radare2/libr/util/qrcode.c
2022-10-13 21:21:34 +02:00

1064 lines
37 KiB
C

/*
* modified by pancake to adapt it to the r2 coding style and make a simpler api
* QR Code generator library (C)
*
* Copyright (c) Project Nayuki. (MIT License)
* https://www.nayuki.io/page/qr-code-generator-library
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
* - The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* - The Software is provided "as is", without warranty of any kind, express or
* implied, including but not limited to the warranties of merchantability,
* fitness for a particular purpose and noninfringement. In no event shall the
* authors or copyright holders be liable for any claim, damages or other
* liability, whether in an action of contract, tort or otherwise, arising from,
* out of or in connection with the Software or the use or other dealings in the
* Software.
*/
#include <r_util.h>
#include "r_qrcode.h"
/*---- Forward declarations for private functions ----*/
// this is an antipattern in r2land. must be fixed
// Regarding all public and private functions defined in this source file:
// - They require all pointer/array arguments to be not null.
// - They only read input scalar/array arguments, write to output pointer/array
// arguments, and return scalar values; they are "pure" functions.
// - They don't read mutable global variables or write to any global variables.
// - They don't perform I/O, read the clock, print to console, etc.
// - They allocate a small and constant amount of stack memory.
// - They don't allocate or free any memory on the heap.
// - They don't recurse or mutually recurse. All the code
// could be inlined into the top-level public functions.
// - They run in at most quadratic time with respect to input arguments.
// Most functions run in linear time, and some in constant time.
// There are no unbounded loops or non-obvious termination conditions.
// - They are completely thread-safe if the caller does not give the
// same writable buffer to concurrent calls to these functions.
static int getTextProperties(const char *text, bool *isNumeric, bool *isAlphanumeric, int *textBits);
static int fitVersionToData(int minVersion, int maxVersion, enum qrcodegen_Ecc ecl,
int dataLen, int dataBitLen, int ver1To9LenBits, int ver10To26LenBits, int ver27To40LenBits);
static void encodeQrCodeTail(ut8 dataAndQrcode[], int bitLen, ut8 tempBuffer[],
int version, enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, bool boostEcl);
static void appendBitsToBuffer(unsigned int val, int numBits, ut8 buffer[], int *bitLen);
static void appendErrorCorrection(ut8 data[], int version, enum qrcodegen_Ecc ecl, ut8 result[]);
static int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl);
static int getNumRawDataModules(int version);
static void calcReedSolomonGenerator(int degree, ut8 result[]);
static void calcReedSolomonRemainder(const ut8 data[], int dataLen, const ut8 generator[], int degree, ut8 result[]);
static ut8 finiteFieldMultiply(ut8 x, ut8 y);
static void initializeFunctionModules(int version, ut8 qrcode[]);
static void drawWhiteFunctionModules(ut8 qrcode[], int version);
static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, ut8 qrcode[]);
static int getAlignmentPatternPositions(int version, ut8 result[7]);
static void fillRectangle(int left, int top, int width, int height, ut8 qrcode[]);
static bool drawCodewords(const ut8 data[], int dataLen, ut8 qrcode[]);
static bool applyMask(const ut8 functionModules[], ut8 qrcode[], enum qrcodegen_Mask mask);
static long getPenaltyScore(const ut8 qrcode[]);
static bool getModule(const ut8 qrcode[], int x, int y);
static bool setModule(ut8 qrcode[], int x, int y, bool isBlack);
static void setModuleBounded(ut8 qrcode[], int x, int y, bool isBlack);
/*
* Returns the side length of the given QR Code, assuming that encoding succeeded.
* The result is in the range [21, 177]. Note that the length of the array buffer
* is related to the side length - every 'uint8_t qrcode[]' must have length at least
* qrcodegen_BUFFER_LEN_FOR_VERSION(version), which equals ceil(size^2 / 8 + 1).
*/
static int qrcodegen_getSize(const uint8_t qrcode[]);
/*
* Returns the color of the module (pixel) at the given coordinates, which is either
* false for white or true for black. The top left corner has the coordinates (x,y)=(0,0)
* If the given coordinates are out of bounds, then false (white) is returned.
*/
static bool qrcodegen_getModule(const uint8_t qrcode[], int x, int y);
/*---- Private tables of constants ----*/
// For checking text and encoding segments.
static const char *ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:";
// For generating error correction codes.
static const int8_t ECC_CODEWORDS_PER_BLOCK[4][41] = {
// Version: (note that index 0 is for padding, and is set to an illegal value)
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
{ -1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30 }, // Low
{ -1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28 }, // Medium
{ -1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30 }, // Quartile
{ -1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30 }, // High
};
// For generating error correction codes.
static const int8_t NUM_ERROR_CORRECTION_BLOCKS[4][41] = {
// Version: (note that index 0 is for padding, and is set to an illegal value)
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
{ -1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25 }, // Low
{ -1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49 }, // Medium
{ -1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68 }, // Quartile
{ -1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81 }, // High
};
// For automatic mask pattern selection.
static const int PENALTY_N1 = 3;
static const int PENALTY_N2 = 3;
static const int PENALTY_N3 = 40;
static const int PENALTY_N4 = 10;
/*---- High-level QR Code encoding functions ----*/
// Public function - see documentation comment in header file.
