ; %s", comment);
}
}
}
r_cons_newline ();
addr += nb_cols;
}
free (note);
free (bytes);
free (chars);
}
R_API void r_core_print_examine(RCore *core, const char *str) {
char cmd[128], *p;
ut64 addr = core->offset;
int size = (core->anal->bits / 4);
int count = atoi (str);
int i, n;
if (count < 1) {
count = 1;
}
// skipspaces
while (*str >= '0' && *str <= '9') {
str++;
}
// "px/" alone isn't a full command.
if (!str[0]) {
return;
}
#if 0
Size letters are b(byte), h (halfword), w (word), g (giant, 8 bytes).
#endif
switch (str[1]) {
case 'b': size = 1; break;
case 'h': size = 2; break;
case 'd': size = 4; break;
case 'w': size = 4; break;
case 'g': size = 8; break;
}
if ((p = strchr (str, ' '))) {
*p++ = 0;
addr = r_num_math (core->num, p);
}
switch (*str) {
case '?':
eprintf (
"Format is x/[num][format][size]\n"
"Num specifies the number of format elements to display\n"
"Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n"
" t(binary), f(float), a(address), i(instruction), c(char) and s(string),\n"
" T(OSType), A(floating point values in hex).\n"
"Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n"
);
break;
case 's': // "x/s"
r_core_cmdf (core, "psb %d @ 0x%"PFMT64x, count * size, addr);
break;
case 'o': // "x/o"
r_core_cmdf (core, "pxo %d @ 0x%"PFMT64x, count * size, addr);
break;
case 'f':
case 'A': // XXX (float in hex wtf)
n = 3;
snprintf (cmd, sizeof (cmd), "pxo %d @ 0x%"PFMT64x,
count * size, addr);
strcpy (cmd, "pf ");
for (i = 0; i < count && n < sizeof (cmd); i++) {
cmd[n++] = 'f';
}
cmd[n] = 0;
r_core_cmd0 (core, cmd);
break;
case 'x':
switch (size) {
default:
case 1:
r_core_cmdf (core, "px %d @ 0x%"PFMT64x, count, addr);
break;
case 2:
r_core_cmdf (core, "px%c %d @ 0x%"PFMT64x,
'h', count * 2, addr);
break;
case 4:
r_core_cmdf (core, "px%c %d @ 0x%"PFMT64x,
'w', count * 4, addr);
break;
case 8:
r_core_cmdf (core, "px%c %d @ 0x%"PFMT64x,
'q', count * 8, addr);
break;
}
break;
case 'a':
case 'd':
r_core_cmdf (core, "pxw %d @ 0x%"PFMT64x, count * size, addr);
break;
case 'i':
r_core_cmdf (core, "pid %d @ 0x%"PFMT64x, count, addr);
break;
}
}
static int printzoomcallback(void *user, int mode, ut64 addr, ut8 *bufz, ut64 size) {
RCore *core = (RCore *) user;
int j, ret = 0;
RListIter *iter;
RFlagItem *flag;
switch (mode) {
case 'p':
for (j = 0; j < size; j++) {
if (IS_PRINTABLE (bufz[j])) {
ret++;
}
}
break;
case 'f':
r_list_foreach (core->flags->flags, iter, flag)
if (flag->offset <= addr && addr < flag->offset + flag->size) {
ret++;
}
break;
case 's':
j = r_flag_space_get (core->flags, "strings");
r_list_foreach (core->flags->flags, iter, flag) {
if (flag->space == j && ((addr <= flag->offset
&& flag->offset < addr + size)
|| (addr <= flag->offset + flag->size
&& flag->offset + flag->size < addr + size))) {
ret++;
}
}
break;
case '0': // 0x00
for (j = 0; j < size; j++) {
if (bufz[j] == 0) {
ret++;
}
}
break;
case 'F': // 0xFF
for (j = 0; j < size; j++) {
if (bufz[j] == 0xff) {
ret++;
}
}
break;
case 'e': // entropy
ret = (ut8) (r_hash_entropy_fraction (bufz, size) * 255);
break;
case 'h': // head
default:
ret = *bufz;
}
return ret;
}
R_API void r_core_print_cmp(RCore *core, ut64 from, ut64 to) {
long int delta = 0;
int col = core->cons->columns > 123;
ut8 *b = malloc (core->blocksize);
ut64 addr = core->offset;
memset (b, 0xff, core->blocksize);
delta = addr - from;
r_core_read_at (core, to + delta, b, core->blocksize);
r_print_hexdiff (core->print, core->offset, core->block,
to + delta, b, core->blocksize, col);
free (b);
}
static void cmd_print_pwn(const RCore *core) {
r_cons_printf ("easter egg license has expired\n");
}
static int cmd_print_pxA(RCore *core, int len, const char *data) {
RConsPalette *pal = &core->cons->pal;
int show_offset = true;
int cols = r_config_get_i (core->config, "hex.cols");
int show_color = r_config_get_i (core->config, "scr.color");
int onechar = r_config_get_i (core->config, "hex.onechar");
int bgcolor_in_heap = false;
bool show_cursor = core->print->cur_enabled;
char buf[2];
char *bgcolor, *fgcolor, *text;
ut64 i, c, oi;
RAnalOp op;
if (len < 0 || len > core->blocksize) {
eprintf ("Invalid length\n");
return 0;
}
if (onechar) {
cols *= 4;
} else {
cols *= 2;
}
if (show_offset) {
char offstr[128];
snprintf (offstr, sizeof (offstr),
"0x%08"PFMT64x " ", core->offset);
if (strlen (offstr) > 12) {
cols -= ((strlen (offstr) - 12) * 2);
}
}
for (oi = i = c = 0; i < len; c++) {
if (i && (cols != 0) && !(c % cols)) {
show_offset = true;
r_cons_printf (" %d\n", i - oi);
oi = i;
}
if (show_offset) {
r_cons_printf ("0x%08"PFMT64x " ", core->offset + i);
show_offset = false;
}
if (bgcolor_in_heap) {
free (bgcolor);
bgcolor_in_heap = false;
}
bgcolor = Color_BGBLACK;
fgcolor = Color_WHITE;
text = NULL;
if (!r_anal_op (core->anal, &op, core->offset + i, core->block + i, len - i)) {
op.type = 0;
bgcolor = Color_BGRED;
op.size = 1;
}
switch (op.type) {
case R_ANAL_OP_TYPE_LEA:
case R_ANAL_OP_TYPE_MOV:
case R_ANAL_OP_TYPE_CAST:
case R_ANAL_OP_TYPE_LENGTH:
case R_ANAL_OP_TYPE_CMOV:
text = "mv";
bgcolor = pal->mov;
fgcolor = Color_YELLOW;
break;
case R_ANAL_OP_TYPE_PUSH:
case R_ANAL_OP_TYPE_UPUSH:
bgcolor = pal->push;
fgcolor = Color_WHITE;
text = "->";
break;
case R_ANAL_OP_TYPE_IO:
bgcolor = pal->swi;
fgcolor = Color_WHITE;
text = "io";
break;
case R_ANAL_OP_TYPE_TRAP:
case R_ANAL_OP_TYPE_SWI:
case R_ANAL_OP_TYPE_NEW:
// bgcolor = Color_BGRED;
bgcolor = pal->trap; // r_cons_swap_ground (pal->trap);
fgcolor = Color_WHITE;
text = "$$";
break;
case R_ANAL_OP_TYPE_POP:
text = "<-";
bgcolor = r_cons_swap_ground (pal->pop);
bgcolor_in_heap = true;
fgcolor = Color_WHITE;
break;
case R_ANAL_OP_TYPE_NOP:
fgcolor = Color_WHITE;
bgcolor = r_cons_swap_ground (pal->nop);
bgcolor_in_heap = true;
text = "..";
break;
case R_ANAL_OP_TYPE_MUL:
fgcolor = Color_BLACK;
bgcolor = r_cons_swap_ground (pal->math);
bgcolor_in_heap = true;
text = "_*";
break;
case R_ANAL_OP_TYPE_DIV:
bgcolor = r_cons_swap_ground (pal->math);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "_/";
break;
case R_ANAL_OP_TYPE_AND:
bgcolor = r_cons_swap_ground (pal->bin);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "_&";
break;
case R_ANAL_OP_TYPE_XOR:
bgcolor = r_cons_swap_ground (pal->bin);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "_^";
break;
case R_ANAL_OP_TYPE_OR:
bgcolor = r_cons_swap_ground (pal->bin);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "_|";
break;
case R_ANAL_OP_TYPE_SHR:
bgcolor = r_cons_swap_ground (pal->bin);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = ">>";
break;
case R_ANAL_OP_TYPE_SHL:
bgcolor = r_cons_swap_ground (pal->bin);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "<<";
break;
case R_ANAL_OP_TYPE_SUB:
bgcolor = r_cons_swap_ground (pal->math);
bgcolor_in_heap = true;
fgcolor = Color_WHITE;
text = "--";
break;
case R_ANAL_OP_TYPE_ADD:
bgcolor = r_cons_swap_ground (pal->math);
bgcolor_in_heap = true;
fgcolor = Color_WHITE;
text = "++";
break;
case R_ANAL_OP_TYPE_JMP:
case R_ANAL_OP_TYPE_UJMP:
case R_ANAL_OP_TYPE_IJMP:
case R_ANAL_OP_TYPE_RJMP:
case R_ANAL_OP_TYPE_IRJMP:
case R_ANAL_OP_TYPE_MJMP:
bgcolor = r_cons_swap_ground (pal->jmp);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "_J";
break;
case R_ANAL_OP_TYPE_CJMP:
case R_ANAL_OP_TYPE_UCJMP:
bgcolor = r_cons_swap_ground (pal->cjmp);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "cJ";
break;
case R_ANAL_OP_TYPE_CALL:
case R_ANAL_OP_TYPE_UCALL:
case R_ANAL_OP_TYPE_ICALL:
case R_ANAL_OP_TYPE_RCALL:
case R_ANAL_OP_TYPE_IRCALL:
case R_ANAL_OP_TYPE_UCCALL:
bgcolor = r_cons_swap_ground (pal->call);
bgcolor_in_heap = true;
fgcolor = Color_WHITE;
text = "_C";
break;
case R_ANAL_OP_TYPE_ACMP:
case R_ANAL_OP_TYPE_CMP:
bgcolor = r_cons_swap_ground (pal->cmp);
bgcolor_in_heap = true;
fgcolor = Color_BLACK;
text = "==";
break;
case R_ANAL_OP_TYPE_RET:
bgcolor = r_cons_swap_ground (pal->ret);
bgcolor_in_heap = true;
fgcolor = Color_WHITE;
text = "_R";
break;
case -1:
case R_ANAL_OP_TYPE_ILL:
case R_ANAL_OP_TYPE_UNK:
bgcolor = r_cons_swap_ground (pal->invalid);
bgcolor_in_heap = true;
fgcolor = Color_WHITE;
text = "XX";
break;
#if 0
default:
color = Color_BGCYAN;
fgcolor = Color_BLACK;
break;
#endif
}
int opsz = R_MAX (op.size, 1);
if (show_cursor) {
if (core->print->cur >= i && core->print->cur < i + opsz) {
r_cons_invert (1, 1);
}
}
if (onechar) {
if (text) {
if (text[0] == '_' || text[0] == '.') {
buf[0] = text[1];
} else {
buf[0] = text[0];
}
} else {
buf[0] = '.';
}
buf[1] = 0;
text = buf;
}
if (show_color) {
if (!text) {
text = " ";
}
r_cons_printf ("%s%s%s\x1b[0m", bgcolor, fgcolor, text);
} else {
if (text) {
r_cons_print (text);
} else {
r_cons_print (" ");
}
}
if (show_cursor) {
if (core->print->cur >= i && core->print->cur < i + opsz) {
r_cons_invert (0, 1);
}
}
i += opsz;
}
r_cons_printf (" %d\n", i - oi);
if (bgcolor_in_heap) {
free (bgcolor);
}
return true;
}
static void printraw(RCore *core, int len, int mode) {
int obsz = core->blocksize;
int restore_obsz = 0;
if (len != obsz) {
if (!r_core_block_size (core, len)) {
len = core->blocksize;
} else {
restore_obsz = 1;
}
}
r_print_raw (core->print, core->offset, core->block, len, mode);
if (restore_obsz) {
(void) r_core_block_size (core, obsz);
}
core->cons->newline = true;
}
static void _handle_call(RCore *core, char *line, char **str) {
if (!core || !core->assembler || !core->assembler->cur) {
*str = NULL;
return;
}
if (strstr (core->assembler->cur->arch, "x86")) {
*str = strstr (line, "call ");
} else if (strstr (core->assembler->cur->arch, "arm")) {
*str = strstr (line, " b ");
if (*str && strstr (*str, " 0x")) {
/*
* avoid treating branches to
* non-symbols as calls
*/
*str = NULL;
}
if (!*str) {
*str = strstr (line, "bl ");
}
if (!*str) {
*str = strstr (line, "bx ");
}
}
}
// TODO: this is just a PoC, the disasm loop should be rewritten
// TODO: this is based on string matching, it should be written upon RAnalOp to know
// when we have a call and such
static void disasm_strings(RCore *core, const char *input, RAnalFunction *fcn) {
const char *linecolor = NULL;
char *ox, *qo, *string = NULL;
char *line, *s, *str, *string2 = NULL;
int i, count, use_color = r_config_get_i (core->config, "scr.color");
bool is_free_pending = false;
bool show_comments = r_config_get_i (core->config, "asm.comments");
r_config_set_i (core->config, "scr.color", 0);
if (!strncmp (input, "dsf", 3)) {
RAnalFunction *fcn = r_anal_get_fcn_in (core->anal, core->offset, R_ANAL_FCN_TYPE_NULL);
if (fcn) {
line = s = r_core_cmd_str (core, "pdr");
} else {
eprintf ("Cannot find function.\n");
r_config_set_i (core->config, "scr.color", use_color);
return;
}
} else if (!strncmp (input, "ds ", 3)) {
char *cmd = r_str_newf ("pD %s", input + 3);
line = s = r_core_cmd_strf (core, cmd);
free (cmd);
} else {
line = s = r_core_cmd_str (core, "pd");
}
r_config_set_i (core->config, "scr.color", use_color);
count = r_str_split (s, '\n');
