radare2/libr/egg/egg.c

594 lines
13 KiB
C

/* radare - LGPL - Copyright 2011-2022 - pancake */
#include <r_egg.h>
#include <config.h>
R_LIB_VERSION (r_egg);
// TODO: must be plugins
extern REggEmit emit_x86;
extern REggEmit emit_x64;
extern REggEmit emit_arm;
extern REggEmit emit_esil;
extern REggEmit emit_trace;
static REggPlugin *egg_static_plugins[] =
{ R_EGG_STATIC_PLUGINS };
struct egg_patch_t {
RBuffer *b;
int off;
};
void egg_patch_free(void *p) {
struct egg_patch_t *ep = (struct egg_patch_t *)p;
if (ep) {
r_buf_free (ep->b);
free (ep);
}
}
R_API REgg *r_egg_new(void) {
int i;
REgg *egg = R_NEW0 (REgg);
if (!egg) {
return NULL;
}
egg->src = r_buf_new ();
if (!egg->src) {
goto beach;
}
egg->buf = r_buf_new ();
if (!egg->buf) {
goto beach;
}
egg->bin = r_buf_new ();
if (!egg->bin) {
goto beach;
}
egg->remit = &emit_x86;
egg->syscall = r_syscall_new ();
if (!egg->syscall) {
goto beach;
}
egg->rasm = r_asm_new ();
if (!egg->rasm) {
goto beach;
}
egg->bits = 0;
egg->endian = 0;
egg->db = sdb_new (NULL, NULL, 0);
if (!egg->db) {
goto beach;
}
egg->patches = r_list_newf (egg_patch_free);
if (!egg->patches) {
goto beach;
}
egg->plugins = r_list_new ();
for (i = 0; egg_static_plugins[i]; i++) {
r_egg_add (egg, egg_static_plugins[i]);
}
return egg;
beach:
r_egg_free (egg);
return NULL;
}
R_API bool r_egg_add(REgg *a, REggPlugin *foo) {
r_return_val_if_fail (a && foo, false);
RListIter *iter;
RAsmPlugin *h;
// TODO: cache foo->name length and use memcmp instead of strcmp
if (!foo->name) {
return false;
}
r_list_foreach (a->plugins, iter, h) {
if (!strcmp (h->name, foo->name)) {
return false;
}
}
r_list_append (a->plugins, foo);
return true;
}
R_API char *r_egg_to_string(REgg *egg) {
r_return_val_if_fail (egg, NULL);
return r_buf_to_string (egg->buf);
}
R_API void r_egg_free(REgg *egg) {
if (egg) {
r_buf_free (egg->src);
r_buf_free (egg->buf);
r_buf_free (egg->bin);
r_list_free (egg->list);
r_asm_free (egg->rasm);
r_syscall_free (egg->syscall);
sdb_free (egg->db);
r_list_free (egg->plugins);
r_list_free (egg->patches);
r_egg_lang_free (egg);
free (egg);
}
}
R_API void r_egg_reset(REgg *egg) {
r_return_if_fail (egg);
r_egg_lang_include_init (egg);
// TODO: use r_list_purge instead of free/new here
r_buf_free (egg->src);
r_buf_free (egg->buf);
r_buf_free (egg->bin);
egg->src = r_buf_new ();
egg->buf = r_buf_new ();
egg->bin = r_buf_new ();
r_list_purge (egg->patches);
}
R_API bool r_egg_setup(REgg *egg, const char *arch, int bits, int endian, const char *os) {
r_return_val_if_fail (egg && arch, false);
const char *asmcpu = NULL; // TODO
egg->remit = NULL;
egg->os = os? r_str_hash (os): R_EGG_OS_DEFAULT;
//eprintf ("%s -> %x (linux=%x) (darwin=%x)\n", os, egg->os, R_EGG_OS_LINUX, R_EGG_OS_DARWIN);
// TODO: setup egg->arch for all archs
if (!strcmp (arch, "x86")) {
egg->arch = R_SYS_ARCH_X86;
switch (bits) {
case 32:
r_syscall_setup (egg->syscall, arch, bits, asmcpu, os);
egg->remit = &emit_x86;
egg->bits = bits;
break;
case 64:
r_syscall_setup (egg->syscall, arch, bits, asmcpu, os);
egg->remit = &emit_x64;
egg->bits = bits;
break;
}
} else if (!strcmp (arch, "esil")) {
egg->arch = R_SYS_ARCH_ESIL;
r_syscall_setup (egg->syscall, arch, bits, asmcpu, os);
egg->remit = &emit_esil;
} else if (!strcmp (arch, "arm")) {
egg->arch = R_SYS_ARCH_ARM;
switch (bits) {
case 16:
case 32:
case 64:
r_syscall_setup (egg->syscall, arch, bits, asmcpu, os);
egg->remit = &emit_arm;
egg->bits = bits;
egg->endian = endian;
break;
}
} else if (!strcmp (arch, "trace")) {
//r_syscall_setup (egg->syscall, arch, os, bits);
egg->remit = &emit_trace;
egg->bits = bits;
egg->endian = endian;
}
return true;
}
R_API bool r_egg_include_str(REgg *egg, const char *arg) {
r_buf_append_bytes (egg->src, (const ut8*)arg, strlen (arg));