R_API bool r_qrcode_text(const char *text, ut8 tempBuffer[], ut8 qrcode[], enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) {
if (!text || !tempBuffer || !qrcode) {
return false;
}
if (minVersion < qrcodegen_VERSION_MIN || minVersion > qrcodegen_VERSION_MAX) {
return false;
}
if (maxVersion < qrcodegen_VERSION_MIN || maxVersion > qrcodegen_VERSION_MAX) {
return false;
}
if (ecl < qrcodegen_Ecc_LOW || ecl > qrcodegen_Ecc_HIGH) {
return false;
}
if (mask < -1 || mask > 7) {
return false;
}
// Set size to invalid value for safety
qrcode[0] = 0;
// Get text properties
bool isNumeric, isAlphanumeric;
int textBits;
int textLen = getTextProperties (text, &isNumeric, &isAlphanumeric, &textBits);
if (textLen < 0) {
return false;
}
if (!isAlphanumeric) { // Fully handle in binary mode
if (textLen > qrcodegen_BUFFER_LEN_FOR_VERSION (maxVersion)) {
return false;
}
int i;
for (i = 0; i < textLen; i++) {
tempBuffer[i] = (ut8) text[i];
}
return r_qrcode_bin (tempBuffer, (size_t) textLen, qrcode, ecl, minVersion, maxVersion, mask, boostEcl);
}
int version = fitVersionToData (minVersion, maxVersion, ecl, textLen, (int) textBits,
(isNumeric? 10: 9), (isNumeric? 12: 11), (isNumeric? 14: 13));
if (version == 0) {
return false;
}
memset (qrcode, 0, qrcodegen_BUFFER_LEN_FOR_VERSION (version) * sizeof (qrcode[0]));
int bitLen = 0;
// Make segment header and append data
if (isNumeric && textLen > 0) {
appendBitsToBuffer (1, 4, qrcode, &bitLen);
int lengthBits = version <= 9? 10: (version <= 26? 12: 14);
appendBitsToBuffer ((unsigned int) textLen, lengthBits, qrcode, &bitLen);
int accumData = 0;
int accumCount = 0;
const char *p;
for (p = text; *p != '\0'; p++) {
accumData = accumData * 10 + (*p - '0');
accumCount++;
if (accumCount == 3) {
appendBitsToBuffer (accumData, 10, qrcode, &bitLen);
accumData = 0;
accumCount = 0;
}
}
if (accumCount > 0) { // 1 or 2 digits remaining
appendBitsToBuffer (accumData, accumCount * 3 + 1, qrcode, &bitLen);
}
} else if (isAlphanumeric && textLen > 0) {
appendBitsToBuffer (2, 4, qrcode, &bitLen);
int lengthBits = version <= 9? 9: (version <= 26? 11: 13);
appendBitsToBuffer ((unsigned int) textLen, lengthBits, qrcode, &bitLen);
int accumData = 0;
int accumCount = 0;
const char *p;
for (p = text; *p != '\0'; p++) {
accumData = accumData * 45 + (strchr (ALPHANUMERIC_CHARSET, *p) - ALPHANUMERIC_CHARSET);
accumCount++;
if (accumCount == 2) {
appendBitsToBuffer (accumData, 11, qrcode, &bitLen);
accumData = 0;
accumCount = 0;
}
}
if (accumCount > 0) { // 1 character remaining
appendBitsToBuffer (accumData, 6, qrcode, &bitLen);
}
}
// Make QR Code
encodeQrCodeTail (qrcode, bitLen, tempBuffer, version, ecl, mask, boostEcl);
return true;
}
// Public function - see documentation comment in header file.