if (!line || !*line || count < 1) {
free (s);
return;
}
for (i = 0; i < count; i++) {
ut64 addr = UT64_MAX;
ox = strstr (line, "0x");
qo = strstr (line, "\"");
R_FREE (string);
if (ox) {
addr = r_num_get (NULL, ox);
}
if (qo) {
char *qoe = strrchr (qo + 1, '"');
if (qoe) {
int raw_len = qoe - qo - 1;
int actual_len = 0;
char *ptr = qo + 1;
for(; ptr < qoe; ptr++) {
if (*ptr == '\\' && ptr + 1 < qoe) {
int i, body_len;
switch (*(ptr + 1)) {
case 'x':
body_len = 3;
break;
case 'u':
body_len = 5;
break;
case 'U':
body_len = 9;
break;
default:
body_len = 1;
}
for (i = 0; i < body_len && ptr < qoe; i++) {
ptr++;
}
}
actual_len++;
}
if (actual_len > 2) {
string = r_str_ndup (qo, raw_len + 2);
}
linecolor = R_CONS_COLOR (comment);
}
}
ox = strstr (line, "; 0x");
if (!ox) {
ox = strstr (line, "@ 0x");
}
if (ox) {
char *qoe = strchr (ox + 3, ' ');
if (!qoe) {
qoe = strchr (ox + 3, '\x1b');
}
int len = qoe? qoe - ox: strlen (ox + 3);
string2 = r_str_ndup (ox + 2, len - 1);
if (r_num_get (NULL, string2) < 0x100) {
R_FREE (string2);
}
}
// XXX leak
str = strstr (line, " str.");
if (str) {
char *qoe = NULL;
if (!qoe) {
qoe = strchr (str + 1, '\x1b');
}
if (!qoe) {
qoe = strchr (str + 1, ';');
}
if (!qoe) {
qoe = strchr (str + 1, ' ');
}
if (qoe) {
string2 = r_str_ndup (str + 1, qoe - str - 1);
} else {
string2 = strdup (str + 1);
}
if (string2) {
/* the str.* flag will win over naked "string",
* since it's generally more accurate */
if (string) {
R_FREE (string);
}
string = string2;
string2 = NULL;
}
}
if (string2) {
R_FREE (string2);
}
_handle_call (core, line, &str);
if (!str) {
str = strstr (line, "sym.");
if (!str) {
str = strstr (line, "fcn.");
}
}
if (str) {
char *qoe = strstr (str, ";");
if (qoe) {
// XXX str leaks
str = r_str_ndup (str, qoe - str);
is_free_pending = true;
}
}
if (str) {
string2 = strdup (str);
linecolor = R_CONS_COLOR (call);
}
if (!string && string2) {
string = string2;
string2 = NULL;
}
if (strstr (line, "XREF")) {
addr = UT64_MAX;
}
if (addr != UT64_MAX) {
const char *str = NULL;
RConsPalette *pal = &core->cons->pal;
if (show_comments) {
char *comment = r_core_anal_get_comments (core, addr);
if (comment) {
r_cons_printf ("%s0x%08"PFMT64x, use_color? pal->offset: "", addr);
r_cons_printf (" %s%s\n", use_color? pal->comment: "", comment);
R_FREE (comment);
}
}
if (fcn) {
bool label = false;
/* show labels, basic blocks and (conditional) branches */
RAnalBlock *bb;
RListIter *iter;
r_list_foreach (fcn->bbs, iter, bb) {
if (addr == bb->jump) {
r_cons_printf ("%s0x%08"PFMT64x ":\n", use_color? Color_YELLOW: "", addr);
label = true;
break;
}
}
if (!label && strstr (line, "->")) {
r_cons_printf ("%s0x%08"PFMT64x ":\n", use_color? Color_YELLOW: "", addr);
}
if (strstr (line, "=<")) {
r_list_foreach (fcn->bbs, iter, bb) {
if (addr >= bb->addr && addr < bb->addr + bb->size) {
const char *op;
if (use_color) {
op = (bb->fail == UT64_MAX)? Color_GREEN "jmp": "cjmp";
} else {
op = (bb->fail == UT64_MAX)? "jmp": "cjmp";
}
r_cons_printf ("%s0x%08"PFMT64x " %s 0x%08"PFMT64x "%s\n",
use_color? R_CONS_COLOR (offset): "", addr, op,
bb->jump, use_color? Color_RESET: "");
break;
}
}
}
}
if (string && *string) {
if (string && !strncmp (string, "0x", 2)) {
str = string;
}
if (string2 && !strncmp (string2, "0x", 2)) {
str = string2;
}
ut64 ptr = r_num_math (NULL, str);
RFlagItem *flag = NULL;
if (str) {
flag = r_flag_get_i2 (core->flags, ptr);
}
if (!flag) {
if (string && !strncmp (string, "0x", 2)) {
R_FREE (string);
}
if (string2 && !strncmp (string2, "0x", 2)) {
R_FREE (string2);
}
}
if (string) {
string = r_str_chop (string);
string2 = r_str_chop (string2);
if (use_color) {
r_cons_printf ("%s0x%08"PFMT64x "%s %s%s%s%s%s%s%s\n",
R_CONS_COLOR (offset), addr, Color_RESET,
linecolor? linecolor: "",
string2? string2: "", string2? " ": "", string,
flag? " ": "", flag? flag->name: "", Color_RESET);
} else {
r_cons_printf ("0x%08"PFMT64x " %s%s%s%s%s\n", addr,
string2? string2: "", string2? " ": "", string,
flag? " ": "", flag? flag->name: "");
}
}
}
}
line = line + strlen (line) + 1;
}
// r_cons_printf ("%s", s);
free (string2);
free (string);
free (s);
if (is_free_pending) {
free (str);
}
}
static void algolist(int mode) {
int i;
for (i = 0; i < R_HASH_NBITS; i++) {
ut64 bits = 1ULL << i;
const char *name = r_hash_name (bits);
if (name && *name) {
if (mode) {
r_cons_println (name);
} else {
r_cons_printf ("%s ", name);
}
}
}
if (!mode) {
r_cons_newline ();
}
}
static bool cmd_print_ph(RCore *core, const char *input) {
char algo[128];
ut32 osize = 0, len = core->blocksize;
const char *ptr;
int pos = 0, handled_cmd = false;
if (!*input || *input == '?') {
algolist (1);
return true;
}
if (*input == '=') {
algolist (0);
return true;
}
input = r_str_chop_ro (input);
ptr = strchr (input, ' ');
sscanf (input, "%31s", algo);
if (ptr && ptr[1]) { // && r_num_is_valid_input (core->num, ptr + 1)) {
int nlen = r_num_math (core->num, ptr + 1);
if (nlen > 0) {
len = nlen;
}
osize = core->blocksize;
if (nlen > core->blocksize) {
r_core_block_size (core, nlen);
if (nlen != core->blocksize) {
eprintf ("Invalid block size\n");
r_core_block_size (core, osize);
return false;
}
r_core_block_read (core);
}
} else if (!ptr || !*(ptr + 1)) {
osize = len;
}
/* TODO: Simplify this spaguetti monster */
while (osize > 0 && hash_handlers[pos].name) {
if (!r_str_ccmp (hash_handlers[pos].name, input, ' ')) {
hash_handlers[pos].handler (core->block, len);
handled_cmd = true;
break;
}
pos++;
}
if (osize) {
r_core_block_size (core, osize);
}
return handled_cmd;
}
static void cmd_print_pv(RCore *core, const char *input) {
const char *stack[] = {
"ret", "arg0", "arg1", "arg2", "arg3", "arg4", NULL
};
int i, n = core->assembler->bits / 8;
int type = 'v';
bool fixed_size = true;
const char *help_msg[] = {
"Usage: pv[j][1,2,4,8,z]", "", "",
"pv", "", "print bytes based on asm.bits",
"pv1", "", "print 1 byte in memory",
"pv2", "", "print 2 bytes in memory",
"pv4", "", "print 4 bytes in memory",
"pv8", "", "print 8 bytes in memory",
"pvz", "", "print value as string (alias for ps)",
NULL
};
switch (input[0]) {
case '1':
n = 1;
input++;
break;
case '2':
n = 2;
input++;
break;
case '4':
n = 4;
input++;
break;
case '8':
n = 8;
input++;
break;
default:
fixed_size = false;
break;
}
// variables can be
switch (input[0]) {
case 'z': // "pvz"
type = 'z';
if (input[1]) {
input++;
} else {
r_core_cmdf (core, "ps");
break;
}
/* fallthrough */
case ' ':
for (i = 0; stack[i]; i++) {
if (!strcmp (input + 1, stack[i])) {
if (type == 'z') {
r_core_cmdf (core, "ps @ [`drn sp`+%d]", n * i);
} else {
r_core_cmdf (core, "?v [`drn sp`+%d]", n * i);
}
}
}
break;
case 'j':
{
char *str = r_str_chop (r_core_cmd_str (core, "ps @ [$$]"));
char *p = str;
if (p) {
while (*p) {
if (*p == '\\' && p[1] == 'x') {
memmove (p, p + 4, strlen (p + 4) + 1);
}
}
}
// r_num_get is gonna use a dangling pointer since the internal
// token that RNum holds ([$$]) has been already freed by r_core_cmd_str
// r_num_math reload a new token so the dangling pointer is gone
r_cons_printf ("{\"value\":%"PFMT64d ",\"string\":\"%s\"}\n",
r_num_math (core->num, "[$$]"),
str
);
free (str);
}
break;
case '?':
r_core_cmd_help (core, help_msg);
break;
default:
{
ut64 v;
if (!fixed_size) {
n = 0;
}
switch (n) {
case 1:
v = r_read_ble8 (core->block);
r_cons_printf ("0x%02" PFMT64x "\n", v);
break;
case 2:
v = r_read_ble16 (core->block, core->print->big_endian);
r_cons_printf ("0x%04" PFMT64x "\n", v);
break;
case 4:
v = r_read_ble32 (core->block, core->print->big_endian);
r_cons_printf ("0x%08" PFMT64x "\n", v);
break;
case 8:
v = r_read_ble64 (core->block, core->print->big_endian);
r_cons_printf ("0x%016" PFMT64x "\n", v);
break;
default:
v = r_read_ble64 (core->block, core->print->big_endian);
switch (core->assembler->bits / 8) {
case 1: r_cons_printf ("0x%02" PFMT64x "\n", v & UT8_MAX); break;
case 2: r_cons_printf ("0x%04" PFMT64x "\n", v & UT16_MAX); break;
case 4: r_cons_printf ("0x%08" PFMT64x "\n", v & UT32_MAX); break;
case 8: r_cons_printf ("0x%016" PFMT64x "\n", v & UT64_MAX); break;
default: break;
}
break;
}
}
// r_core_cmd0 (core, "?v [$$]");
break;
}
}
static bool checkAnalType(RAnalOp *op, int t) {
if (t == 'c') {
switch (op->type) {
case R_ANAL_OP_TYPE_RCALL:
case R_ANAL_OP_TYPE_UCALL:
case R_ANAL_OP_TYPE_CALL:
return true;
}
} else if (t == 's') {
if (op->family == R_ANAL_OP_FAMILY_PRIV) {
return true;
}
switch (op->type) {
case R_ANAL_OP_TYPE_SWI:
return true;
}
} else if (t == 'i') {
switch (op->type) {
case R_ANAL_OP_TYPE_TRAP:
case R_ANAL_OP_TYPE_ILL:
return true;
}
} else if (t == 'j') {
switch (op->type) {
case R_ANAL_OP_TYPE_JMP:
//case R_ANAL_OP_TYPE_RJMP:
//case R_ANAL_OP_TYPE_UJMP:
case R_ANAL_OP_TYPE_CJMP:
return true;
}
}
return false;
}
static inline void matchBar(ut8 *ptr, int i) {
if (ptr[i] < 0xff) {
ptr[i]++;
}
}
static ut8 *analBars(RCore *core, int type, int nblocks, int blocksize, int skipblocks) {
ut8 *p;
int j, i = 0;
ut8 *ptr = calloc (1, nblocks);
if (!ptr) {
eprintf ("Error: failed to malloc memory");
return NULL;
}
p = malloc (blocksize);
if (!p) {
R_FREE (ptr);
eprintf ("Error: failed to malloc memory");
return NULL;
}
for (i = 0; i < nblocks; i++) {
if (r_cons_is_breaked ()) {
break;
}
ut64 off = core->offset + (i + skipblocks) * blocksize;
for (j = 0; j < blocksize ; j++) {
RAnalOp *op = r_core_anal_op (core, off + j);
if (op) {
if (op->size < 1) {
// do nothing
if (type == 'i') {
matchBar (ptr, i);
}
} else {
if (checkAnalType (op, type)) {
matchBar (ptr, i);
}
}
if (op->size > 0) {
j += op->size - 1;
}
r_anal_op_free (op);
} else {
if (type == 'i') {
matchBar (ptr, i);
}
}
}
}
free (p);
return ptr;
}
static void cmd_print_bars(RCore *core, const char *input) {
const char *help_msg[] = {
"Usage:", "p=[=bep?][qj] [nblocks] ([len]) ([offset]) ", "show entropy/printable chars/chars bars",
"p=", "", "print bytes of current block in bars",
"p==", "[..]", "same subcommands as p=, but using flame column graph instead of rows",
"p=", "b", "same as above",
"p=", "c", "print number of calls per block",
"p=", "d", "print different bytes from block",
"p=", "e", "print entropy for each filesize/blocksize",
"p=", "F", "print number of 0xFF bytes for each filesize/blocksize",
"p=", "i", "print number of invalid instructions per block",
"p=", "j", "print number of jumps and conditional jumps in block",
"p=", "m", "print number of flags and marks in block",
"p=", "p", "print number of printable bytes for each filesize/blocksize",
"p=", "s", "print number of syscall and priviledged instructions",
"p=", "z", "print number of chars in strings in block",
"p=", "0", "print number of 0x00 bytes for each filesize/blocksize",
NULL
};
bool print_bars = false;
ut8 *ptr = core->block;
// p=e [nblocks] [totalsize] [skip]
int nblocks = -1;
int totalsize = -1;
int skipblocks = -1;
int blocksize = -1;
int mode = 'b'; // e, p, b, ...
int submode = 0; // q, j, ...