return true;
}
R_API bool r_egg_include(REgg *egg, const char *file, int format) {
r_return_val_if_fail (egg && file, false);
size_t sz;
const ut8 *foo = (const ut8 *)r_file_slurp (file, &sz);
if (!foo) {
return false;
}
// XXX: format breaks compiler layers
switch (format) {
case 'r': // raw
r_egg_raw (egg, foo, (int)sz);
break;
case 'a': // assembly
r_buf_append_bytes (egg->buf, foo, (ut64)sz);
break;
default:
r_buf_append_bytes (egg->src, foo, (ut64)sz);
break;
}
free ((void *)foo);
return true;
}
R_API void r_egg_load(REgg *egg, const char *code, int format) {
r_return_if_fail (egg && code);
switch (format) {
case 'a': // assembly
r_buf_append_bytes (egg->buf, (const ut8 *)code, strlen (code));
break;
default:
r_buf_append_bytes (egg->src, (const ut8 *)code, strlen (code));
break;
}
}
R_API void r_egg_syscall(REgg *egg, const char *arg, ...) {
r_return_if_fail (egg);
RSyscallItem *item = r_syscall_get (egg->syscall,
r_syscall_get_num (egg->syscall, arg), -1);
if (!strcmp (arg, "close")) {
//egg->remit->syscall_args ();
}
if (!item) {
return;
}
egg->remit->syscall (egg, item->num);
r_syscall_item_free (item);
}
R_API void r_egg_alloc(REgg *egg, int n) {
// add esp, n
}
R_API void r_egg_label(REgg *egg, const char *name) {
r_egg_printf (egg, "%s:\n", name);
}
R_API void r_egg_math(REgg *egg) { //, char eq, const char *vs, char type, const char *sr
// TODO
//e->mathop (egg, op, type, eq, p);
}
R_API bool r_egg_raw(REgg *egg, const ut8 *b, int len) {
r_return_val_if_fail (egg && b, false);
int outlen = len * 2; // two hexadecimal digits per byte
char *out = malloc (outlen + 1);
if (!out) {
return false;
}
(void)r_hex_bin2str (b, len, out);
r_buf_append_bytes (egg->buf, (const ut8 *)".hex ", 5);
r_buf_append_bytes (egg->buf, (const ut8 *)out, outlen);
r_buf_append_bytes (egg->buf, (const ut8 *)"\n", 1);
free (out);
return true;
}
static bool r_egg_raw_prepend(REgg *egg, const ut8 *b, int len) {
r_return_val_if_fail (egg && b, false);
int outlen = len * 2; // two hexadecimal digits per byte
char *out = malloc (outlen + 1);
if (!out) {
return false;
}
r_hex_bin2str (b, len, out);
r_buf_prepend_bytes (egg->buf, (const ut8 *)"\n", 1);
r_buf_prepend_bytes (egg->buf, (const ut8 *)out, outlen);
r_buf_prepend_bytes (egg->buf, (const ut8 *)".hex ", 5);
free (out);
return true;
}
static bool r_egg_prepend_bytes(REgg *egg, const ut8 *b, int len) {
r_return_val_if_fail (egg && b, false);
if (!r_egg_raw_prepend (egg, b, len)) {
return false;
}
if (!r_buf_prepend_bytes (egg->bin, b, len)) {
return false;
}
return true;
}
static bool r_egg_append_bytes(REgg *egg, const ut8 *b, int len) {
r_return_val_if_fail (egg && b, false);
if (!r_egg_raw (egg, b, len)) {
return false;
}
if (!r_buf_append_bytes (egg->bin, b, len)) {
return false;
}
return true;
}
// r_egg_block (egg, FRAME | IF | ELSE | ENDIF | FOR | WHILE, sz)
R_API void r_egg_if(REgg *egg, const char *reg, char cmp, int v) {
// egg->depth++;
}
R_API void r_egg_printf(REgg *egg, const char *fmt, ...) {
r_return_if_fail (egg && fmt);
va_list ap;
int len;
char buf[1024];
va_start (ap, fmt);
len = vsnprintf (buf, sizeof (buf), fmt, ap);
r_buf_append_bytes (egg->buf, (const ut8 *)buf, len);
va_end (ap);
}
R_API bool r_egg_assemble_asm(REgg *egg, char **asm_list) {
RAsmCode *asmcode = NULL;
char *code = NULL;
char *asm_name = NULL;
if (asm_list) {
char **asm_;
for (asm_ = asm_list; *asm_; asm_ += 2) {
if (!strcmp (egg->remit->arch, asm_[0])) {
asm_name = asm_[1];
break;
}
}
}
if (!asm_name) {
if (egg->remit == &emit_x86 || egg->remit == &emit_x64) {
asm_name = "x86.nz";
} else if (egg->remit == &emit_arm) {
asm_name = "arm";
}
}
if (asm_name) {
r_asm_use (egg->rasm, asm_name);
r_asm_set_bits (egg->rasm, egg->bits);