R_API bool r_qrcode_bin(ut8 *dataAndTemp, int dataLen, ut8 *qrcode,
enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) {
if (!dataAndTemp || !qrcode || dataLen < 1) {
return false;
}
if (minVersion < qrcodegen_VERSION_MIN || minVersion > qrcodegen_VERSION_MAX) {
return false;
}
if (maxVersion < qrcodegen_VERSION_MIN || maxVersion > qrcodegen_VERSION_MAX) {
return false;
}
if (ecl < qrcodegen_Ecc_LOW || ecl > qrcodegen_Ecc_HIGH) {
return false;
}
if (mask < -1 || mask > 7) {
return false;
}
// Set size to invalid value for safety
qrcode[0] = 0;
// Check length and find version
if (dataLen > INT16_MAX / 8) {
return false;
}
// Now dataLen * 8 <= 32767 <= INT_MAX
int version = fitVersionToData (minVersion, maxVersion, ecl, (int) dataLen, (int) dataLen * 8, 8, 16, 16);
if (version == 0) {
return false;
}
// Make bit sequence and QR Code
memset (qrcode, 0, qrcodegen_BUFFER_LEN_FOR_VERSION (version) * sizeof (qrcode[0]));
int bitLen = 0;
appendBitsToBuffer (4, 4, qrcode, &bitLen);
appendBitsToBuffer ((unsigned int) dataLen, (version <= 9? 8: 16), qrcode, &bitLen);
size_t i;
for (i = 0; i < dataLen; i++) {
appendBitsToBuffer (dataAndTemp[i], 8, qrcode, &bitLen);
}
encodeQrCodeTail (qrcode, bitLen, dataAndTemp, version, ecl, mask, boostEcl);
return true;
}
// Scans the given string, returns the number of characters, and sets output variables.
// Returns a negative number if the length would exceed INT16_MAX or textBits would exceed INT_MAX.
// Note that INT16_MAX <= 32767 <= INT_MAX and INT16_MAX < 65535 <= SIZE_MAX.
// If the return value is negative, then the pointees of output arguments might not be set.
static int getTextProperties(const char *text, bool *isNumeric, bool *isAlphanumeric, int *textBits) {
int textLen = 0;
*isNumeric = true;
*isAlphanumeric = true;
const char *p;
for (p = text; *p != '\0'; p++, textLen++) { // Read every character
if (textLen >= INT16_MAX) {
return -1;
}
char c = *p;
if (c < '0' || c > '9') {
*isNumeric = false;
bool is_alpha = strchr (ALPHANUMERIC_CHARSET, c);
*isAlphanumeric &= is_alpha;
}
}
long tempBits;
if (*isNumeric) {
tempBits = textLen * 3L + (textLen + 2L) / 3;
} else if (*isAlphanumeric) {
tempBits = textLen * 5L + (textLen + 1L) / 2;
} else {// Binary mode
tempBits = textLen * 8L;
}
if (tempBits > INT_MAX) {
return -1;
}
*textBits = (int) tempBits;
return textLen;
}
// Returns the minimum possible version in the given range to fit one
// segment with the given characteristics, or 0 if no version fits the data.
static int fitVersionToData(int minVersion, int maxVersion, enum qrcodegen_Ecc ecl,
int dataLen, int dataBitLen, int ver1To9LenBits, int ver10To26LenBits, int ver27To40LenBits) {
if (qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX) {
if ((int) ecl < 0 || (int) ecl > 3) {
return 0;
}
if (dataLen < 0 || dataBitLen < 0) {
return 0;
}
if (ver1To9LenBits < 1 || ver1To9LenBits > 16) {
// assert(1 <= ver1To9LenBits && ver1To9LenBits <= 16);
return 0;
}
if (ver10To26LenBits < 1 || ver10To26LenBits > 16) {
return 0;
}
if (ver27To40LenBits < 1 || ver27To40LenBits > 16) {
return 0;
}
int version;
for (version = minVersion;; version++) {
int lengthBits;
if (version <= 9) {
lengthBits = ver1To9LenBits;
} else if (version <= 26) {
lengthBits = ver10To26LenBits;
} else {
lengthBits = ver27To40LenBits;
}
if (dataLen < (1L << lengthBits)) {
int dataCapacityBits = getNumDataCodewords (version, ecl) * 8; // Number of data bits available
int header = 4 + lengthBits;
if (dataBitLen <= INT_MAX - header && header + dataBitLen <= dataCapacityBits) {
return version; // This version number is found to be suitable
}
}
if (version >= maxVersion) { // All versions in the range could not fit the given data
break;
}
}
}
return 0;
}
// Given a data bit sequence in dataAndQrcode without terminator or padding or ECC, plus the given QR Code
// encoding parameters, this function handles ECC level boosting, bit stream termination and padding,
// ECC computation, and block interleaving. Then the function renders the QR Code symbol back to the array
// dataAndQrcode and handles automatic mask selection. The initial bit length must fit the given version and
// ECC level, and each of the two arrays must have length at least qrcodegen_BUFFER_LEN_FOR_VERSION(version).