if (input[0]) {
char *spc = strchr (input, ' ');
if (spc) {
nblocks = r_num_math (core->num, spc + 1);
if (nblocks < 1) {
nblocks = core->blocksize;
return;
}
spc = strchr (spc + 1, ' ');
if (spc) {
totalsize = r_num_math (core->num, spc + 1);
spc = strchr (spc + 1, ' ');
if (spc) {
skipblocks = r_num_math (core->num, spc + 1);
}
}
}
mode = input[1];
if (mode && mode != ' ' && input[2]) {
submode = input[2];
}
}
if (skipblocks < 0) {
skipblocks = 0;
}
if (totalsize == UT64_MAX) {
if (core->file && core->io) {
totalsize = r_io_desc_size (core->io, core->file->desc);
if ((st64) totalsize < 1) {
totalsize = -1;
}
}
if (totalsize == UT64_MAX) {
eprintf ("Cannot determine file size\n");
return;
}
}
blocksize = (blocksize > 0)? (totalsize / blocksize): (core->blocksize);
if (blocksize < 1) {
eprintf ("Invalid block size: %d\n", blocksize);
return;
}
if (nblocks < 1) {
nblocks = totalsize / blocksize;
} else {
blocksize = totalsize / nblocks;
}
switch (mode) {
case '?': // bars
r_core_cmd_help (core, help_msg);
break;
case '=': // "p=="
switch (submode) {
case '?':
r_core_cmd_help (core, help_msg);
break;
case '0': // 0x00 bytes
case 'f': // 0xff bytes
case 'F': // 0xff bytes
case 'p': // printable chars
case 'z': // zero terminated strings
{
ut8 *p;
int i, j, k;
ptr = calloc (1, nblocks);
if (!ptr) {
eprintf ("Error: failed to malloc memory");
goto beach;
}
p = calloc (1, blocksize);
if (!p) {
R_FREE (ptr);
eprintf ("Error: failed to malloc memory");
goto beach;
}
int len = 0;
for (i = 0; i < nblocks; i++) {
ut64 off = (i + skipblocks) * blocksize;
r_core_read_at (core, off, p, blocksize);
for (j = k = 0; j < blocksize; j++) {
switch (submode) {
case '0':
if (!p[j]) {
k++;
}
break;
case 'f':
if (p[j] == 0xff) {
k++;
}
break;
case 'z':
if ((IS_PRINTABLE (p[j]))) {
if (p[j + 1] == 0) {
k++;
j++;
}
if (len++ > 8) {
k++;
}
} else {
len = 0;
}
break;
case 'p':
if ((IS_PRINTABLE (p[j]))) {
k++;
}
break;
}
}
ptr[i] = 256 * k / blocksize;
}
r_print_columns (core->print, ptr, nblocks, 14);
free (p);
}
break;
case 'e':
{
ut8 *p;
int i = 0;
ptr = calloc (1, nblocks);
if (!ptr) {
eprintf ("Error: failed to malloc memory");
goto beach;
}
p = malloc (blocksize);
if (!p) {
R_FREE (ptr);
eprintf ("Error: failed to malloc memory");
goto beach;
}
for (i = 0; i < nblocks; i++) {
ut64 off = core->offset + (i + skipblocks) * blocksize;
r_core_read_at (core, off, p, blocksize);
ptr[i] = (ut8) (256 * r_hash_entropy_fraction (p, blocksize));
}
free (p);
r_print_columns (core->print, ptr, nblocks, 14); //core->block, core->blocksize, 10);
}
break;
default:
r_print_columns (core->print, core->block, core->blocksize, 14);
break;
}
break;
case 'd': // "p=d"
if (input[1]) {
ut64 bufsz = r_num_math (core->num, input + 3);
ut64 curbsz = core->blocksize;
if (bufsz < 1) {
bufsz = curbsz;
}
if (bufsz > core->blocksize) {
r_core_block_size (core, bufsz);
r_core_block_read (core);
}
cmd_print_eq_dict (core, core->block, bufsz);
if (bufsz != curbsz) {
r_core_block_size (core, curbsz);
}
} else {
cmd_print_eq_dict (core, core->block, core->blocksize);
}
break;
case 'j': // "p=j" cjmp and jmp
if ((ptr = analBars (core, 'j', nblocks, blocksize, skipblocks))) {
print_bars = true;
}
break;
case 'c': // "p=c" calls
if ((ptr = analBars (core, 'c', nblocks, blocksize, skipblocks))) {
print_bars = true;
}
break;
case 'i': // "p=i" invalid
if ((ptr = analBars (core, 'i', nblocks, blocksize, skipblocks))) {
print_bars = true;
}
break;
case 's': // "p=s" syscalls
if ((ptr = analBars (core, 's', nblocks, blocksize, skipblocks))) {
print_bars = true;
}
break;
case 'm':
{
ut8 *p;
int j, i = 0;
ptr = calloc (1, nblocks);
if (!ptr) {
eprintf ("Error: failed to malloc memory");
goto beach;
}
p = malloc (blocksize);
if (!p) {
R_FREE (ptr);
eprintf ("Error: failed to malloc memory");
goto beach;
}
for (i = 0; i < nblocks; i++) {
ut64 off = core->offset + (i + skipblocks) * blocksize;
for (j = 0; j < blocksize; j++) {
if (r_flag_get_at (core->flags, off + j, false)) {
matchBar (ptr, i);
}
}
}
free (p);
print_bars = true;
}
break;
case 'e': // "p=e" entropy
{
ut8 *p;
int i = 0;
ptr = calloc (1, nblocks);
if (!ptr) {
eprintf ("Error: failed to malloc memory");
goto beach;
}
p = malloc (blocksize);
if (!p) {
R_FREE (ptr);
eprintf ("Error: failed to malloc memory");
goto beach;
}
for (i = 0; i < nblocks; i++) {
ut64 off = core->offset + (i + skipblocks) * blocksize;
r_core_read_at (core, off, p, blocksize);
ptr[i] = (ut8) (256 * r_hash_entropy_fraction (p, blocksize));
}
free (p);
print_bars = true;
}
break;
case '0': // 0x00 bytes
case 'F': // 0xff bytes
case 'p': // printable chars
case 'z': // zero terminated strings
{
ut8 *p;
int i, j, k;
ptr = calloc (1, nblocks);
if (!ptr) {
eprintf ("Error: failed to malloc memory");
goto beach;
}
p = calloc (1, blocksize);
if (!p) {
R_FREE (ptr);
eprintf ("Error: failed to malloc memory");
goto beach;
}
int len = 0;
for (i = 0; i < nblocks; i++) {
ut64 off = (i + skipblocks) * blocksize;
r_core_read_at (core, off, p, blocksize);
for (j = k = 0; j < blocksize; j++) {
switch (mode) {
case '0':
if (!p[j]) {
k++;
}
break;
case 'f':
if (p[j] == 0xff) {
k++;
}
break;
case 'z':
if ((IS_PRINTABLE (p[j]))) {
if (p[j + 1] == 0) {
k++;
j++;
}
if (len++ > 8) {
k++;
}
} else {
len = 0;
}
break;
case 'p':
if ((IS_PRINTABLE (p[j]))) {
k++;
}
break;
}
}
ptr[i] = 256 * k / blocksize;
}
free (p);
print_bars = true;
}
break;
case 'b': // bytes
case '\0':
ptr = calloc (1, nblocks);
r_core_read_at (core, core->offset, ptr, nblocks);
// TODO: support print_bars
r_print_fill (core->print, ptr, nblocks, core->offset, blocksize);
R_FREE (ptr);
break;
}
if (print_bars) {
int i;
switch (submode) {
case 'j':
r_cons_printf ("{\"blocksize\":%d,\"address\":%"PFMT64d ",\"size\":%"PFMT64d ",\"entropy\":[",
blocksize, core->offset, totalsize);
for (i = 0; i < nblocks; i++) {
ut8 ep = ptr[i];
ut64 off = blocksize * i;
const char *comma = (i + 1 < (nblocks))? ",": "";
off += core->offset;
r_cons_printf ("{\"addr\":%"PFMT64d ",\"value\":%d}%s",
off, ep, comma);
}
r_cons_printf ("]}\n");
break;
case 'q':
for (i = 0; i < nblocks; i++) {
ut64 off = core->offset + (blocksize * i);
if (core->print->cur_enabled) {
if (i == core->print->cur) {
r_cons_printf ("> ");
core->num->value = off;
} else {
r_cons_printf (" ");
}
}
r_cons_printf ("0x%08"PFMT64x " %d %d\n", off, i, ptr[i]);
}
break;
default:
core->print->num = core->num;
r_print_fill (core->print, ptr, nblocks, core->offset, blocksize);
break;
}
}
beach:
return;
}
static int bbcmp(RAnalBlock *a, RAnalBlock *b) {
return a->addr - b->addr;
}
/* TODO: integrate this into r_anal */
static void _pointer_table(RCore *core, ut64 origin, ut64 offset, const ut8 *buf, int len, int step, int mode) {
int i;
ut64 addr;
st32 *delta; // only for step == 4
if (step < 1) {
step = 4;
}
if (origin != offset) {
switch (mode) {
case '*':
r_cons_printf ("CC-@ 0x%08"PFMT64x "\n", origin);
r_cons_printf ("CC switch table @ 0x%08"PFMT64x "\n", origin);
r_cons_printf ("axd 0x%"PFMT64x " 0x%08"PFMT64x "\n", origin, offset);
break;
case '.':
r_core_cmdf (core, "CC-@ 0x%08"PFMT64x "\n", origin);
r_core_cmdf (core, "CC switch table @ 0x%08"PFMT64x "\n", origin);
r_core_cmdf (core, "f switch.0x%08"PFMT64x"=0x%08"PFMT64x"\n", origin, origin);
r_core_cmdf (core, "f jmptbl.0x%08"PFMT64x"=0x%08"PFMT64x"\n", offset, offset); //origin, origin);
r_core_cmdf (core, "axd 0x%"PFMT64x " 0x%08"PFMT64x "\n", origin, offset);
break;
}
} else if (mode == '.') {
r_core_cmdf (core, "CC-@ 0x%08"PFMT64x "\n", origin);
r_core_cmdf (core, "CC switch basic block @ 0x%08"PFMT64x "\n", offset);
r_core_cmdf (core, "f switch.0x%08"PFMT64x"=0x%08"PFMT64x"\n", offset, offset); // basic block @ 0x%08"PFMT64x "\n", offset);
}
int n = 0;
for (i = 0; i < len; i += step, n++) {
delta = (st32 *) (buf + i);
addr = offset + *delta;
if (!r_io_is_valid_offset (core->io, addr, 0)) {
break;
}
if (mode == '*') {
r_cons_printf ("af case.%d.0x%"PFMT64x " 0x%08"PFMT64x "\n", i, offset, addr);
r_cons_printf ("ax 0x%"PFMT64x " 0x%08"PFMT64x "\n", offset, addr);
r_cons_printf ("ax 0x%"PFMT64x " 0x%08"PFMT64x "\n", addr, offset); // wrong, but useful because forward xrefs dont work :?
r_cons_printf ("aho case 0x%"PFMT64x " 0x%08"PFMT64x " @ 0x%08"PFMT64x "\n", (ut64)i, addr, offset + i); // wrong, but useful because forward xrefs dont work :?
r_cons_printf ("ahs %d @ 0x%08"PFMT64x "\n", step, offset + i);
} else if (mode == '.') {
r_core_cmdf (core, "af case.%d.0x%"PFMT64x " @ 0x%08"PFMT64x "\n", n, offset, addr);
r_core_cmdf (core, "ax 0x%"PFMT64x " 0x%08"PFMT64x "\n", offset, addr);
r_core_cmdf (core, "ax 0x%"PFMT64x " 0x%08"PFMT64x "\n", addr, offset); // wrong, but useful because forward xrefs dont work :?
// r_core_cmdf (core, "CC+ case %d: 0x%08"PFMT64x " @ 0x%08"PFMT64x "\n", i / step, addr, origin);
r_core_cmdf (core, "CCu case %d: @ 0x%08"PFMT64x "\n", n, addr); //, origin);
r_core_cmdf (core, "aho case %d 0x%08"PFMT64x " @ 0x%08"PFMT64x "\n", n, addr, offset + i); // wrong, but useful because forward xrefs dont work :?
r_core_cmdf (core, "ahs %d @ 0x%08"PFMT64x "\n", step, offset + i);
} else {
r_cons_printf ("0x%08"PFMT64x " -> 0x%08"PFMT64x "\n", offset + i, addr);
}
}
}
// TODO: this function is a temporary fix. All analysis should be based on realsize. However, now for same architectures realisze is not used
static ut32 tmp_get_contsize(RAnalFunction *f) {
int size = r_anal_fcn_contsize (f);
size = (size > 0)? size: r_anal_fcn_size (f);
return (size < 0)? 0: size;
}
static void pr_bb(RCore *core, RAnalFunction *fcn, RAnalBlock *b, bool emu, ut64 saved_gp, ut8 *saved_arena, char p_type) {
core->anal->gp = saved_gp;
if (emu) {
if (b->parent_reg_arena) {
ut64 gp;
r_reg_arena_poke (core->anal->reg, b->parent_reg_arena);
R_FREE (b->parent_reg_arena);
gp = r_reg_getv (core->anal->reg, "gp");
if (gp) {
core->anal->gp = gp;
}
} else {
r_reg_arena_poke (core->anal->reg, saved_arena);
}
}
if (b->parent_stackptr != INT_MAX) {
core->anal->stackptr = b->parent_stackptr;
}
p_type == 'D'
? r_core_cmdf (core, "pD %d @0x%"PFMT64x, b->size, b->addr)
: r_core_cmdf (core, "pI %d @0x%"PFMT64x, b->size, b->addr);
if (b->jump != UT64_MAX) {
if (b->jump > b->addr) {
RAnalBlock *jumpbb = r_anal_bb_get_jumpbb (fcn, b);
if (jumpbb) {
if (emu && core->anal->last_disasm_reg != NULL && !jumpbb->parent_reg_arena) {
jumpbb->parent_reg_arena = r_reg_arena_dup (core->anal->reg, core->anal->last_disasm_reg);
}
if (jumpbb->parent_stackptr == INT_MAX) {
jumpbb->parent_stackptr = core->anal->stackptr + b->stackptr;
}
}
}
if (p_type == 'D') {
r_cons_printf ("| ----------- true: 0x%08"PFMT64x, b->jump);
}
}
if (b->fail != UT64_MAX) {
if (b->fail > b->addr) {
RAnalBlock *failbb = r_anal_bb_get_failbb (fcn, b);
if (failbb) {
if (emu && core->anal->last_disasm_reg != NULL && !failbb->parent_reg_arena) {
failbb->parent_reg_arena = r_reg_arena_dup (core->anal->reg, core->anal->last_disasm_reg);
}
if (failbb->parent_stackptr == INT_MAX) {
failbb->parent_stackptr = core->anal->stackptr + b->stackptr;
}
}
}
if (p_type == 'D') {
r_cons_printf (" false: 0x%08"PFMT64x, b->fail);
}
}
if (p_type == 'D') {
r_cons_newline ();
}
}
#define P(x) (core->cons && core->cons->pal.x)? core->cons->pal.x
static void disasm_recursive(RCore *core, ut64 addr, char type_print) {
Sdb *db = sdb_new0 ();
RAsmOp asmop = {0};
RAnalOp aop = {0};
int i, ret;
ut8 *buf = core->block;
int loop, len = core->blocksize;
for (loop = 0; loop < 2 ; loop ++) {
for (i = 0; i < len; i+= aop.size) {
r_anal_op_fini (&aop);
r_asm_set_pc (core->assembler, addr + i);
//if (i + 8 >= len) {
// eprintf ("WARNING: block size is too small\n");
// TODO: reimplement using dynamic memory accesses, not just the block
// break;
//}
ret = r_asm_disassemble (core->assembler, &asmop, buf + i, len - i);
if (ret < 0) {
asmop.size = 1;
continue;
}
ret = r_anal_op (core->anal, &aop, addr + i, buf +i , len - i);
if (ret < 0) {
aop.size = 1;
continue;
}
if (loop > 0) {
const char *x = sdb_const_get (db, sdb_fmt (-1, "label.0x%"PFMT64x, addr + i), NULL);
if (x) {
r_cons_printf ("%s:\n", x);
}
char *asm_str = asmop.buf_asm;
char *color_reg = P(reg): Color_YELLOW;
char *color_num = P(num): Color_CYAN;
asm_str = r_print_colorize_opcode (core->print, asm_str, color_reg, color_num, false);
char *hexstr = r_print_hexpair (core->print, asmop.buf_hex, -1);
const char *pad = r_str_pad (' ', 20 - strlen (asmop.buf_hex));
r_print_offset (core->print, addr + i, 0, 0, 0, 0, NULL);
r_cons_printf (" %s%s %s\n", pad, hexstr, asm_str);
free (hexstr);
}
switch (aop.type) {
case R_ANAL_OP_TYPE_CALL:
case R_ANAL_OP_TYPE_JMP:
case R_ANAL_OP_TYPE_CJMP:
sdb_set (db, sdb_fmt (-1, "label.0x%"PFMT64x, aop.jump),
sdb_fmt (-1, "from.0x%"PFMT64x, addr + i), 0);
break;
}
if (aop.size < 1) {
aop.size += 1;
}
}
}
r_anal_op_fini (&aop);
sdb_free (db);
}
static void func_walk_blocks(RCore *core, RAnalFunction *f, char input, char type_print) {
RListIter *iter;
RAnalBlock *b;
RAnalFunction *tmp_func;
RListIter *locs_it = NULL;
if (f->fcn_locs) {
locs_it = f->fcn_locs->head;
}
// XXX: hack must be reviewed/fixed in code analysis
if (r_list_length (f->bbs) == 1) {
ut32 fcn_size = r_anal_fcn_size (f);
b = r_list_get_top (f->bbs);
if (b->size > fcn_size) {
b->size = fcn_size;
}
}
r_list_sort (f->bbs, (RListComparator) bbcmp);
if (input == 'j') {
r_cons_print ("[");
bool isFirst = true;
for (; locs_it && (tmp_func = locs_it->data); locs_it = locs_it->n) {
if (r_cons_is_breaked ()) {
break;
}
if (tmp_func->addr > f->addr) {
break;
}
r_list_foreach (tmp_func->bbs, iter, b) {
if (isFirst) {
isFirst = false;
} else {
r_cons_print (",");
}
// const char *cmd = (type_print == 'D')? "pDj": "pIj";
// r_core_cmdf (core, "%s %d @ 0x%"PFMT64x, cmd, b->size, b->addr);
ut8 *buf = malloc (b->size);
if (buf) {
r_io_read_at (core->io, b->addr, buf, b->size);
r_core_print_disasm_json (core, b->addr, buf, b->size, 0);
free (buf);
} else {
eprintf ("cannot allocate %d bytes\n", b->size);
}
}
}
r_list_foreach (f->bbs, iter, b) {
if (isFirst) {
isFirst = false;
} else {
r_cons_print (",");
}
#if 0
r_core_print_disasm_json (core, core->offset, buf, bsize, 0);
const char *cmd = (type_print == 'D')? "pDj": "pIj";
r_core_cmdf (core, "%s %d @ 0x%"PFMT64x, cmd, b->size, b->addr);
#endif
ut8 *buf = malloc (b->size);
if (buf) {
r_io_read_at (core->io, b->addr, buf, b->size);
r_core_print_disasm_json (core, b->addr, buf, b->size, 0);
free (buf);
} else {
eprintf ("cannot allocate %d bytes\n", b->size);
}
}
for (; locs_it && (tmp_func = locs_it->data); locs_it = locs_it->n) {
if (r_cons_is_breaked ()) {
break;
}
r_list_foreach (tmp_func->bbs, iter, b) {
if (isFirst) {
isFirst = false;
} else {
r_cons_print (",");
}
#if 0
const char *cmd = (type_print == 'D')? "pDj": "pIj";
r_core_cmdf (core, "%s %d @0x%"PFMT64x, cmd, b->size, b->addr);
#endif
ut8 *buf = malloc (b->size);
if (buf) {
r_io_read_at (core->io, b->addr, buf, b->size);
r_core_print_disasm_json (core, b->addr, buf, b->size, 0);
free (buf);
} else {
eprintf ("cannot allocate %d bytes\n", b->size);
}
}
}
r_cons_print ("]");
} else {
bool asm_lines = r_config_get_i (core->config, "asm.lines");
bool emu = r_config_get_i (core->config, "asm.emu");
ut64 saved_gp = 0;
ut8 *saved_arena = NULL;
int saved_stackptr = core->anal->stackptr;
if (emu) {
saved_gp = core->anal->gp;
saved_arena = r_reg_arena_peek (core->anal->reg);
}
r_config_set_i (core->config, "asm.lines", 0);
for (; locs_it && (tmp_func = locs_it->data); locs_it = locs_it->n) {
if (tmp_func->addr >= f->addr) {
break;
}
r_list_foreach (tmp_func->bbs, iter, b) {
pr_bb (core, tmp_func, b, emu, saved_gp, saved_arena, type_print);
}
}
r_list_foreach (f->bbs, iter, b) {
pr_bb (core, f, b, emu, saved_gp, saved_arena, type_print);
}
for (; locs_it && (tmp_func = locs_it->data); locs_it = locs_it->n) {
if (r_cons_is_breaked ()) {
break;
}
// this should be more advanced
r_list_foreach (tmp_func->bbs, iter, b) {