static void encodeQrCodeTail(ut8 dataAndQrcode[], int bitLen, ut8 tempBuffer[], int version, enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, bool boostEcl) {
if (boostEcl) {
if (bitLen <= getNumDataCodewords (version, qrcodegen_Ecc_MEDIUM ) * 8) {
ecl = qrcodegen_Ecc_MEDIUM;
}
if (bitLen <= getNumDataCodewords (version, qrcodegen_Ecc_QUARTILE) * 8) {
ecl = qrcodegen_Ecc_QUARTILE;
}
if (bitLen <= getNumDataCodewords (version, qrcodegen_Ecc_HIGH ) * 8) {
ecl = qrcodegen_Ecc_HIGH;
}
}
int dataCapacityBits = getNumDataCodewords (version, ecl) * 8;
// Add terminator, bit padding, byte padding
int terminatorBits = dataCapacityBits - bitLen;
if (terminatorBits > 4) {
terminatorBits = 4;
}
appendBitsToBuffer (0, terminatorBits, dataAndQrcode, &bitLen);
appendBitsToBuffer (0, (8 - bitLen % 8) % 8, dataAndQrcode, &bitLen);
ut8 padByte;
for (padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11) {
appendBitsToBuffer (padByte, 8, dataAndQrcode, &bitLen);
}
if (bitLen % 8) {
return;
}
// Draw function and data codeword modules
appendErrorCorrection (dataAndQrcode, version, ecl, tempBuffer);
initializeFunctionModules (version, dataAndQrcode);
if (!drawCodewords (tempBuffer, getNumRawDataModules (version) / 8, dataAndQrcode)) {
return;
}
drawWhiteFunctionModules (dataAndQrcode, version);
initializeFunctionModules (version, tempBuffer);
// Handle masking
if (mask == qrcodegen_Mask_AUTO) { // Automatically choose best mask
long minPenalty = LONG_MAX;
int i;
for (i = 0; i < 8; i++) {
drawFormatBits (ecl, (enum qrcodegen_Mask) i, dataAndQrcode);
applyMask (tempBuffer, dataAndQrcode, (enum qrcodegen_Mask) i);
long penalty = getPenaltyScore (dataAndQrcode);
if (penalty < minPenalty) {
mask = (enum qrcodegen_Mask) i;
minPenalty = penalty;
}
applyMask (tempBuffer, dataAndQrcode, (enum qrcodegen_Mask) i); // Undoes the mask due to XOR
}
}
if (mask < 0 || mask > 7) {
return;
}
drawFormatBits (ecl, mask, dataAndQrcode);
applyMask (tempBuffer, dataAndQrcode, mask);
}
// Appends the given sequence of bits to the given byte-based bit buffer, increasing the bit length.
static void appendBitsToBuffer(unsigned int val, int numBits, ut8 buffer[], int *bitLen) {
if (numBits < 0 || numBits > 16 || ((unsigned long) val >> numBits) != 0) {
return;
}
int i;
for (i = numBits - 1; i >= 0; i--, (*bitLen)++) {
buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7));
}
}
/*---- Error correction code generation functions ----*/
// Appends error correction bytes to each block of the given data array, then interleaves bytes
// from the blocks and stores them in the result array. data[0 : rawCodewords - totalEcc] contains
// the input data. data[rawCodewords - totalEcc : rawCodewords] is used as a temporary work area
// and will be clobbered by this function. The final answer is stored in result[0 : rawCodewords].
static void appendErrorCorrection(ut8 data[], int version, enum qrcodegen_Ecc ecl, ut8 result[]) {
// Calculate parameter numbers
if ((int) ecl < qrcodegen_Ecc_LOW || (int) ecl > qrcodegen_Ecc_HIGH || version < qrcodegen_VERSION_MIN || version > qrcodegen_VERSION_MAX) {
return;
}
int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[(int) ecl][version];
int blockEccLen = ECC_CODEWORDS_PER_BLOCK[(int) ecl][version];
int rawCodewords = getNumRawDataModules (version) / 8;
int dataLen = rawCodewords - blockEccLen * numBlocks;
int numShortBlocks = numBlocks - rawCodewords % numBlocks;
int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen;
// Split data into blocks and append ECC after all data
ut8 generator[30];
calcReedSolomonGenerator (blockEccLen, generator);
int i, j, k, l;
for (i = 0, j = dataLen, k = 0; i < numBlocks; i++) {
int blockLen = shortBlockDataLen;
if (i >= numShortBlocks) {
blockLen++;
}
calcReedSolomonRemainder (&data[k], blockLen, generator, blockEccLen, &data[j]);
j += blockEccLen;
k += blockLen;
}
// Interleave (not concatenate) the bytes from every block into a single sequence
for (i = 0, k = 0; i < numBlocks; i++) {
for (j = 0, l = i; j < shortBlockDataLen; j++, k++, l += numBlocks) {
result[l] = data[k];
}
if (i >= numShortBlocks) {
k++;
}
}
for (i = numShortBlocks, k = (numShortBlocks + 1) * shortBlockDataLen, l = numBlocks * shortBlockDataLen;
i < numBlocks; i++, k += shortBlockDataLen + 1, l++) {
result[l] = data[k];
}
for (i = 0, k = dataLen; i < numBlocks; i++) {
for (j = 0, l = dataLen + i; j < blockEccLen; j++, k++, l += numBlocks) {
result[l] = data[k];
}
}
}
// Returns the number of 8-bit codewords that can be used for storing data (not ECC),
// for the given version number and error correction level. The result is in the range [9, 2956].