pr_bb (core, tmp_func, b, emu, saved_gp, saved_arena, type_print);
}
}
if (emu) {
core->anal->gp = saved_gp;
if (saved_arena) {
r_reg_arena_poke (core->anal->reg, saved_arena);
R_FREE (saved_arena);
}
}
core->anal->stackptr = saved_stackptr;
r_config_set_i (core->config, "asm.lines", asm_lines);
}
}
static inline const char cmd_pxb_p(char input) {
return IS_PRINTABLE (input)? input: '.';
}
static inline int cmd_pxb_k(const ut8 *buffer, int x) {
return buffer[3 - x] << (8 * x);
}
static const char* bits_to_c_code_fmtstr(int bits) {
switch (bits) {
case 16:
return "0x%04x";
case 32:
return "0x%08xU";
case 64:
return "0x%016" PFMT64x "ULL";
default:
return "0x%02x";
}
}
static void print_c_code(RPrint *p, ut64 addr, ut8 *buf, int len, int ws, int w) {
const char *fmtstr;
int i, bits;
ws = R_MAX (1, R_MIN (ws, 8));
bits = ws * 8;
fmtstr = bits_to_c_code_fmtstr (bits);
len /= ws;
p->cb_printf ("#define _BUFFER_SIZE %d\n", len);
p->cb_printf ("const uint%d_t buffer[%d] = {", bits, len);
p->interrupt = 0;
for (i = 0; !p->interrupt && i < len; i++) {
if (!(i % w)) {
p->cb_printf ("\n ");
}
r_print_cursor (p, i, 1);
p->cb_printf (fmtstr, r_read_ble (buf, p->big_endian, bits));
if ((i + 1) < len) {
p->cb_printf (",");
if ((i + 1) % w) {
p->cb_printf (" ");
}
}
r_print_cursor (p, i, 0);
buf += ws;
}
p->cb_printf ("\n};\n");
}
R_API void r_print_code(RPrint *p, ut64 addr, ut8 *buf, int len, char lang) {
int i, w = p->cols * 0.7;
if (w < 1) {
w = 1;
}
switch (lang) {
case '?':
r_cons_println ("Valid print code formats are: JSON, C, Python, Cstring (pcj, pc, pcp, pcs) \n"
" pc C\n"
" pc* print 'wx' r2 commands\n"
" pch C half-words (2 byte)\n"
" pcw C words (4 byte)\n"
" pcd C dwords (8 byte)\n"
" pca GAS .byte blob\n"
" pcA .bytes with instructions in comments\n"
" pcs string\n"
" pcS shellscript that reconstructs the bin\n"
" pcj json\n"
" pcJ javascript\n"
" pcp python");
break;
case '*':
p->cb_printf ("wx ");
for (i = 0; !p->interrupt && i < len; i++) {
if (i && !(i % 16)) {
p->cb_printf (";s+16\nwx ");
}
p->cb_printf ("%02x", buf[i]);
}
if (i && !(i % 16)) {
p->cb_printf (";s+16\n");
} else {
p->cb_printf (";s+%d\n", (i % 16));
}
p->cb_printf ("s-%d\n", len);
break;
case 'A': // "pcA"
/* implemented in core because of disasm :( */
break;
case 'a': // "pca"
p->cb_printf ("shellcode:");
for (i = 0; !p->interrupt && i < len; i++) {
if (!(i % 8)) {
p->cb_printf ("\n.byte ");
} else {
p->cb_printf (", ");
}
p->cb_printf ("0x%02x", buf[i]);
}
p->cb_printf ("\n.equ shellcode_len, %d\n", len);
break;
case 's': // "pcs"
p->cb_printf ("\"");
for (i = 0; !p->interrupt && i < len; i++) {
p->cb_printf ("\\x%02x", buf[i]);
}
p->cb_printf ("\"\n");
break;
case 'S': // "pcS"
{
const int trunksize = 16;
for (i = 0; !p->interrupt && i < len; i++) {
if (!(i % trunksize)) {
p->cb_printf ("printf \"");
}
p->cb_printf ("\\%03o", buf[i]);
if ((i % trunksize) == (trunksize - 1)) {
p->cb_printf ("\" %s bin\n", (i <= trunksize)? ">": ">>");
}
}
if ((i % trunksize)) {
p->cb_printf ("\" %s bin\n", (i <= trunksize)? ">": ">>");
}
} break;
case 'J': {
char *out = malloc (len * 3);
p->cb_printf ("var buffer = new Buffer(\"");
out[0] = 0;
r_base64_encode (out, buf, len);
p->cb_printf ("%s", out);
p->cb_printf ("\", 'base64');\n");
free (out);
} break;
case 'j':
p->cb_printf ("[");
for (i = 0; !p->interrupt && i < len; i++) {
r_print_cursor (p, i, 1);
p->cb_printf ("%d%s", buf[i], (i + 1 < len)? ",": "");
r_print_cursor (p, i, 0);
}
p->cb_printf ("]\n");
break;
case 'P':
case 'p': // pcp"
p->cb_printf ("import struct\nbuf = struct.pack (\"%dB\", *[", len);
for (i = 0; !p->interrupt && i < len; i++) {
if (!(i % w)) {
p->cb_printf ("\n");
}
r_print_cursor (p, i, 1);
p->cb_printf ("0x%02x%s", buf[i], (i + 1 < len)? ",": "])");
r_print_cursor (p, i, 0);
}
p->cb_printf ("\n");
break;
case 'h':
print_c_code (p, addr, buf, len, 2, p->cols / 2); // 9
break;
case 'w':
print_c_code (p, addr, buf, len, 4, p->cols / 3); // 6);
break;
case 'd':
print_c_code (p, addr, buf, len, 8, p->cols / 5); //3);
break;
default:
print_c_code (p, addr, buf, len, 1, p->cols / 1.5); // 12);
break;
}
}
static int cmd_print(void *data, const char *input) {
RCore *core = (RCore *) data;
RCoreAnalStats *as;
RCoreAnalStatsItem total = {0};
int mode, w, p, i, l, len, ret;
ut32 tbs = core->blocksize;
ut64 n, off, from, to, at, ate, piece;
ut64 tmpseek = UT64_MAX;
mode = w = p = i = l = len = ret = 0;
n = off = from = to = at = ate = piece = 0;
r_print_init_rowoffsets (core->print);
off = UT64_MAX;
l = len = core->blocksize;
if (input[0] && input[1]) {
int idx = (input[0] == 'h')? 2: 1;
const char *p = off? strchr (input + idx, ' '): NULL;
if (p) {
l = (int) r_num_math (core->num, p + 1);
/* except disasm and memoryfmt (pd, pm) */
if (input[0] != 'd' && input[0] != 'D' && input[0] != 'm' && input[0] != 'a' && input[0] != 'f' && input[0] != 'i' && input[0] != 'I') {
int n = (st32) l; // r_num_math (core->num, input+1);
if (l < 0) {
off = core->offset + n;
len = l = -n;
tmpseek = core->offset;
} else if (l > 0) {
len = l;
if (l > tbs) {
if (input[0] == 'x' && input[1] == 'l') {
l *= core->print->cols;
}
if (!r_core_block_size (core, l)) {
eprintf ("This block size is too big. Did you mean 'p%c @ %s' instead?\n",
*input, input + 2);
goto beach;
}
l = core->blocksize;
} else {
l = len;
}
}
}
}// else l = 0;
} else {
l = len;
}
if (len > core->blocksize) {
len = core->blocksize;
}
if (input[0] != 'd' && input[0] != 'm' && input[0] != 'a' && input[0] != 'f') {
n = core->blocksize_max;
i = (int) n;
if (i != n) {
i = 0;
}
if (i && l > i) {
eprintf ("This block size is too big (0x%"PFMT64x
" < 0x%x). Did you mean 'p%c @ %s' instead?\n",
n, l, *input, input + 2);
goto beach;
}
}
if (input[0] == 'x' || input[0] == 'D') {
if (l > 0 && tmpseek == UT64_MAX) {
if (!r_core_block_size (core, l)) {
eprintf ("This block size is too big. Did you mean 'p%c @ %s' instead?\n",
*input, input + 2);
goto beach;
}
}
}
if (input[0] && input[0] != 'z' && input[1] == 'f') {
RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset, 0);
// R_ANAL_FCN_TYPE_FCN|R_ANAL_FCN_TYPE_SYM);
if (f) {
len = r_anal_fcn_size (f);
} else {
eprintf ("p: Cannot find function at 0x%08"PFMT64x "\n", core->offset);
core->num->value = 0;
goto beach;
}
}
core->num->value = len;
if (len > core->blocksize) {
len = core->blocksize;
}
if (off != UT64_MAX) {
r_core_seek (core, off, SEEK_SET);
r_core_block_read (core);
}
switch (*input) {
case 'w': // "pw"
if (input[1] == 'n') {
cmd_print_pwn (core);
} else if (input[1] == 'd') {
if (!r_sandbox_enable (0)) {
char *cwd = r_sys_getdir ();
if (cwd) {
r_cons_println (cwd);
free (cwd);
}
}
} else {
r_cons_printf ("| pwd display current working directory\n");
}
break;
case 'h': // "ph"
cmd_print_ph (core, input + 1);
break;
case 'v': // "pv"
cmd_print_pv (core, input + 1);
break;
case '-': // "p-"
mode = input[1];
w = core->print->cols * 2.7;
if (mode == 'j') {
r_cons_strcat ("{");
}
off = core->offset;
r_list_free (r_core_get_boundaries (core, "file", &from, &to));
piece = R_MAX ((to - from) / w, 1);
as = r_core_anal_get_stats (core, from, to, piece);
if (!as && mode != '?') {
return 0;
}
// eprintf ("RANGE = %llx %llx\n", from, to);
switch (mode) {
case '?': {
const char *help_msg[] = {
"Usage:", "p%%[jh] [pieces]", "bar|json|histogram blocks",
"p-", "", "show ascii-art bar of metadata in file boundaries",
"p-j", "", "show json format",
"p-h", "", "show histogram analysis of metadata per block",
NULL
};
r_core_cmd_help (core, help_msg);
}
return 0;
case 'j': // p-j
r_cons_printf (
"\"from\":%"PFMT64d ","
"\"to\":%"PFMT64d ","
"\"blocksize\":%d,"
"\"blocks\":[", from, to, piece);
break;
case 'h': // p-h
r_cons_printf (".-------------.----------------------------.\n");
r_cons_printf ("| offset | flags funcs cmts syms str |\n");
r_cons_printf ("|-------------)----------------------------|\n");
break;
default:
r_cons_printf ("0x%"PFMT64x " [", from);
}
bool use_color = r_config_get_i (core->config, "scr.color");
len = 0;
for (i = 0; i < w; i++) {
at = from + (piece * i);
ate = at + piece;
p = (at - from) / piece;
switch (mode) {
case 'j':
r_cons_printf ("%s{", len? ",": "");
if ((as->block[p].flags)
|| (as->block[p].functions)
|| (as->block[p].comments)
|| (as->block[p].symbols)
|| (as->block[p].rwx)
|| (as->block[p].strings)) {
r_cons_printf ("\"offset\":%"PFMT64d ",", at), l++;
r_cons_printf ("\"size\":%"PFMT64d ",", piece), l++;
}
// TODO: simplify with macro
l = 0;
if (as->block[p].flags) {
r_cons_printf ("%s\"flags\":%d", l? ",": "", as->block[p].flags), l++;
}
if (as->block[p].functions) {
r_cons_printf ("%s\"functions\":%d", l? ",": "", as->block[p].functions), l++;
}
if (as->block[p].comments) {
r_cons_printf ("%s\"comments\":%d", l? ",": "", as->block[p].comments), l++;
}
if (as->block[p].symbols) {
r_cons_printf ("%s\"symbols\":%d", l? ",": "", as->block[p].symbols), l++;
}
if (as->block[p].strings) {
r_cons_printf ("%s\"strings\":%d", l? ",": "", as->block[p].strings), l++;
}
if (as->block[p].rwx) {
r_cons_printf ("%s\"rwx\":\"%s\"", l? ",": "", r_str_rwx_i (as->block[p].rwx)), l++;
}
r_cons_strcat ("}");
len++;
break;
case 'h':
total.flags += as->block[p].flags;
total.functions += as->block[p].functions;
total.comments += as->block[p].comments;
total.symbols += as->block[p].symbols;
total.strings += as->block[p].strings;
if ((as->block[p].flags)
|| (as->block[p].functions)
|| (as->block[p].comments)
|| (as->block[p].symbols)
|| (as->block[p].strings)) {
r_cons_printf ("| 0x%09"PFMT64x " | %4d %4d %4d %4d %4d |\n", at,
as->block[p].flags,
as->block[p].functions,
as->block[p].comments,
as->block[p].symbols,
as->block[p].strings);
}
break;
default:
if (off >= at && off < ate) {
r_cons_memcat ("^", 1);
} else {
RIOSection *s = r_io_section_vget (core->io, at);
if (use_color) {
if (s) {
if (s->flags & 1) {
r_cons_print (Color_BGBLUE);
} else {
r_cons_print (Color_BGGREEN);
}
} else {
r_cons_print (Color_BGRED);
}
}
if (as->block[p].strings > 0) {
r_cons_memcat ("z", 1);
} else if (as->block[p].symbols > 0) {
r_cons_memcat ("s", 1);
} else if (as->block[p].functions > 0) {
r_cons_memcat ("F", 1);
} else if (as->block[p].comments > 0) {
r_cons_memcat ("c", 1);
} else if (as->block[p].flags > 0) {
r_cons_memcat (".", 1);
} else {
r_cons_memcat ("_", 1);
}
}
break;
}
}
switch (mode) {
case 'j':
r_cons_strcat ("]}\n");
break;
case 'h':
// r_cons_printf (" total | flags funcs cmts syms str |\n");
r_cons_printf ("|-------------)----------------------------|\n");
r_cons_printf ("| total | %4d %4d %4d %4d %4d |\n",
total.flags, total.functions, total.comments, total.symbols, total.strings);
r_cons_printf ("`-------------'----------------------------'\n");
break;
default:
if (use_color) {
r_cons_print (Color_RESET);
}
r_cons_printf ("] 0x%"PFMT64x "\n", to);
}
r_core_anal_stats_free (as);
break;
case '=': // p=
cmd_print_bars (core, input);
break;
case 'A': // "pA"
{
ut64 from = r_config_get_i (core->config, "search.from");
ut64 to = r_config_get_i (core->config, "search.to");
int count = r_config_get_i (core->config, "search.count");
int want = r_num_math (core->num, input + 1);
if (input[1] == '?') {
r_core_cmd0 (core, "/A?");
} else {
r_config_set_i (core->config, "search.count", want);
r_config_set_i (core->config, "search.from", core->offset);
r_config_set_i (core->config, "search.to", core->offset + core->blocksize);
r_core_cmd0 (core, "/A");
r_config_set_i (core->config, "search.count", count);
r_config_set_i (core->config, "search.from", from);
r_config_set_i (core->config, "search.to", to);
}
}
break;
case 'a': // "pa"
{
ut32 new_bits = -1;
int segoff, old_bits, pos = 0;
ut8 settings_changed = false;
char *new_arch = NULL, *old_arch = NULL, *hex = NULL;
old_arch = strdup (r_config_get (core->config, "asm.arch"));
old_bits = r_config_get_i (core->config, "asm.bits");
segoff = r_config_get_i (core->config, "asm.segoff");
if (input[1] != ' ') {
if (input[0]) {
for (pos = 1; pos < R_BIN_SIZEOF_STRINGS && input[pos]; pos++) {
if (input[pos] == ' ') {
break;
}
}
}
if (!r_core_process_input_pade (core, input + pos, &hex, &new_arch, &new_bits)) {
// XXX - print help message
// return false;
}
if (!new_arch) {
new_arch = strdup (old_arch);
}
if (new_bits == -1) {
new_bits = old_bits;
}
if (strcmp (new_arch, old_arch) != 0 || new_bits != old_bits) {
r_core_set_asm_configs (core, new_arch, new_bits, segoff);
r_anal_hint_set_bits (core->anal, core->offset, new_bits);
settings_changed = true;
}
}
if (input[1] == 'e') { // "pae"
if (input[2] == '?') {
r_cons_printf ("|Usage: pae [hex] assemble esil from hexpairs\n");
} else {
int ret, bufsz;
RAnalOp aop = {
0
};
const char *str;
// char *buf = strdup (input+2);
bufsz = r_hex_str2bin (hex, (ut8 *) hex);
ret = r_anal_op (core->anal, &aop, core->offset,
(const ut8 *) hex, bufsz);
if (ret > 0) {
str = R_STRBUF_SAFEGET (&aop.esil);
r_cons_println (str);
}
r_anal_op_fini (&aop);
}
} else if (input[1] == 'D') {
if (input[2] == '?') {
r_cons_printf ("|Usage: paD [asm] disasm like in pdi\n");
} else {
r_core_cmdf (core, "pdi@x:%s", input + 2);
}
} else if (input[1] == 'd') { // "pad"
if (input[2] == '?') {
r_cons_printf ("|Usage: pad [asm] disasm\n");
} else {
RAsmCode *c;
r_asm_set_pc (core->assembler, core->offset);
c = r_asm_mdisassemble_hexstr (core->assembler, hex);
if (c) {
r_cons_print (c->buf_asm);
r_asm_code_free (c);
} else {
eprintf ("Invalid hexstr\n");
}
}
} else if (input[1] == '?') {
r_cons_printf ("|Usage: pa[ed] [hex|asm] assemble (pa) disasm (pad)"
" esil (pae) from hexpairs\n");
} else {
RAsmCode *acode;
int i;
int bytes;
r_asm_set_pc (core->assembler, core->offset);
acode = r_asm_massemble (core->assembler, input + 1);
if (acode && *acode->buf_hex) {
bytes = strlen (acode->buf_hex) >> 1;
for (i = 0; i < bytes; i++) {
ut8 b = acode->buf[i]; // core->print->big_endian? (bytes - 1 - i): i ];
r_cons_printf ("%02x", b);
}
r_cons_newline ();
r_asm_code_free (acode);
}
}
if (settings_changed) {
r_core_set_asm_configs (core, old_arch, old_bits, segoff);
r_anal_hint_set_bits (core->anal, core->offset, old_bits);
r_anal_build_range_on_hints (core->anal);
r_core_seek_archbits (core, core->offset);
// r_anal_hint_set_bits (core->anal, core->offset, oldbits);
}
free (old_arch);
free (new_arch);
}
break;
case 'b': { // "pb"
if (input[1] == '?') {
r_cons_printf ("|Usage: p[bB] [len] ([skip]) ; see also pB and pxb\n");
} else if (l != 0) {
int from, to;
const int size = len * 8;
char *spc, *buf = malloc (size + 1);
spc = strchr (input, ' ');
if (spc) {
len = r_num_math (core->num, spc + 1);
if (len < 1) {
len = 1;
}
spc = strchr (spc + 1, ' ');
if (spc) {
from = r_num_math (core->num, spc + 1);
} else {
from = 0;
}
to = from + len;
} else {
from = 0;
to = size;
}
if (buf) {
int buf_len;
r_str_bits (buf, core->block, size, NULL);
buf_len = strlen (buf);
if (from >= buf_len) {
from = buf_len;
}
if (to < buf_len) {
buf[to] = 0;
}
r_cons_println (buf + from);
free (buf);
} else {
eprintf ("ERROR: Cannot malloc %d bytes\n", size);
}
}
}
break;
case 'B': { // "pB"
if (input[1] == '?') {
r_cons_printf ("|Usage: p[bB] [len] bitstream of N bytes\n");
} else if (l != 0) {
int size;
char *buf;
if (!r_core_block_size (core, len)) {
len = core->blocksize;
}
size = len * 8;
buf = malloc (size + 1);
if (buf) {
r_str_bits (buf, core->block, size, NULL);
r_cons_println (buf);
free (buf);
} else {
eprintf ("ERROR: Cannot malloc %d bytes\n", size);
}
}
}
break;
case 'I': // "pI"
switch (input[1]) {
case 'j': // "pIj" is the same as pDj
if (l != 0) {
if (input[2]) {
cmd_pDj (core, input + 2);
} else {
cmd_pDj (core, sdb_fmt (0, "%d", core->blocksize));
}
}
break;
case 'f': // "pIf"
{
const RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset,
R_ANAL_FCN_TYPE_FCN | R_ANAL_FCN_TYPE_SYM);
if (f) {
r_core_print_disasm_instructions (core,
r_anal_fcn_size (f), 0);
break;
}
}
case 'd': // "pId" is the same as pDi
if (l) {
r_core_disasm_pdi (core, 0, l, 0);
}
break;
case '?': // "pi?"
r_cons_printf ("|Usage: p[iI][df] [len] print N instructions/bytes"
"(f=func) (see pi? and pdi)\n");
break;
default:
if (l) {
r_core_print_disasm_instructions (core, l, 0);
}
}
break;
case 'i': // "pi"
switch (input[1]) {
case '?':
// r_cons_printf ("|Usage: pi[defj] [num]\n");
{
const char *help_msg[] = {
"Usage:", "pi[bdefrj] [num]", "",
"pib", "", "print instructions of basic block",
"pid", "", "alias for pdi"
"pif", "", "print instructions of function"
"pij", "", "print N instructions in JSON"
"pie", "", "print offset + esil expression",
"pir", "", "like 'pdr' but with 'pI' output",
NULL
};
r_core_cmd_help (core, help_msg);
}
break;
case 'a': // "pia" is like "pda", but with "pi" output
if (l != 0) {
r_core_print_disasm_all (core, core->offset,
l, len, 'i');
}
break;
case 'j': // pij is the same as pdj
if (l != 0) {
cmd_pdj (core, input + 2);
}
break;
case 'd': // "pid" is the same as pdi
if (l != 0) {
r_core_disasm_pdi (core, l, 0, 0);
}
break;
case 'e':
if (l != 0) {
r_core_disasm_pdi (core, l, 0, 'e');
}
break;
case 'f': // "pif"
if (l != 0) {
RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset,
R_ANAL_FCN_TYPE_FCN | R_ANAL_FCN_TYPE_SYM);
if (f) {
ut32 bsz = core->blocksize;
// int fsz = r_anal_fcn_realsize (f);
int fsz = r_anal_fcn_size (f); // we want max-min here
r_core_block_size (core, fsz);
r_core_print_disasm_instructions (core, fsz, 0);
r_core_block_size (core, bsz);
} else {
r_core_print_disasm_instructions (core,
core->blocksize, l);
}
}
break;
case 'r': // pir
{
RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset,
R_ANAL_FCN_TYPE_FCN | R_ANAL_FCN_TYPE_SYM);
if (f) {
func_walk_blocks (core, f, input[1], 'I');
} else {
eprintf ("Cannot find function at 0x%08"PFMT64x "\n", core->offset);
core->num->value = 0;
}
}
break;
case 'b': //pib
{
RAnalBlock *b = r_anal_bb_from_offset (core->anal, core->offset);
if (b) {
r_core_print_disasm_instructions (core, b->size - (core->offset - b->addr), 0);
} else {
eprintf ("Cannot find function at 0x%08"PFMT64x "\n", core->offset);
core->num->value = 0;
}
}
break;
default:
if (l != 0) {
r_core_print_disasm_instructions (core, 0, l);
}
break;
}
goto beach;
case 'D': // "pD"
case 'd': // "pd"
{
ut64 current_offset = core->offset;
ut32 new_bits = -1;
ut64 use_blocksize = core->blocksize;
int segoff, old_bits, pos = 0;
ut8 settings_changed = false, bw_disassemble = false;
char *new_arch = NULL, *old_arch = NULL;
ut32 pd_result = false, processed_cmd = false;
old_arch = strdup (r_config_get (core->config, "asm.arch"));
segoff = r_config_get_i (core->config, "asm.segoff");
old_bits = r_config_get_i (core->config, "asm.bits");
if (input[1] && input[2]) {
char *p = strchr (input, ' ');
if (p) {
int len = (int) r_num_math (core->num, p);
if (len == 0) {
break;
}
}
}
// XXX - this is necessay b/c radare will automatically
// swap flags if arch is x86 and bits == 16 see: __setsegoff in config.c
// get to the space
if (input[0]) {
for (pos = 1; pos < R_BIN_SIZEOF_STRINGS && input[pos]; pos++) {
if (input[pos] == ' ') {
break;
}
}
}
if (!process_input (core, input + pos, &use_blocksize, &new_arch, &new_bits)) {
// XXX - print help message
// return false;
}
if (!use_blocksize) {
use_blocksize = core->blocksize;
}
if (core->blocksize_max < use_blocksize && (int) use_blocksize < -core->blocksize_max) {
eprintf ("This block size is too big (%"PFMT64d "<%"PFMT64d "). Did you mean 'p%c @ 0x%08"PFMT64x "' instead?\n",
(ut64) core->blocksize_max, (ut64) use_blocksize, input[0], (ut64) use_blocksize);
free (old_arch);
free (new_arch);
goto beach;
} else if (core->blocksize_max < use_blocksize && (int) use_blocksize > -core->blocksize_max) {
bw_disassemble = true;
use_blocksize = -use_blocksize;
}
l = use_blocksize;
if (!new_arch) {
new_arch = strdup (old_arch);
}
if (new_bits == -1) {
new_bits = old_bits;
}
if (strcmp (new_arch, old_arch) != 0 || new_bits != old_bits) {
r_core_set_asm_configs (core, new_arch, new_bits, segoff);
// hints handy for arm
r_anal_hint_set_bits (core->anal, core->offset, new_bits);
settings_changed = true;
}
switch (input[1]) {
case 'C': // "pdC"
r_core_disasm_pdi (core, l, 0, 'C');
pd_result = 0;
processed_cmd = true;
break;
case 'c': // "pdc" // "pDc"
r_core_pseudo_code (core, input + 2);
pd_result = 0;
processed_cmd = true;
break;
case 'k': // "pdk" -print class
{
int len = 0;
ut64 at = findClassBounds (core, r_str_chop_ro (input + 2), &len);
return r_core_cmdf (core, "pD %d @ %"PFMT64d, len, at);
}
case 'i': // "pdi" // "pDi"
processed_cmd = true;
if (*input == 'D') {
r_core_disasm_pdi (core, 0, l, 0);
} else {
r_core_disasm_pdi (core, l, 0, 0);
}
pd_result = 0;
break;
case 'a': // "pda"
processed_cmd = true;
r_core_print_disasm_all (core, core->offset, l, len, input[2]);
pd_result = true;
break;
case 'R': // "pdR"
processed_cmd = true;
disasm_recursive (core, core->offset, 'D');
pd_result = true;
break;
case 'r': // "pdr"
processed_cmd = true;
{
RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset, 0);
// R_ANAL_FCN_TYPE_FCN|R_ANAL_FCN_TYPE_SYM);
if (f) {
func_walk_blocks (core, f, input[2], 'D');
} else {
eprintf ("Cannot find function at 0x%08"PFMT64x "\n", core->offset);
}
pd_result = true;
}
break;
case 'b': // "pdb"
processed_cmd = true;
{
RAnalBlock *b = r_anal_bb_from_offset (core->anal, core->offset);
if (b) {
ut8 *block = malloc (b->size + 1);
if (block) {
r_core_read_at (core, b->addr, block, b->size);
core->num->value = r_core_print_disasm (
core->print, core, b->addr, block,
b->size, 9999, 0, 2);
free (block);
pd_result = 0;
}
} else {
eprintf ("Cannot find function at 0x%08"PFMT64x "\n", core->offset);
core->num->value = 0;
}
}
break;
case 's': // "pds" and "pdsf"
processed_cmd = true;
if (input[2] == '?') {
r_cons_printf ("Usage: pds[f] - sumarize N bytes or function (pdfs)\n");
} else {
disasm_strings (core, input, NULL);
}
break;
case 'f': // "pdf"
processed_cmd = true;
if (input[2] == '?') {
r_cons_printf ("Usage: pdf[sj] - disassemble function (summary+cjmp), json)\n");
} else if (input[2] == 's') { // "pdfs"
ut64 oseek = core->offset;
int oblock = core->blocksize;
RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset,
R_ANAL_FCN_TYPE_FCN | R_ANAL_FCN_TYPE_SYM);
if (f) {
r_core_seek (core, oseek, SEEK_SET);
r_core_block_size (core, r_anal_fcn_size (f));
disasm_strings (core, input, f);
r_core_block_size (core, oblock);
r_core_seek (core, oseek, SEEK_SET);
}
processed_cmd = true;
} else {
ut32 bsz = core->blocksize;
RAnalFunction *f = r_anal_get_fcn_in (core->anal, core->offset, 0);
// R_ANAL_FCN_TYPE_FCN | R_ANAL_FCN_TYPE_SYM);
RAnalFunction *tmp_func;
ut32 cont_size = 0;
RListIter *locs_it = NULL;
if (f && f->fcn_locs) {
locs_it = f->fcn_locs->head;
}
if (f && input[2] == 'j') { // "pdfj"
ut8 *func_buf = NULL, *loc_buf = NULL;
ut32 fcn_size = r_anal_fcn_realsize (f);
cont_size = tmp_get_contsize (f);
r_cons_printf ("{");
r_cons_printf ("\"name\":\"%s\"", f->name);
r_cons_printf (",\"size\":%d", fcn_size);
r_cons_printf (",\"addr\":%"PFMT64d, f->addr);
r_cons_printf (",\"ops\":[");
// instructions are all outputted as a json list
func_buf = calloc (cont_size, 1);
bool first = true;
if (func_buf) {
// TODO: can loc jump to another locs?
for (; locs_it && (tmp_func = locs_it->data); locs_it = locs_it->n) {
if (tmp_func->addr > f->addr) {
break;
}
cont_size = tmp_get_contsize (tmp_func);
loc_buf = calloc (cont_size, 1);
r_io_read_at (core->io, tmp_func->addr, loc_buf, cont_size);
if (!first) {
r_cons_print (",");
}
r_core_print_disasm_json (core, tmp_func->addr, loc_buf, cont_size, 0);
first = false;
free (loc_buf);
}
cont_size = tmp_get_contsize (f);
r_io_read_at (core->io, f->addr, func_buf, cont_size);
if (!first) {
r_cons_print (",");
}
r_core_print_disasm_json (core, f->addr, func_buf, cont_size, 0);
first = false;
free (func_buf);
for (; locs_it && (tmp_func = locs_it->data); locs_it = locs_it->n) {
cont_size = tmp_get_contsize (tmp_func);
loc_buf = calloc (cont_size, 1);
r_io_read_at (core->io, tmp_func->addr, loc_buf, cont_size);
if (!first) {
r_cons_print (",");
}
r_core_print_disasm_json (core, tmp_func->addr, loc_buf, cont_size, 0);
first = false;
free (loc_buf);
}
} else {
eprintf ("cannot allocate %d bytes\n", fcn_size);
}
r_cons_printf ("]}\n");
pd_result = 0;
} else if (f) {
#if 0
for (; locs_it && (tmp_func = locs_it->data); locs_it = locs_it->n) {
if (tmp_func->addr > f->addr) {
break;
}
cont_size = tmp_get_contsize (tmp_func);
r_core_cmdf (core, "pD %d @ 0x%08" PFMT64x, cont_size, tmp_func->addr);
}
cont_size = tmp_get_contsize (f);
#endif
r_core_cmdf (core, "pD %d @ 0x%08" PFMT64x,
f->_size > 0 ? f->_size: r_anal_fcn_realsize (f), f->addr);
#if 0
for (; locs_it && (tmp_func = locs_it->data); locs_it = locs_it->n) {
cont_size = tmp_get_contsize (tmp_func);
r_core_cmdf (core, "pD %d @ 0x%08" PFMT64x, cont_size, tmp_func->addr);
}
#endif
pd_result = 0;
} else {
eprintf ("pdf: Cannot find function at 0x%08"PFMT64x "\n", core->offset);
processed_cmd = true;
core->num->value = 0;
}
if (bsz != core->blocksize) {
r_core_block_size (core, bsz);
}
}
l = 0;
break;
case 'l': // pdl
processed_cmd = true;
{
RAsmOp asmop;
int j, ret;
const ut8 *buf = core->block;
if (!l) {
l = len;
}
r_cons_break_push (NULL, NULL);
for (i = j = 0; i < core->blocksize && j < l; i += ret, j++) {
ret = r_asm_disassemble (core->assembler, &asmop, buf + i, len - i);
if (r_cons_is_breaked ()) {
break;
}
r_cons_printf ("%d\n", ret);
if (ret < 1) {
ret = 1;
}
}
r_cons_break_pop ();
pd_result = 0;
}
break;
case 'j': // pdj
processed_cmd = true;
if (*input == 'D') {
cmd_pDj (core, input + 2);
} else {
cmd_pdj (core, input + 2);
}
r_cons_newline ();
pd_result = 0;
break;
case 0:
/* "pd" -> will disassemble blocksize/4 instructions */
if (*input == 'd' && !core->fixedblock) {
l /= 4;
}
break;
case '?': // "pd?"