static int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl) {
int v = version, e = (int) ecl;
// Unneceessary essert -- essert(0 <= e && e < 4 && qrcodegen_VERSION_MIN <= v && v <= qrcodegen_VERSION_MAX);
return getNumRawDataModules (v) / 8 - ECC_CODEWORDS_PER_BLOCK[e][v] * NUM_ERROR_CORRECTION_BLOCKS[e][v];
}
// Returns the number of data bits that can be stored in a QR Code of the given version number, after
// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
static int getNumRawDataModules(int version) {
if (version < qrcodegen_VERSION_MIN || version > qrcodegen_VERSION_MAX) {
return 0;
}
int result = (16 * version + 128) * version + 64;
if (version >= 2) {
int numAlign = version / 7 + 2;
result -= (25 * numAlign - 10) * numAlign - 55;
if (version >= 7) {
result -= 18 * 2; // Subtract version information
}
}
return result;
}
/*---- Reed-Solomon ECC generator functions ----*/
// Calculates the Reed-Solomon generator polynomial of the given degree, storing in result[0 : degree].
static void calcReedSolomonGenerator(int degree, ut8 result[]) {
// Start with the monomial x^0
if (degree < 1 || degree > 31) {
return;
}
memset (result, 0, degree * sizeof (result[0]));
result[degree - 1] = 1;
// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
// drop the highest term, and store the rest of the coefficients in order of descending powers.
// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
int i, j;
ut8 root = 1;
for (i = 0; i < degree; i++) {
// Multiply the current product by (x - r^i)
for (j = 0; j < degree; j++) {
result[j] = finiteFieldMultiply (result[j], root);
if (j + 1 < degree) {
result[j] ^= result[j + 1];
}
}
root = finiteFieldMultiply (root, 0x02);
}
}
// Calculates the remainder of the polynomial data[0 : dataLen] when divided by the generator[0 : degree], where all
// polynomials are in big endian and the generator has an implicit leading 1 term, storing the result in result[0 : degree].
static void calcReedSolomonRemainder(const ut8 data[], int dataLen, const ut8 generator[], int degree, ut8 result[]) {
// Perform polynomial division
if (degree < 1 || degree > 31) {
return;
}
memset (result, 0, degree * sizeof (result[0]));
int i, j;
for (i = 0; i < dataLen; i++) {
ut8 factor = data[i] ^ result[0];
memmove (&result[0], &result[1], (degree - 1) * sizeof (result[0]));
result[degree - 1] = 0;
for (j = 0; j < degree; j++) {
result[j] ^= finiteFieldMultiply (generator[j], factor);
}
}
}
// Returns the product of the two given field elements modulo GF(2^8/0x11D).
// All inputs are valid. This could be implemented as a 256*256 lookup table.
static ut8 finiteFieldMultiply(ut8 x, ut8 y) {
// Russian peasant multiplication
ut8 z = 0;
int i;
for (i = 7; i >= 0; i--) {
z = (z << 1) ^ ((z >> 7) * 0x11D);
z ^= ((y >> i) & 1) * x;
}
return z;
}
/*---- Drawing function modules ----*/
// Clears the given QR Code grid with white modules for the given
// version's size, then marks every function module as black.
static void initializeFunctionModules(int version, ut8 qrcode[]) {
// Initialize QR Code
int qrsize = version * 4 + 17;
memset (qrcode, 0, ((qrsize * qrsize + 7) / 8 + 1) * sizeof (qrcode[0]));
qrcode[0] = (ut8) qrsize;
// Fill horizontal and vertical timing patterns
fillRectangle (6, 0, 1, qrsize, qrcode);
fillRectangle (0, 6, qrsize, 1, qrcode);
// Fill 3 finder patterns (all corners except bottom right) and format bits
fillRectangle (0, 0, 9, 9, qrcode);
fillRectangle (qrsize - 8, 0, 8, 9, qrcode);
fillRectangle (0, qrsize - 8, 9, 8, qrcode);
// Fill numerous alignment patterns
ut8 alignPatPos[7] = {
0
};
int i, j, numAlign = getAlignmentPatternPositions (version, alignPatPos);
for (i = 0; i < numAlign; i++) {
for (j = 0; j < numAlign; j++) {
if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)) {
continue; // Skip the three finder corners
}
fillRectangle (alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode);
}
}
// Fill version blocks
if (version >= 7) {
fillRectangle (qrsize - 11, 0, 3, 6, qrcode);
fillRectangle (0, qrsize - 11, 6, 3, qrcode);
}
}
// Draws white function modules and possibly some black modules onto the given QR Code, without changing
// non-function modules. This does not draw the format bits. This requires all function modules to be previously
// marked black (namely by initializeFunctionModules()), because this may skip redrawing black function modules.