processed_cmd = true;
const char *help_msg[] = {
"Usage:", "p[dD][ajbrfils] [sz] [arch] [bits]", " # Print Disassembly",
"NOTE: ", "len", "parameter can be negative",
"NOTE: ", "", "Pressing ENTER on empty command will repeat last pd command and also seek to end of disassembled range.",
"pd", " N", "disassemble N instructions",
"pd", " -N", "disassemble N instructions backward",
"pD", " N", "disassemble N bytes",
"pda", "", "disassemble all possible opcodes (byte per byte)",
"pdb", "", "disassemble basic block",
"pdc", "", "pseudo disassembler output in C-like syntax",
"pdC", "", "show comments found in N instructions",
"pdk", "", "disassemble all methods of a class",
"pdj", "", "disassemble to json",
"pdr", "", "recursive disassemble across the function graph",
"pdf", "", "disassemble function",
"pdi", "", "like 'pi', with offset and bytes",
"pdl", "", "show instruction sizes",
// "pds", "", "disassemble with back sweep (greedy disassembly backwards)",
"pds", "[?]", "disassemble summary (strings, calls, jumps, refs) (see pdsf and pdfs)",
"pdt", "", "disassemble the debugger traces (see atd)",
NULL
};
r_core_cmd_help (core, help_msg);
pd_result = 0;
}
if (!processed_cmd) {
ut64 addr = core->offset;
ut8 *block = NULL;
ut64 start;
if (bw_disassemble) {
block = malloc (core->blocksize);
if (l < 0) {
l = -l;
}
if (block) {
if (*input == 'D') { // pD
free (block);
block = malloc (l);
r_core_read_at (core, addr - l, block, l); // core->blocksize);
core->num->value = r_core_print_disasm (core->print, core, addr - l, block, l, l, 0, 1);
} else { // pd
const int bs = core->blocksize;
int instr_len;
if (r_core_prevop_addr (core, core->offset, l, &start)) {
// We have some anal_info.
instr_len = core->offset - start;
} else {
// anal ignorance.
r_core_asm_bwdis_len (core, &instr_len, &addr, l);
}
ut64 prevaddr = core->offset;
r_core_seek (core, prevaddr - instr_len, true);
block = realloc (block, R_MAX (instr_len, bs));
memcpy (block, core->block, bs);
r_core_read_at (core, addr + bs, block + bs, instr_len - bs); // core->blocksize);
core->num->value = r_core_print_disasm (core->print,
core, core->offset, block, instr_len, l, 0, 1);
r_core_seek (core, prevaddr, true);
}
}
} else {
const int bs = core->blocksize;
// XXX: issue with small blocks
if (*input == 'D' && l > 0) {
if (l < 1) {
// eprintf ("Block size too small\n");
return 1;
}
if (l > R_CORE_MAX_DISASM) { // pD
eprintf ("Block size too big\n");
return 1;
}
block = malloc (l);
if (block) {
if (l > core->blocksize) {
r_core_read_at (core, addr, block, l); // core->blocksize);
} else {
memcpy (block, core->block, l);
}
core->num->value = r_core_print_disasm (core->print,
core, addr, block, l, l, 0, 1);
} else {
eprintf ("Cannot allocate %d bytes\n", l);
}
} else {
block = malloc (R_MAX (l * 10, bs));
memcpy (block, core->block, bs);
r_core_read_at (core, addr + bs, block + bs, (l * 10) - bs); // core->blocksize);
core->num->value = r_core_print_disasm (core->print, core, addr, block, l * 10, l, 0, 0);
}
}
free (block);
}
core->offset = current_offset;
// change back asm setting if they were changed
if (settings_changed) {
r_core_set_asm_configs (core, old_arch, old_bits, segoff);
r_anal_hint_set_bits (core->anal, core->offset, old_bits);
r_anal_build_range_on_hints (core->anal);
r_core_seek_archbits (core, core->offset);
}
free (old_arch);
free (new_arch);
if (processed_cmd) {
ret = pd_result;
goto beach;
}
}
break;
case 's': // "ps"
switch (input[1]) {
case '?': {
const char *help_msg[] = {
"Usage:", "ps[zpw] [N]", "Print String",
"ps", "", "print string",
"pss", "", "print string in screen (wrap width)",
"psi", "", "print string inside curseek",
"psb", "", "print strings in current block",
"psx", "", "show string with escaped chars",
"psz", "", "print zero terminated string",
"psp", "", "print pascal string",
"psu", "", "print utf16 unicode (json)",
"psw", "", "print 16bit wide string",
"psW", "", "print 32bit wide string",
"psj", "", "print string in JSON format",
NULL
};
r_core_cmd_help (core, help_msg);
}
break;
case 'j': // "psj"
if (l > 0) {
char *str, *type;
ut64 vaddr;
RIOSection *section;
if (input[2] == ' ' && input[3]) {
len = r_num_math (core->num, input + 3);
len = R_MIN (len, core->blocksize);
}
/* try to get the section that contains the
* string, by considering current offset as
* paddr and if it isn't, trying to consider it
* as vaddr. */
vaddr = r_io_section_maddr_to_vaddr (core->io, core->offset);
section = core->io->section;
if (vaddr == UT64_MAX) {
section = r_io_section_vget (core->io, core->offset);
if (section) {
vaddr = core->offset;
}
}
r_cons_printf ("{\"string\":");
str = r_str_utf16_encode ((const char *) core->block, len);
r_cons_printf ("\"%s\"", str);
r_cons_printf (",\"offset\":%"PFMT64d, core->offset);
r_cons_printf (",\"section\":\"%s\"", vaddr == UT64_MAX? "unknown": section->name);
r_cons_printf (",\"length\":%d", len);
switch (get_string_type (core->block, len)) {
case 'w': type = "wide"; break;
case 'a': type = "ascii"; break;
case 'u': type = "utf"; break;
default: type = "unknown"; break;
}
r_cons_printf (",\"type\":\"%s\"}", type);
r_cons_newline ();
free (str);
}
break;
case 'i': // psi
if (l > 0) {
ut8 *buf = malloc (1024);
int delta = 512;
ut8 *p, *e, *b;
if (!buf) {
return 0;
}
if (core->offset < delta) {
delta = core->offset;
}
p = buf + delta;
r_core_read_at (core, core->offset - delta, buf, 1024);
for (b = p; b > buf; b--) {
if (!IS_PRINTABLE (*b)) {
b++;
break;
}
}
for (e = p; e < (buf + 1024); e++) {
if (!IS_PRINTABLE (*b)) {
*e = 0;
e--;
break;
}
}
r_cons_strcat ((const char *) b);
r_cons_newline ();
// r_print_string (core->print, core->offset, b,
// (size_t)(e-b), 0);
free (buf);
}
break;
case 'x': // "psx"
if (l > 0) {
r_print_string (core->print, core->offset, core->block, len, 0);
}
break;
case 'b': // "psb"
if (l > 0) {
int quiet = input[2] == 'q'; // "psbq"
char *s = malloc (core->blocksize + 1);
int i, j, hasnl = 0;
if (s) {
memset (s, 0, core->blocksize);
if (!quiet) {
r_print_offset (core->print, core->offset, 0, 0, 0, 0, NULL);
}
// TODO: filter more chars?
for (i = j = 0; i < core->blocksize; i++) {
char ch = (char) core->block[i];
if (!ch) {
if (!hasnl) {
s[j] = 0;
if (*s) {
r_cons_println (s);
if (!quiet) {
r_print_offset (core->print, core->offset + i, 0, 0, 0, 0, NULL);
}
}
j = 0;
s[0] = 0;
}
hasnl = 1;
continue;
}
hasnl = 0;
if (IS_PRINTABLE (ch)) {
s[j++] = ch;
}
}
s[j] = 0;
r_cons_print (s); // TODO: missing newline?
free (s);
}
}
break;
case 'z': // psz
if (l > 0) {
char *s = malloc (core->blocksize + 1);
int i, j;
if (s) {
memset (s, 0, core->blocksize);
// TODO: filter more chars?
for (i = j = 0; i < core->blocksize; i++) {
char ch = (char) core->block[i];
if (!ch) {
break;
}
if (IS_PRINTABLE (ch)) {
s[j++] = ch;
}
}
r_cons_println (s);
free (s);
}
}
break;
case 'p': // "psp"
if (l > 0) {
int mylen = core->block[0];
// TODO: add support for 2-4 byte length pascal strings
if (mylen < core->blocksize) {
r_print_string (core->print, core->offset,
core->block + 1, mylen, R_PRINT_STRING_ZEROEND);
core->num->value = mylen;
} else {
core->num->value = 0; // error
}
}
break;
case 'w': // "psw"
if (l > 0) {
r_print_string (core->print, core->offset, core->block, len,
R_PRINT_STRING_WIDE | R_PRINT_STRING_ZEROEND);
}
break;
case 'W': // "psw"
if (l > 0) {
r_print_string (core->print, core->offset, core->block, len,
R_PRINT_STRING_WIDE32 | R_PRINT_STRING_ZEROEND);
}
break;
case ' ':
r_print_string (core->print, core->offset, core->block, l, 0);
break;
case 'u':
if (l > 0) {
char *str = r_str_utf16_encode (
(const char *) core->block, len);
r_cons_println (str);
free (str);
}
break;
case 's': // "pss"
if (l > 0) {
int h, w = r_cons_get_size (&h);
int colwidth = r_config_get_i (core->config, "hex.cols") * 2;
core->print->width = (colwidth == 32)?w: colwidth; // w;
int bs = core->blocksize;
if (len == bs) {
len = (h * w) / 3;
r_core_block_size (core, len);
}
r_print_string (core->print, core->offset, core->block,
len, R_PRINT_STRING_WRAP);
r_core_block_size (core, bs);
}
break;
default:
if (l > 0) {
r_print_string (core->print, core->offset, core->block,
len, R_PRINT_STRING_ZEROEND);
}
break;
}
break;
case 'm': // "pm"
if (input[1] == '?') {
r_cons_printf ("|Usage: pm [file|directory]\n"
"| r_magic will use given file/dir as reference\n"
"| output of those magic can contain expressions like:\n"
"| foo@0x40 # use 'foo' magic file on address 0x40\n"
"| @0x40 # use current magic file on address 0x40\n"
"| \\n # append newline\n"
"| e dir.magic # defaults to "R_MAGIC_PATH "\n"
"| /m # search for magic signatures\n"
);
} else {
// XXX: need cmd_magic header for r_core_magic
if (l > 0) {
r_core_magic (core, input + 1, true);
}
}
break;
case 'u': // "pu"
if (input[1] == '?') {
r_cons_printf ("|Usage: pu[w] [len] print N url"
"encoded bytes (w=wide)\n");
} else {
if (l > 0) {
r_print_string (core->print, core->offset, core->block, len,
R_PRINT_STRING_URLENCODE |
((input[1] == 'w')? R_PRINT_STRING_WIDE: 0));
}
}
break;
case 'c': // "pc"
if (l) {
const ut8 *buf = core->block;
int i = 0;
int j = 0;
if (input[1] == 'A') { // "pcA"
r_cons_printf ("sub_0x%08"PFMT64x ":\n", core->offset);
for (i = 0; i < len; i++) {
RAsmOp asmop = {
0
};
(void) r_asm_disassemble (core->assembler, &asmop, buf + i, len - i);
int sz = asmop.size;
if (sz < 1) {
sz = 1;
}
r_cons_printf (" .byte ");
for (j = 0; j < sz; j++) {
r_cons_printf ("%s0x%02x", j? ", ": "", buf[i]);
i++;
}
r_cons_printf (" // %s\n", asmop.buf_asm);
i--;
}
r_cons_printf (".equ shellcode_len, %d\n", len);
} else {
r_print_code (core->print, core->offset, core->block, len, input[1]);
}
}
break;
case 'C': // "pC"
switch (input[1]) {
case 0:
case ' ':
case 'd':
cmd_pCd (core, input + 2);
break;
case 'D':
cmd_pCD (core, input + 2);
break;
case 'a':
cmd_pCx (core, input + 2, "pxa");
break;
case 'A':
cmd_pCx (core, input + 2, "pxA");
break;
case 'x':
cmd_pCx (core, input + 2, "px");
break;
case 'w':
cmd_pCx (core, input + 2, "pxw");
break;
case 'c':
cmd_pCx (core, input + 2, "pc");
break;
default:
eprintf ("Usage: pCd\n");
break;
}
break;
case 'r': // "pr"
switch (input[1]) {
case 'c': // "prc" // color raw dump
cmd_prc (core, len);
break;
case '?':
r_cons_printf ("|Usage: pr[glx] [size]\n"
"| prc: print bytes as colors in palette\n"
"| prl: print raw with lines offsets\n"
"| prx: printable chars with real offset (hyew)\n"
"| prg[?]: print raw GUNZIPped block\n"
"| prz: print raw zero terminated string\n");
break;
case 'g': // "prg" // gunzip
switch (input[2]) {
case '?':
r_cons_printf ("|Usage: prg[io]\n"
"| prg: print gunzipped data of current block\n"
"| prgi: show consumed bytes when inflating\n"
"| prgo: show output bytes after inflating\n");
break;
case 'i':
{
int sz, outlen = 0;
int inConsumed = 0;
ut8 *in, *out;
in = core->block;
sz = core->blocksize;
out = r_inflate (in, sz, &inConsumed, &outlen);
r_cons_printf ("%d\n", inConsumed);
free (out);
}
break;
case 'o':
{
int sz, outlen = 0;
ut8 *in, *out;
in = core->block;
sz = core->blocksize;
out = r_inflate (in, sz, NULL, &outlen);
r_cons_printf ("%d\n", outlen);
free (out);
}
break;
default:
{
int sz, outlen = 0;
ut8 *in, *out;
in = core->block;
sz = core->blocksize;
out = r_inflate (in, sz, NULL, &outlen);
if (out) {
r_cons_memcat ((const char *) out, outlen);
}
free (out);
}
}
break;
/* TODO: compact */
case 'l': // "prl"
if (l != 0) {
printraw (core, len, 1);
}
break;
case 'x': // "prx"
if (l != 0) {
printraw (core, len, 2);
}
break;
case 'z': // "prz"
if (l != 0) {
printraw (core, strlen ((const char *) core->block), 0);
}
break;
default:
if (l != 0) {
printraw (core, len, 0);
}
break;
}
break;
case '3': // "p3" [file]
if (input[1] == '?') {
eprintf ("Usage: p3 [file] - print 3D stereogram image of current block\n");
} else if (input[1] == ' ') {
char *data = r_file_slurp (input + 2, NULL);
char *res = r_print_stereogram (data, 78, 20);
r_print_stereogram_print (core->print, res);
// if (data) eprintf ("%s\n", data);
free (res);
free (data);
} else {
char *res = r_print_stereogram_bytes (core->block, core->blocksize);
r_print_stereogram_print (core->print, res);
free (res);
}
break;
case 'x': // "px"
{
int show_offset = r_config_get_i (core->config, "asm.offset");
if (show_offset) {
core->print->flags |= R_PRINT_FLAGS_OFFSET;
} else {
core->print->flags &= ~R_PRINT_FLAGS_OFFSET;
}
if (r_config_get_i (core->config, "hex.header")) {
core->print->flags |= R_PRINT_FLAGS_HEADER;
} else {
core->print->flags &= ~R_PRINT_FLAGS_HEADER;
}
/* Don't show comments in default case */
core->print->use_comments = false;
}
r_cons_break_push (NULL, NULL);
switch (input[1]) {
case 'j':
r_print_jsondump (core->print, core->block, core->blocksize, 8);