static void drawWhiteFunctionModules(ut8 qrcode[], int version) {
// Draw horizontal and vertical timing patterns
int i, j, k, l, qrsize = qrcodegen_getSize (qrcode);
for (i = 7; i < qrsize - 7; i += 2) {
setModule (qrcode, 6, i, false);
setModule (qrcode, i, 6, false);
}
// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
for (i = -4; i <= 4; i++) {
for (j = -4; j <= 4; j++) {
int dist = abs (i);
if (abs (j) > dist) {
dist = abs (j);
}
if (dist == 2 || dist == 4) {
setModuleBounded (qrcode, 3 + j, 3 + i, false);
setModuleBounded (qrcode, qrsize - 4 + j, 3 + i, false);
setModuleBounded (qrcode, 3 + j, qrsize - 4 + i, false);
}
}
}
// Draw numerous alignment patterns
ut8 alignPatPos[7] = {
0
};
int numAlign = getAlignmentPatternPositions (version, alignPatPos);
for (i = 0; i < numAlign; i++) {
for (j = 0; j < numAlign; j++) {
if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)) {
continue; // Skip the three finder corners
}
for (k = -1; k <= 1; k++) {
for (l = -1; l <= 1; l++) {
setModule (qrcode, alignPatPos[i] + l, alignPatPos[j] + k, k == 0 && l == 0);
}
}
}
}
// Draw version blocks
if (version >= 7) {
// Calculate error correction code and pack bits
int i, j, rem = version; // version is uint6, in the range [7, 40]
for (i = 0; i < 12; i++) {
rem = (rem << 1) ^ ((rem >> 11) * 0x1F25);
}
ut32 data = ((ut32) version << 12) | rem; // uint18
if (data >> 18) {
return;
}
// Draw two copies
for (i = 0; i < 6; i++) {
for (j = 0; j < 3; j++) {
int k = qrsize - 11 + j;
setModule (qrcode, k, i, (data & 1) != 0);
setModule (qrcode, i, k, (data & 1) != 0);
data >>= 1;
}
}
}
}
// Draws two copies of the format bits (with its own error correction code) based
// on the given mask and error correction level. This always draws all modules of
// the format bits, unlike drawWhiteFunctionModules() which might skip black modules.
static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, ut8 qrcode[]) {
// Calculate error correction code and pack bits
if (mask < 0 || mask > 7) {
return;
}
int data;
switch (ecl) {
case qrcodegen_Ecc_LOW: data = 1; break;
case qrcodegen_Ecc_MEDIUM: data = 0; break;
case qrcodegen_Ecc_QUARTILE: data = 3; break;
case qrcodegen_Ecc_HIGH: data = 2; break;
default: return;
}
data = data << 3 | (int) mask; // ecl-derived value is uint2, mask is uint3
int i, rem = data;
for (i = 0; i < 10; i++) {
rem = (rem << 1) ^ ((rem >> 9) * 0x537);
}
data = data << 10 | rem;
data ^= 0x5412; // uint15
if (data >> 15) {
return;
}
// Draw first copy
for (i = 0; i <= 5; i++) {
setModule (qrcode, 8, i, ((data >> i) & 1) != 0);
}
setModule (qrcode, 8, 7, ((data >> 6) & 1) != 0);
setModule (qrcode, 8, 8, ((data >> 7) & 1) != 0);
setModule (qrcode, 7, 8, ((data >> 8) & 1) != 0);
for (i = 9; i < 15; i++) {
setModule (qrcode, 14 - i, 8, ((data >> i) & 1) != 0);
}
// Draw second copy
int qrsize = qrcodegen_getSize (qrcode);
for (i = 0; i <= 7; i++) {
setModule (qrcode, qrsize - 1 - i, 8, ((data >> i) & 1) != 0);
}
for (i = 8; i < 15; i++) {
setModule (qrcode, 8, qrsize - 15 + i, ((data >> i) & 1) != 0);
}
setModule (qrcode, 8, qrsize - 8, true);
}
// Calculates the positions of alignment patterns in ascending order for the given version number,
// storing them to the given array and returning an array length in the range [0, 7].
static int getAlignmentPatternPositions(int version, ut8 result[7]) {
if (version == 1) {
return 0;
}
int qrsize = version * 4 + 17;
int numAlign = version / 7 + 2;
int i, step;
if (version != 32) {
step = (version * 4 + numAlign * 2 + 1) / (2 * numAlign - 2) * 2; // ceil((qrsize - 13) / (2*numAlign - 2)) * 2
} else {// C-C-C-Combo breaker!
step = 26;
}
int pos;
for (i = numAlign - 1, pos = qrsize - 7; i >= 1; i--, pos -= step) {
result[i] = pos;
}
result[0] = 6;
return numAlign;
}
// Sets every pixel in the range [left : left + width] * [top : top + height] to black.