break;
case '/':
r_core_print_examine (core, input + 2);
break;
case '?': {
const char *help_msg[] = {
"Usage:", "px[0afoswqWqQ][f]", " # Print heXadecimal",
"px", "", "show hexdump",
"px/", "", "same as x/ in gdb (help x)",
"px0", "", "8bit hexpair list of bytes until zero byte",
"pxa", "", "show annotated hexdump",
"pxA", "", "show op analysis color map",
"pxb", "", "dump bits in hexdump form",
"pxc", "", "show hexdump with comments",
"pxd", "[124]", "signed integer dump (1 byte, 2 and 4)",
"pxe", "", "emoji hexdump! :)",
"pxi", "", "HexII compact binary representation",
"pxf", "", "show hexdump of current function",
"pxh", "", "show hexadecimal half-words dump (16bit)",
"pxH", "", "same as above, but one per line",
"pxl", "", "display N lines (rows) of hexdump",
"pxo", "", "show octal dump",
"pxq", "", "show hexadecimal quad-words dump (64bit)",
"pxQ", "", "same as above, but one per line",
"pxr", "[j]", "show words with references to flags and code",
"pxs", "", "show hexadecimal in sparse mode",
"pxt", "[*.] [origin]", "show delta pointer table in r2 commands",
"pxw", "", "show hexadecimal words dump (32bit)",
"pxW", "", "same as above, but one per line",
NULL
};
r_core_cmd_help (core, help_msg);
}
break;
case '0': // "px0"
if (l) {
int len = r_str_nlen ((const char *)core->block, core->blocksize);
r_print_bytes (core->print, core->block, len, "%02x");
}
break;
case 'a': // "pxa"
if (l != 0) {
if (len % 16) {
len += 16 - (len % 16);
}
annotated_hexdump (core, input + 2, len);
}
break;
case 'x': // "pxx"
if (l != 0) {
core->print->flags |= R_PRINT_FLAGS_NONHEX;
r_print_hexdump (core->print, core->offset,
core->block, len, 8, 1, 1);
core->print->flags &= ~R_PRINT_FLAGS_NONHEX;
}
break;
case 'X': // "pxX"
if (l != 0) {
ut8 *buf = calloc (len, 4);
if (buf) {
r_io_read_at (core->io, core->offset, buf, len * 4);
core->print->flags |= R_PRINT_FLAGS_NONHEX;
r_print_hexdump (core->print, core->offset, buf, len * 4, 8, 1, 1);
core->print->flags &= ~R_PRINT_FLAGS_NONHEX;
free (buf);
}
}
break;
case 'A': // "pxA"
if (input[2] == '?') {
eprintf ("Usage: pxA [len] # f.ex: pxA 4K\n"
" mv move,lea,li\n"
" -> push\n"
" <- pop\n"
" io in/out ops\n"
" $$ int/swi/trap/new\n"
" .. nop\n"
" +-*/ math ops\n"
" |&^ bin ops\n"
" <<>> shift ops\n"
" _J jump\n"
" cJ conditional jump\n"
" _C call\n"
" _R ret\n"
" == cmp/test\n"
" XX invalid\n");
} else if (l) {
cmd_print_pxA (core, len, input + 1);
}
break;
case 'b': // "pxb"
if (l) {
ut32 n;
int i, c;
char buf[32];
for (i = c = 0; i < len; i++, c++) {
if (c == 0) {
r_print_offset (core->print,
core->offset + i, 0, 0, 0, 0, NULL);
}
r_str_bits (buf, core->block + i, 8, NULL);
// split bits
memmove (buf + 5, buf + 4, 5);
buf[4] = 0;
r_cons_printf ("%s.%s ", buf, buf + 5);
if (c == 3) {
const ut8 *b = core->block + i - 3;
int (*k) (const ut8 *, int) = cmd_pxb_k;
const char (*p) (char) = cmd_pxb_p;
n = k (b, 0) | k (b, 1) | k (b, 2) | k (b, 3);
r_cons_printf ("0x%08x %c%c%c%c\n",
n, p (b[0]), p (b[1]), p (b[2]), p (b[3]));
c = -1;
}
}
}
break;
case 'c':
// LOL? :D
core->print->use_comments = core->print->flags & R_PRINT_FLAGS_COMMENT;
if (l) {
ut64 from = r_config_get_i (core->config, "diff.from");
ut64 to = r_config_get_i (core->config, "diff.to");
if (from == to && !from) {
if (!r_core_block_size (core, len)) {
len = core->blocksize;
}
r_print_hexdump (core->print, core->offset,
core->block, len, 16, 1, 1);
} else {
r_core_print_cmp (core, from, to);
}
core->num->value = len;
}
break;
case 'i': // "pxi"
if (l != 0) {
r_print_hexii (core->print, core->offset, core->block,
core->blocksize, r_config_get_i (core->config, "hex.cols"));
}
break;
case 'o': // "pxo"
if (l != 0) {
r_print_hexdump (core->print, core->offset,
core->block, len, 8, 1, 1);
}
break;
case 't': // "pxt"
if (input[2] == '?') {
r_cons_printf ("Usage: pxt[.*] - print delta pointer table\n");
} else {
ut64 origin = core->offset;
const char *arg = strchr (input, ' ');
if (arg) {
origin = r_num_math (core->num, arg + 1);
}
_pointer_table (core, origin, core->offset, core->block, len, 4, input[2]);
}
break;
case 'd': // "pxd"
if (l != 0) {
switch (input[2]) {
case '1':
// 1 byte signed words (byte)
r_print_hexdump (core->print, core->offset,
core->block, len, -1, 4, 1);
break;
case '2':
// 2 byte signed words (short)
r_print_hexdump (core->print, core->offset,
core->block, len, -10, 2, 1);
break;
case '8':
r_print_hexdump (core->print, core->offset,
core->block, len, -8, 4, 1);
break;
case '4':
default:
// 4 byte signed words
r_print_hexdump (core->print, core->offset,
core->block, len, 10, 4, 1);
}
}
break;
case 'w': // "pxw"
if (l != 0) {
if (input[2] == 'j') {
r_print_jsondump (core->print, core->block, len, 32);
} else {
r_print_hexdump (core->print, core->offset, core->block, len, 32, 4, 1);
}
}
break;
case 'W': // "pxW"
if (l) {
len = len - (len % 4);
for (i = 0; i < len; i += 4) {
const char *a, *b;
char *fn;
RPrint *p = core->print;
RFlagItem *f;
ut32 v = r_read_ble32 (core->block + i, core->print->big_endian);
if (p && p->colorfor) {
a = p->colorfor (p->user, v, true);
if (a && *a) {
b = Color_RESET;
} else {
a = b = "";
}
} else {
a = b = "";
}
f = r_flag_get_at (core->flags, v, true);
fn = NULL;
if (f) {
st64 delta = (v - f->offset);
if (delta >= 0 && delta < 8192) {
if (v == f->offset) {
fn = strdup (f->name);
} else {
fn = r_str_newf ("%s+%d",
f->name, v - f->offset);
}
}
}
r_cons_printf ("0x%08"PFMT64x " %s0x%08"PFMT64x "%s %s\n",
(ut64) core->offset + i, a, (ut64) v, b, fn? fn: "");
free (fn);
}
}
break;
case 'r': // "pxr"
if (l) {
if (input[2] == 'j') {
int base = core->anal->bits;
r_cons_printf ("[");
const char *comma = "";
const ut8 *buf = core->block;
int withref = 0;
for (i = 0; i < core->blocksize; i += (base / 4)) {
ut64 addr = core->offset + i;
ut64 *foo = (ut64 *) (buf + i);
ut64 val = *foo;
if (base == 32) {
val &= UT32_MAX;
}
r_cons_printf ("%s{\"addr\":%"PFMT64d ",\"value\":%"\
PFMT64d, comma, addr, val);
comma = ",";
// XXX: this only works in little endian
withref = 0;
if (core->print->hasrefs) {
const char *rstr = core->print->hasrefs (core->print->user, val, true);
if (rstr && *rstr) {
char *ns; // r_str_ansi_chop (ns, -1, 0);
ns = r_str_escape (rstr);
r_cons_printf (",\"ref\":\"%s\"}", *ns == ' '? ns + 1: ns);
free (ns);
withref = 1;
}
}
if (!withref) {
r_cons_printf ("}");
}
}
r_cons_printf ("]\n");
} else {
const int ocols = core->print->cols;
int bitsize = core->assembler->bits;
/* Thumb is 16bit arm but handles 32bit data */
if (bitsize == 16) {
bitsize = 32;
}
core->print->cols = 1;
core->print->flags |= R_PRINT_FLAGS_REFS;
r_cons_break_push (NULL, NULL);
r_print_hexdump (core->print, core->offset,
core->block, len,
bitsize, bitsize / 8, 1);
r_cons_break_pop ();
core->print->flags &= ~R_PRINT_FLAGS_REFS;
core->print->cols = ocols;
}
}
break;
case 'h': // pxh
if (l) {
if (input[2] == 'j') {
r_print_jsondump (core->print, core->block, len, 16);
} else {
r_print_hexdump (core->print, core->offset,
core->block, len, 32, 2, 1);
}
}
break;
case 'H':
if (l != 0) {
len = len - (len % 2);
for (i = 0; i < len; i += 2) {
const char *a, *b;
char *fn;
RPrint *p = core->print;
RFlagItem *f;
ut64 v = (ut64) r_read_ble16 (core->block + i, p->big_endian);
if (p && p->colorfor) {
a = p->colorfor (p->user, v, true);
if (a && *a) {
b = Color_RESET;
} else {
a = b = "";
}
} else {
a = b = "";
}
f = r_flag_get_at (core->flags, v, true);
fn = NULL;
if (f) {
st64 delta = (v - f->offset);
if (delta >= 0 && delta < 8192) {
if (v == f->offset) {
fn = strdup (f->name);
} else {
fn = r_str_newf ("%s+%d", f->name, v - f->offset);
}
}
}
r_cons_printf ("0x%08"PFMT64x " %s0x%04"PFMT64x "%s %s\n",
(ut64) core->offset + i, a, v, b, fn? fn: "");
free (fn);
}
}
break;
case 'q': // "pxq"
if (l) {
if (input[2] == 'j') {
r_print_jsondump (core->print, core->block, len, 64);
} else {
r_print_hexdump (core->print, core->offset, core->block, len, 64, 8, 1);
}
}
break;
case 'Q': // "pxQ"
// TODO. show if flag name, or inside function
if (l) {
len = len - (len % 8);
for (i = 0; i < len; i += 8) {
const char *a, *b;
char *fn;
RPrint *p = core->print;
RFlagItem *f;
ut64 v = r_read_ble64 (core->block + i, p->big_endian);
if (p && p->colorfor) {
a = p->colorfor (p->user, v, true);
if (a && *a) {
b = Color_RESET;
} else {
a = b = "";
}
} else {
a = b = "";
}
f = r_flag_get_at (core->flags, v, true);
fn = NULL;
if (f) {
st64 delta = (v - f->offset);
if (delta >= 0 && delta < 8192) {
if (v == f->offset) {
fn = strdup (f->name);
} else {
fn = r_str_newf ("%s+%d", f->name, v - f->offset);
}
}
}
r_cons_printf ("0x%08"PFMT64x " %s0x%016"PFMT64x "%s %s\n",
(ut64) core->offset + i, a, v, b, fn? fn: "");
free (fn);
}
}
break;
case 's': // "pxs"
if (l) {
core->print->flags |= R_PRINT_FLAGS_SPARSE;
r_print_hexdump (core->print, core->offset, core->block, len, 16, 1, 1);
core->print->flags &= (((ut32) - 1) & (~R_PRINT_FLAGS_SPARSE));
}
break;
case 'e': // "pxe" // emoji dump
if (l != 0) {
int j;
char emoji[] = {
'\x8c', '\x80', '\x8c', '\x82', '\x8c', '\x85', '\x8c', '\x88',
'\x8c', '\x99', '\x8c', '\x9e', '\x8c', '\x9f', '\x8c', '\xa0',
'\x8c', '\xb0', '\x8c', '\xb1', '\x8c', '\xb2', '\x8c', '\xb3',
'\x8c', '\xb4', '\x8c', '\xb5', '\x8c', '\xb7', '\x8c', '\xb8',
'\x8c', '\xb9', '\x8c', '\xba', '\x8c', '\xbb', '\x8c', '\xbc',
'\x8c', '\xbd', '\x8c', '\xbe', '\x8c', '\xbf', '\x8d', '\x80',
'\x8d', '\x81', '\x8d', '\x82', '\x8d', '\x83', '\x8d', '\x84',
'\x8d', '\x85', '\x8d', '\x86', '\x8d', '\x87', '\x8d', '\x88',
'\x8d', '\x89', '\x8d', '\x8a', '\x8d', '\x8b', '\x8d', '\x8c',
'\x8d', '\x8d', '\x8d', '\x8e', '\x8d', '\x8f', '\x8d', '\x90',
'\x8d', '\x91', '\x8d', '\x92', '\x8d', '\x93', '\x8d', '\x94',
'\x8d', '\x95', '\x8d', '\x96', '\x8d', '\x97', '\x8d', '\x98',
'\x8d', '\x9c', '\x8d', '\x9d', '\x8d', '\x9e', '\x8d', '\x9f',
'\x8d', '\xa0', '\x8d', '\xa1', '\x8d', '\xa2', '\x8d', '\xa3',
'\x8d', '\xa4', '\x8d', '\xa5', '\x8d', '\xa6', '\x8d', '\xa7',
'\x8d', '\xa8', '\x8d', '\xa9', '\x8d', '\xaa', '\x8d', '\xab',
'\x8d', '\xac', '\x8d', '\xad', '\x8d', '\xae', '\x8d', '\xaf',
'\x8d', '\xb0', '\x8d', '\xb1', '\x8d', '\xb2', '\x8d', '\xb3',
'\x8d', '\xb4', '\x8d', '\xb5', '\x8d', '\xb6', '\x8d', '\xb7',
'\x8d', '\xb8', '\x8d', '\xb9', '\x8d', '\xba', '\x8d', '\xbb',
'\x8d', '\xbc', '\x8e', '\x80', '\x8e', '\x81', '\x8e', '\x82',
'\x8e', '\x83', '\x8e', '\x84', '\x8e', '\x85', '\x8e', '\x88',
'\x8e', '\x89', '\x8e', '\x8a', '\x8e', '\x8b', '\x8e', '\x8c',
'\x8e', '\x8d', '\x8e', '\x8e', '\x8e', '\x8f', '\x8e', '\x92',
'\x8e', '\x93', '\x8e', '\xa0', '\x8e', '\xa1', '\x8e', '\xa2',
'\x8e', '\xa3', '\x8e', '\xa4', '\x8e', '\xa5', '\x8e', '\xa6',
'\x8e', '\xa7', '\x8e', '\xa8', '\x8e', '\xa9', '\x8e', '\xaa',
'\x8e', '\xab', '\x8e', '\xac', '\x8e', '\xad', '\x8e', '\xae',
'\x8e', '\xaf', '\x8e', '\xb0', '\x8e', '\xb1', '\x8e', '\xb2',
'\x8e', '\xb3', '\x8e', '\xb4', '\x8e', '\xb5', '\x8e', '\xb7',
'\x8e', '\xb8', '\x8e', '\xb9', '\x8e', '\xba', '\x8e', '\xbb',
'\x8e', '\xbd', '\x8e', '\xbe', '\x8e', '\xbf', '\x8f', '\x80',
'\x8f', '\x81', '\x8f', '\x82', '\x8f', '\x83', '\x8f', '\x84',
'\x8f', '\x86', '\x8f', '\x87', '\x8f', '\x88', '\x8f', '\x89',
'\x8f', '\x8a', '\x90', '\x80', '\x90', '\x81', '\x90', '\x82',
'\x90', '\x83', '\x90', '\x84', '\x90', '\x85', '\x90', '\x86',
'\x90', '\x87', '\x90', '\x88', '\x90', '\x89', '\x90', '\x8a',
'\x90', '\x8b', '\x90', '\x8c', '\x90', '\x8d', '\x90', '\x8e',
'\x90', '\x8f', '\x90', '\x90', '\x90', '\x91', '\x90', '\x92',
'\x90', '\x93', '\x90', '\x94', '\x90', '\x95', '\x90', '\x96',
'\x90', '\x97', '\x90', '\x98', '\x90', '\x99', '\x90', '\x9a',
'\x90', '\x9b', '\x90', '\x9c', '\x90', '\x9d', '\x90', '\x9e',
'\x90', '\x9f', '\x90', '\xa0', '\x90', '\xa1', '\x90', '\xa2',
'\x90', '\xa3', '\x90', '\xa4', '\x90', '\xa5', '\x90', '\xa6',
'\x90', '\xa7', '\x90', '\xa8', '\x90', '\xa9', '\x90', '\xaa',
'\x90', '\xab', '\x90', '\xac', '\x90', '\xad', '\x90', '\xae',
'\x90', '\xaf', '\x90', '\xb0', '\x90', '\xb1', '\x90', '\xb2',
'\x90', '\xb3', '\x90', '\xb4', '\x90', '\xb5', '\x90', '\xb6',
'\x90', '\xb7', '\x90', '\xb8', '\x90', '\xb9', '\x90', '\xba',
'\x90', '\xbb', '\x90', '\xbc', '\x90', '\xbd', '\x90', '\xbe',
'\x91', '\x80', '\x91', '\x82', '\x91', '\x83', '\x91', '\x84',
'\x91', '\x85', '\x91', '\x86', '\x91', '\x87', '\x91', '\x88',
'\x91', '\x89', '\x91', '\x8a', '\x91', '\x8b', '\x91', '\x8c',
'\x91', '\x8d', '\x91', '\x8e', '\x91', '\x8f', '\x91', '\x90',
'\x91', '\x91', '\x91', '\x92', '\x91', '\x93', '\x91', '\x94',
'\x91', '\x95', '\x91', '\x96', '\x91', '\x97', '\x91', '\x98',
'\x91', '\x99', '\x91', '\x9a', '\x91', '\x9b', '\x91', '\x9c',
'\x91', '\x9d', '\x91', '\x9e', '\x91', '\x9f', '\x91', '\xa0',