static void fillRectangle(int left, int top, int width, int height, ut8 qrcode[]) {
int dx, dy;
for (dy = 0; dy < height; dy++) {
for (dx = 0; dx < width; dx++) {
setModule (qrcode, left + dx, top + dy, true);
}
}
}
/*---- Drawing data modules and masking ----*/
// Draws the raw codewords (including data and ECC) onto the given QR Code. This requires the initial state of
// the QR Code to be black at function modules and white at codeword modules (including unused remainder bits).
static bool drawCodewords(const ut8 data[], int dataLen, ut8 qrcode[]) {
int qrsize = qrcodegen_getSize (qrcode);
int right, vert, j, i = 0; // Bit index into the data
// Do the funny zigzag scan
for (right = qrsize - 1; right >= 1; right -= 2) { // Index of right column in each column pair
if (right == 6) {
right = 5;
}
for (vert = 0; vert < qrsize; vert++) { // Vertical counter
for (j = 0; j < 2; j++) {
int x = right - j; // Actual x coordinate
bool upward = ((right + 1) & 2) == 0;
int y = upward? qrsize - 1 - vert: vert; // Actual y coordinate
if (!getModule (qrcode, x, y) && i < dataLen * 8) {
bool black = ((data[i >> 3] >> (7 - (i & 7))) & 1) != 0;
setModule (qrcode, x, y, black);
i++;
}
// If there are any remainder bits (0 to 7), they are already
// set to 0/false/white when the grid of modules was initialized
}
}
}
return i == dataLen * 8;
}
// XORs the data modules in this QR Code with the given mask pattern. Due to XOR's mathematical
// properties, calling applyMask(..., m) twice with the same value is equivalent to no change at all.
// This means it is possible to apply a mask, undo it, and try another mask. Note that a final
// well-formed QR Code symbol needs exactly one mask applied (not zero, not two, etc.).
static bool applyMask(const ut8 functionModules[], ut8 qrcode[], enum qrcodegen_Mask mask) {
if (mask < 0 || mask > 7) {
return false;
}
int x, y, qrsize = qrcodegen_getSize (qrcode);
for (y = 0; y < qrsize; y++) {
for (x = 0; x < qrsize; x++) {
if (getModule (functionModules, x, y)) {
continue;
}
bool invert;
switch ((int) mask) {
case 0: invert = (x + y) % 2 == 0; break;
case 1: invert = y % 2 == 0; break;
case 2: invert = x % 3 == 0; break;
case 3: invert = (x + y) % 3 == 0; break;
case 4: invert = (x / 3 + y / 2) % 2 == 0; break;
case 5: invert = x * y % 2 + x * y % 3 == 0; break;
case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break;
case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break;
default: return false;
}
bool val = getModule (qrcode, x, y);
setModule (qrcode, x, y, val ^ invert);
}
}
return true;
}
// Calculates and returns the penalty score based on state of the given QR Code's current modules.
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
static long getPenaltyScore(const ut8 qrcode[]) {
int x, y, k, qrsize = qrcodegen_getSize (qrcode);
long result = 0;
// Adjacent modules in row having same color
for (y = 0; y < qrsize; y++) {
bool colorX;
int runX = 0;
for (x = 0; x < qrsize; x++) {
if (x == 0 || getModule (qrcode, x, y) != colorX) {
colorX = getModule (qrcode, x, y);
runX = 1;
} else {
runX++;
if (runX == 5) {
result += PENALTY_N1;
} else if (runX > 5) {
result++;
}
}
}
}
// Adjacent modules in column having same color
for (x = 0; x < qrsize; x++) {
bool colorY;
int runY = 0;
for (y = 0; y < qrsize; y++) {
if (y == 0 || getModule (qrcode, x, y) != colorY) {
colorY = getModule (qrcode, x, y);
runY = 1;
} else {
runY++;
if (runY == 5) {
result += PENALTY_N1;
} else if (runY > 5) {
result++;
}
}
}
}
// 2*2 blocks of modules having same color
for (y = 0; y < qrsize - 1; y++) {
for (x = 0; x < qrsize - 1; x++) {
bool color = getModule (qrcode, x, y);
if (color == getModule (qrcode, x + 1, y) &&
color == getModule (qrcode, x, y + 1) &&
color == getModule (qrcode, x + 1, y + 1)) {
result += PENALTY_N2;
}
}
}
// Finder-like pattern in rows
for (y = 0; y < qrsize; y++) {
int bits = 0;
for (x = 0; x < qrsize; x++) {
bits = ((bits << 1) & 0x7FF) | (getModule (qrcode, x, y)? 1: 0);
if (x >= 10 && (bits == 0x05D || bits == 0x5D0)) { // Needs 11 bits accumulated
result += PENALTY_N3;
}
}
}
// Finder-like pattern in columns
for (x = 0; x < qrsize; x++) {
int bits = 0;
for (y = 0; y < qrsize; y++) {
bits = ((bits << 1) & 0x7FF) | (getModule (qrcode, x, y)? 1: 0);
if (y >= 10 && (bits == 0x05D || bits == 0x5D0)) { // Needs 11 bits accumulated
result += PENALTY_N3;
}
}
}
// Balance of black and white modules
int black = 0;
for (y = 0; y < qrsize; y++) {
for (x = 0; x < qrsize; x++) {
if (getModule (qrcode, x, y)) {
black++;
}
}
}
int total = qrsize * qrsize;
// Find smallest k such that (45-5k)% <= dark/total <= (55+5k)%
for (k = 0; black * 20L < (9L - k) * total || black * 20L > (11L + k) * total; k++) {
result += PENALTY_N4;
}
return result;
}
/*---- Basic QR Code information ----*/
// Public function - see documentation comment in header file.
static int qrcodegen_getSize(const ut8 *qrcode) {
if (!qrcode) {
return 0;
}
int result = qrcode[0];
if ((qrcodegen_VERSION_MIN * 4 + 17) <= result && result <= (qrcodegen_VERSION_MAX * 4 + 17)) {
return result;
}
return 0;
}
// Public function - see documentation comment in header file.
static bool qrcodegen_getModule(const ut8 qrcode[], int x, int y) {
if (!qrcode) {
return false;
}
int qrsize = qrcode[0];
return (0 <= x && x < qrsize && 0 <= y && y < qrsize) && getModule (qrcode, x, y);
}
// Gets the module at the given coordinates, which must be in bounds.
static bool getModule(const ut8 qrcode[], int x, int y) {
int qrsize = qrcode[0];
if (21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize) {
int index = y * qrsize + x;
int bitIndex = index & 7;
int byteIndex = (index >> 3) + 1;
return ((qrcode[byteIndex] >> bitIndex) & 1) != 0;
}
return false;
}
// Sets the module at the given coordinates, which must be in bounds.
static bool setModule(ut8 qrcode[], int x, int y, bool isBlack) {
int qrsize = qrcode[0];
if (21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize) {
int index = y * qrsize + x;
int bitIndex = index & 7;
int byteIndex = (index >> 3) + 1;
if (isBlack) {
qrcode[byteIndex] |= 1 << bitIndex;
} else {
qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF;
}
return true;
}
return false;
}
// Sets the module at the given coordinates, doing nothing if out of bounds.
static void setModuleBounded(ut8 qrcode[], int x, int y, bool isBlack) {
int qrsize = qrcode[0];
if (0 <= x && x < qrsize && 0 <= y && y < qrsize) {
setModule (qrcode, x, y, isBlack);
}
}
/////////////////////////////////////
static char qrcode_utf8_expansions[16][7] = { " ","","","▀▀",
"","","▄▀","█▀",
"","▀▄","","▀█",
"▄▄","█▄","▄█","██" };
R_API char *r_qrcode_gen(const ut8 *text, int len, bool utf8, bool inverted) {
uint8_t qrcode[qrcodegen_BUFFER_LEN_MAX] = {
0
};
enum qrcodegen_Ecc errCorLvl = qrcodegen_Ecc_HIGH; // Error correction level
if (len < 0) {
return NULL;
}
// Make and print the QR Code symbol
ut8 *buf = calloc ((128 + len), 32);
memcpy (buf, text, len);
bool ok = r_qrcode_bin (buf, len, qrcode, errCorLvl,
qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX,
qrcodegen_Mask_AUTO, true);
if (!ok) {
free (buf);
return NULL;
}
int size = qrcodegen_getSize (qrcode);
if (size < 1) {
free (buf);
return NULL;
}
int border = 1;
int total = (size + 1024) * 128;
char *res = calloc (total, 32);
if (!res) {
free (buf);
return NULL;
}
char *p = res;
int x, y;
if (utf8) {
for (y = -border; y < size + border; y += 2) {
for (x = -border; x < size + border; x += 2) {
int bmp = qrcodegen_getModule (qrcode, x, y);
bmp |= qrcodegen_getModule (qrcode, x + 1, y) << 1;
bmp |= qrcodegen_getModule (qrcode, x, y + 1) << 2;
bmp |= qrcodegen_getModule (qrcode, x + 1, y + 1) << 3;
int index = inverted ? 15 - bmp : bmp;
const char *pixel = qrcode_utf8_expansions[index];
memcpy (p, pixel, strlen (pixel));
p += strlen (pixel);
}
*p++ = '\n';
}
} else {
for (y = -border; y < size + border; y++) {
for (x = -border; x < size + border; x++) {
bool fill = qrcodegen_getModule (qrcode, x, y);
const char *pixel = (fill ^ inverted) ? "##" : " ";
memcpy (p, pixel, strlen (pixel));
p += strlen (pixel);
}
*p++ = '\n';
}
}
if (p > res) {
p--;
}
*p = 0;
free (buf);
return res;
}