'\x91', '\xa1', '\x91', '\xa2', '\x91', '\xa3', '\x91', '\xa4',
'\x91', '\xa5', '\x91', '\xa6', '\x91', '\xa7', '\x91', '\xa8',
'\x91', '\xa9', '\x91', '\xaa', '\x91', '\xae', '\x91', '\xaf',
'\x91', '\xba', '\x91', '\xbb', '\x91', '\xbc', '\x91', '\xbd',
'\x91', '\xbe', '\x91', '\xbf', '\x92', '\x80', '\x92', '\x81',
'\x92', '\x82', '\x92', '\x83', '\x92', '\x84', '\x92', '\x85'
};
int cols = core->print->cols;
if (cols < 1) {
cols = 1;
}
for (i = 0; i < len; i += cols) {
r_print_addr (core->print, core->offset + i);
for (j = i; j < i + cols; j += 1) {
ut8 *p = (ut8 *) core->block + j;
if (j < len) {
r_cons_printf ("\xf0\x9f%c%c ", emoji[*p * 2], emoji[*p * 2 + 1]);
} else {
r_cons_print (" ");
}
}
r_cons_print (" ");
for (j = i; j < len && j < i + cols; j += 1) {
ut8 *p = (ut8 *) core->block + j;
r_print_byte (core->print, "%c", j, *p);
}
r_cons_newline ();
}
}
break;
case 'l':
len = core->print->cols * len;
/* faltrhou */
default:
if (l) {
ut64 from = r_config_get_i (core->config, "diff.from");
ut64 to = r_config_get_i (core->config, "diff.to");
if (from == to && !from) {
if (!r_core_block_size (core, len)) {
len = core->blocksize;
}
r_print_hexdump (core->print, core->offset,
core->block, len, 16, 1, 1);
} else {
r_core_print_cmp (core, from, to);
}
core->num->value = len;
}
break;
}
r_cons_break_pop ();
break;
case '2': // "p2"
if (l) {
if (input[1] == '?') {
r_cons_printf ("|Usage: p2 [number of bytes representing tiles]\n"
"NOTE: Only full tiles will be printed\n");
} else {
r_print_2bpp_tiles (core->print, core->block, len / 16);
}
}
break;
case '6':
if (l) {
int malen = (core->blocksize * 4) + 1;
ut8 *buf = malloc (malen);
if (!buf) {
break;
}
memset (buf, 0, malen);
switch (input[1]) {
case 'd':
if (input[2] == '?') {
r_cons_printf ("|Usage: p6d [len] base 64 decode\n");
} else if (r_base64_decode (buf, (const char *) core->block, len)) {
r_cons_println ((const char *) buf);
} else {
eprintf ("r_base64_decode: invalid stream\n");
}
break;
case 'e':
if (input[2] == '?') {
r_cons_printf ("|Usage: p6e [len] base 64 encode\n");
break;
} else {
len = len > core->blocksize? core->blocksize: len;
r_base64_encode ((char *) buf, core->block, len);
r_cons_println ((const char *) buf);
}
break;
case '?':
default:
r_cons_printf ("|Usage: p6[ed] [len] base 64 encode/decode\n");
break;
}
free (buf);
}
break;
case '8': // "p8"
if (input[1] == '?') {
r_cons_printf ("|Usage: p8[fj] [len] 8bit hexpair list of bytes (see pcj)\n");
} else if (l) {
if (!r_core_block_size (core, len)) {
len = core->blocksize;
}
if (input[1] == 'j') {
r_core_cmdf (core, "pcj %s", input + 2);
} else if (input[1] == 'f') {
r_core_cmdf (core, "p8 $F @ $B");
} else {
r_print_bytes (core->print, core->block, len, "%02x");
}
}
break;
case 'f': // "pf"
cmd_print_format (core, input, len);
break;
case 'k': // "pk"
if (input[1] == '?') {
r_cons_printf ("|Usage: pk [len] print key in randomart\n");
r_cons_printf ("|Usage: pkill [process-name]\n");
} else if (!strncmp (input, "kill", 4)) {
RListIter *iter;
RDebugPid *pid;
const char *arg = strchr (input, ' ');
RList *pids = (core->dbg->h && core->dbg->h->pids)
? core->dbg->h->pids (core->dbg, 0): NULL;
if (arg && *++arg) {
r_list_foreach (pids, iter, pid) {
if (strstr (pid->path, arg)) {
r_cons_printf ("dk 9 %d\n", pid->pid);
}
// r_debug_kill (core->dbg, pid->pid, pid->pid, 9); // kill -9
}
}
r_list_free (pids);
} else if (l > 0) {
len = len > core->blocksize? core->blocksize: len;
char *s = r_print_randomart (core->block, len, core->offset);
r_cons_println (s);
free (s);
}
break;
case 'K': // "pK"
if (input[1] == '?') {
r_cons_printf ("|Usage: pK [len] print key in randomart mosaic\n");
} else if (l > 0) {
len = len > core->blocksize? core->blocksize: len;
int w, h;
RConsCanvas *c;
w = r_cons_get_size (&h);
ut64 offset0 = core->offset;
int cols = (w / 20);
int rows = (h / 12);
int i, j;
char *s;
if (rows < 1) {
rows = 1;
}
c = r_cons_canvas_new (w, rows * 11);
for (i = 0; i < rows; i++) {
for (j = 0; j < cols; j++) {
r_cons_canvas_gotoxy (c, j * 20, i * 11);
core->offset += len;
r_core_read_at (core, core->offset, core->block, len);
s = r_print_randomart (core->block, len, core->offset);
r_cons_canvas_write (c, s);
free (s);
}
}
r_cons_canvas_print (c);
r_cons_canvas_free (c);
r_core_read_at (core, offset0, core->block, len);
core->offset = offset0;
r_cons_printf ("\n");
}
break;
case 'n': // easter
eprintf ("easter egg license has expired\n");
break;
case 't': // "pt"
switch (input[1]) {
case ' ':
case '\0':
// len must be multiple of 4 since r_mem_copyendian move data in fours - sizeof(ut32)
if (len < sizeof (ut32)) {
eprintf ("You should change the block size: b %d\n", (int) sizeof (ut32));
}
if (len % sizeof (ut32)) {
len = len - (len % sizeof (ut32));
}
for (l = 0; l < len; l += sizeof (ut32)) {
r_print_date_unix (core->print, core->block + l, sizeof (ut32));
}
break;
case 'h':
// len must be multiple of 4 since r_mem_copyendian move data in fours - sizeof(ut32)
if (len < sizeof (ut32)) {
eprintf ("You should change the block size: b %d\n", (int) sizeof (ut32));
}
if (len % sizeof (ut32)) {
len = len - (len % sizeof (ut32));
}
for (l = 0; l < len; l += sizeof (ut32)) {
r_print_date_hfs (core->print, core->block + l, sizeof (ut32));
}
break;
case 'd':
// len must be multiple of 4 since r_print_date_dos read buf+3
// if block size is 1 or 5 for example it reads beyond the buffer
if (len < sizeof (ut32)) {
eprintf ("You should change the block size: b %d\n", (int) sizeof (ut32));
}
if (len % sizeof (ut32)) {
len = len - (len % sizeof (ut32));
}
for (l = 0; l < len; l += sizeof (ut32)) {
r_print_date_dos (core->print, core->block + l, sizeof (ut32));
}
break;
case 'n':
if (len < sizeof (ut64)) {
eprintf ("You should change the block size: b %d\n", (int) sizeof (ut64));
}
if (len % sizeof (ut64)) {
len = len - (len % sizeof (ut64));
}
for (l = 0; l < len; l += sizeof (ut64)) {
r_print_date_w32 (core->print, core->block + l, sizeof (ut64));
}
break;
case '?': {
const char *help_msg[] = {
"Usage: pt", "[dn]", "print timestamps",
"pt", "", "print UNIX time (32 bit `cfg.bigendian`) Since January 1, 1970",
"ptd", "", "print DOS time (32 bit `cfg.bigendian`) Since January 1, 1980",
"pth", "", "print HFS time (32 bit `cfg.bigendian`) Since January 1, 1904",
"ptn", "", "print NTFS time (64 bit `cfg.bigendian`) Since January 1, 1601",
NULL
};
r_core_cmd_help (core, help_msg);
}
break;
}
break;
case 'z': // "pz"
if (input[1] == '?') {
const char *help_msg[] = {
"Usage: pz [len]", "", "print zoomed blocks (filesize/N)",
"e ", "zoom.maxsz", "max size of block",
"e ", "zoom.from", "start address",
"e ", "zoom.to", "end address",
"e ", "zoom.byte", "specify how to calculate each byte",
"pzp", "", "number of printable chars",
"pzf", "", "count of flags in block",
"pzs", "", "strings in range",
"pz0", "", "number of bytes with value '0'",
"pzF", "", "number of bytes with value 0xFF",
"pze", "", "calculate entropy and expand to 0-255 range",
"pzh", "", "head (first byte value); This is the default mode",
// "WARNING: On big files, use 'zoom.byte=h' or restrict ranges\n");
NULL
};
r_core_cmd_help (core, help_msg);
} else {
ut64 from = r_config_get_i (core->config, "zoom.from");
ut64 to = r_config_get_i (core->config, "zoom.to");
ut64 maxsize = r_config_get_i (core->config, "zoom.maxsz");
int oldva = core->io->va;
char *oldmode = NULL;
bool do_zoom = true;
core->io->va = 0;
if (input[1] && input[1] != ' ') {
oldmode = strdup (r_config_get (core->config, "zoom.byte"));
if (!r_config_set (core->config, "zoom.byte", input + 1)) {
eprintf ("Invalid zoom.byte mode (%s)\n", input + 1);
do_zoom = false;
}
}
if (do_zoom && l > 0) {
r_print_zoom (core->print, core, printzoomcallback,
from, to, l, (int) maxsize);
}
if (oldmode) {
r_config_set (core->config, "zoom.byte", oldmode);
}
core->io->va = oldva;
R_FREE (oldmode);
}
break;
default: {
const char *help_msg[] = {
"Usage:", "p[=68abcdDfiImrstuxz] [arg|len] [@addr]", "",
"p=", "[?][bep] [blks] [len] [blk]", "show entropy/printable chars/chars bars",
"p2", " [len]", "8x8 2bpp-tiles",
"p3", " [file]", "print stereogram (3D)",
"p6", "[de] [len]", "base64 decode/encode",
"p8", "[?][j] [len]", "8bit hexpair list of bytes",
"pa", "[edD] [arg]", "pa:assemble pa[dD]:disasm or pae: esil from hexpairs",
"pA", "[n_ops]", "show n_ops address and type",
"p", "[b|B|xb] [len] ([skip])", "bindump N bits skipping M",
"pb", "[?] [n]", "bitstream of N bits",
"pB", "[?] [n]", "bitstream of N bytes",
"pc", "[?][p] [len]", "output C (or python) format",
"pC", "[d] [rows]", "print disassembly in columns (see hex.cols and pdi)",
"pd", "[?] [sz] [a] [b]", "disassemble N opcodes (pd) or N bytes (pD)",
"pf", "[?][.nam] [fmt]", "print formatted data (pf.name, pf.name $<expr>)",
"ph", "[?][=|hash] ([len])", "calculate hash for a block",
"p", "[iI][df] [len]", "print N ops/bytes (f=func) (see pi? and pdi)",
"pm", "[?] [magic]", "print libmagic data (see pm? and /m?)",
"pr", "[?][glx] [len]", "print N raw bytes (in lines or hexblocks, 'g'unzip)",
"p", "[kK] [len]", "print key in randomart (K is for mosaic)",
"ps", "[?][pwz] [len]", "print pascal/wide/zero-terminated strings",
"pt", "[?][dn] [len]", "print different timestamps",
"pu", "[?][w] [len]", "print N url encoded bytes (w=wide)",
"pv", "[?][jh] [mode]", "show variable/pointer/value in memory",
"p-", "[?][jh] [mode]", "bar|json|histogram blocks (mode: e?search.in)",
"px", "[?][owq] [len]", "hexdump of N bytes (o=octal, w=32bit, q=64bit)",
"pz", "[?] [len]", "print zoom view (see pz? for help)",
"pwd", "", "display current working directory",
NULL
};
r_core_cmd_help (core, help_msg);
}
break;
}
beach:
if (tmpseek != UT64_MAX) {
r_core_seek (core, tmpseek, SEEK_SET);
r_core_block_read (core);
}
if (tbs != core->blocksize) {
r_core_block_size (core, tbs);
}
return ret;
}
static int cmd_hexdump(void *data, const char *input) {
return cmd_print (data, input - 1);
}
static int lenof(ut64 off, int two) {
char buf[64];
buf[0] = 0;
if (two) {
snprintf (buf, sizeof (buf), "+0x%"PFMT64x, off);
} else {
snprintf (buf, sizeof (buf), "0x%08"PFMT64x, off);
}
return strlen (buf);
}
// TODO : move to r_util? .. depends on r_cons...
// XXX: dupe of r_print_addr
R_API void r_print_offset(RPrint *p, ut64 off, int invert, int offseg, int offdec, int delta, const char *label) {
char space[32] = {
0
};
const char *white;
bool show_color = p->flags & R_PRINT_FLAGS_COLOR;
if (show_color) {
const char *k = r_cons_singleton ()->pal.offset; // TODO etooslow. must cache
if (invert) {
r_cons_invert (true, true);
}
if (offseg) {
ut32 s, a;
a = off & 0xffff;
s = (off - a) >> 4;
if (offdec) {
snprintf (space, sizeof (space), "%d:%d", s & 0xffff, a & 0xffff);
white = r_str_pad (' ', 9 - strlen (space));
r_cons_printf ("%s%s%s"Color_RESET, k, white, space);
} else {
r_cons_printf ("%s%04x:%04x"Color_RESET,
k, s & 0xFFFF, a & 0xFFFF);
}
} else {
int sz = lenof (off, 0);
int sz2 = lenof (delta, 1);
if (delta > 0 || label) {
if (label) {
const int label_padding = 10;
if (delta > 0) {
if (offdec) {
const char *pad = r_str_pad (' ', sz - sz2 + label_padding);
r_cons_printf ("%s%s"Color_RESET "+%d%s", k, label, delta, pad);
} else {
const char *pad = r_str_pad (' ', sz - sz2 + label_padding);
r_cons_printf ("%s%s"Color_RESET "+0x%x%s", k, label, delta, pad);
}
} else {
const char *pad = r_str_pad (' ', sz + label_padding);
r_cons_printf ("%s%s"Color_RESET "%s", k, label, pad);
}
} else {
const char *pad = r_str_pad (' ', sz - sz2);
if (offdec) {
r_cons_printf ("%s+%d"Color_RESET, pad, delta);
} else {
r_cons_printf ("%s+0x%x"Color_RESET, pad, delta);
}
}
} else {
if (offdec) {
snprintf (space, sizeof (space), "%"PFMT64d, off);
white = r_str_pad (' ', 10 - strlen (space));
r_cons_printf ("%s%s%s"Color_RESET, k, white, space, off);
} else {
r_cons_printf ("%s0x%08"PFMT64x ""Color_RESET, k, off);
}
}
}
r_cons_print (" ");
} else {
if (offseg) {
ut32 s, a;
a = off & 0xffff;
s = (off - a) >> 4;
if (offdec) {
snprintf (space, sizeof (space), "%d:%d", s & 0xffff, a & 0xffff);
white = r_str_pad (' ', 9 - strlen (space));
r_cons_printf ("%s%s"Color_RESET, white, space);
} else {
r_cons_printf ("%04x:%04x", s & 0xFFFF, a & 0xFFFF);
}
} else {
int sz = lenof (off, 0);
int sz2 = lenof (delta, 1);
const char *pad = r_str_pad (' ', sz - 5 - sz2 - 3);
if (delta > 0) {
if (offdec) {
r_cons_printf ("%s+%d"Color_RESET, pad, delta);
} else {
r_cons_printf ("%s+0x%x"Color_RESET, pad, delta);
}
} else {
if (offdec) {
snprintf (space, sizeof (space), "%"PFMT64d, off);
white = r_str_pad (' ', 10 - strlen (space));
r_cons_printf ("%s%s", white, space);
} else {
r_cons_printf ("0x%08"PFMT64x " ", off);
}
}
}
}
}