r_asm_set_big_endian (egg->rasm, egg->endian);
r_asm_set_syntax (egg->rasm, R_ARCH_SYNTAX_INTEL);
code = r_buf_to_string (egg->buf);
asmcode = r_asm_massemble (egg->rasm, code);
if (asmcode) {
if (asmcode->len > 0) {
r_buf_append_bytes (egg->bin, asmcode->bytes, asmcode->len);
}
// LEAK r_asm_code_free (asmcode);
} else {
R_LOG_ERROR ("fail assembling");
}
}
free (code);
bool ret = (asmcode);
r_asm_code_free (asmcode);
return ret;
}
R_API bool r_egg_assemble(REgg *egg) {
return r_egg_assemble_asm (egg, NULL);
}
R_API bool r_egg_compile(REgg *egg) {
r_return_val_if_fail (egg, false);
r_buf_seek (egg->src, 0, R_BUF_SET);
char b;
int r = r_buf_read (egg->src, (ut8 *)&b, sizeof (b));
if (r != sizeof (b) || !egg->remit) {
return true;
}
// only emit begin if code is found
r_egg_lang_init (egg);
for (; b; ) {
r_egg_lang_parsechar (egg, b);
if (egg->lang.elem_n >= sizeof (egg->lang.elem)) {
R_LOG_ERROR ("too large element");
break;
}
size_t r = r_buf_read (egg->src, (ut8 *)&b, sizeof (b));
if (r != sizeof (b)) {
break;
}
// XXX: some parse fail errors are false positives :(
}
if (egg->context > 0) {
R_LOG_ERROR ("expected '}' at the end of the file. %d left", egg->context);
return false;
}
// TODO: handle errors here
return true;
}
R_API RBuffer *r_egg_get_bin(REgg *egg) {
// TODO increment reference
return egg->bin;
}
//R_API int r_egg_dump (REgg *egg, const char *file) { }
R_API char *r_egg_get_source(REgg *egg) {
return r_buf_to_string (egg->src);
}
R_API char *r_egg_get_assembly(REgg *egg) {
return r_buf_to_string (egg->buf);
}
R_API void r_egg_append(REgg *egg, const char *src) {
r_buf_append_bytes (egg->src, (const ut8*)src, strlen (src));
}
/* JIT : TODO: accept arguments here */
R_API int r_egg_run(REgg *egg) {
r_return_val_if_fail (egg, -1);
ut64 tmpsz;
const ut8 *tmp = r_buf_data (egg->bin, &tmpsz);
return r_sys_run (tmp, tmpsz);
}
R_API int r_egg_run_rop(REgg *egg) {
ut64 sz;
const ut8 *tmp = r_buf_data (egg->bin, &sz);
return r_sys_run_rop (tmp, sz);
}
#define R_EGG_FILL_TYPE_TRAP
#define R_EGG_FILL_TYPE_NOP
#define R_EGG_FILL_TYPE_CHAR
#define R_EGG_FILL_TYPE_SEQ
#define R_EGG_FILL_TYPE_SEQ
static inline char *eon(char *n) {
while (*n && (*n >= '0' && *n <= '9')) {
n++;
}
return n;
}
/* padding looks like:
([snatSNAT][0-9]+)*
*/
R_API bool r_egg_padding(REgg *egg, const char *pad) {
int number;
ut8 *buf, padding_byte;
char *p, *o = strdup (pad);
for (p = o; *p;) { // parse pad string
const char f = *p++;
number = strtol (p, NULL, 10);
if (number < 1) {
R_LOG_ERROR ("Invalid padding length at %d", number);
free (o);
return false;
}
p = eon(p);
switch (f) {
case 's': case 'S': padding_byte = 0; break;
case 'n': case 'N': padding_byte = 0x90; break;
case 'a':
case 'A': padding_byte = 'A'; break;
case 't':
case 'T': padding_byte = 0xcc; break;
default:
R_LOG_ERROR ("Invalid padding format (%c)", *p);
eprintf ("Valid ones are:\n");
eprintf (" s S : NULL byte\n");
eprintf (" n N : nop\n");
eprintf (" a A : 0x41\n");
eprintf (" t T : trap (0xcc)\n");
free (o);
return false;
}
buf = malloc (number);
if (!buf) {
free (o);
return false;
}
memset (buf, padding_byte, number);
if (f >= 'a' && f <= 'z') {
r_egg_prepend_bytes(egg, buf, number);
} else {
r_egg_append_bytes(egg, buf, number);
}
free (buf);
}
free (o);
return true;
}
R_API void r_egg_fill(REgg *egg, int pos, int type, int argc, int length) {
// TODO
}
R_API void r_egg_option_set(REgg *egg, const char *key, const char *val) {
sdb_set (egg->db, key, val, 0);
}
R_API char *r_egg_option_get(REgg *egg, const char *key) {
return sdb_get (egg->db, key, NULL);
}
R_API bool r_egg_shellcode(REgg *egg, const char *name) {
r_return_val_if_fail (egg && name, false);
REggPlugin *p;
RListIter *iter;
RBuffer *b;
r_list_foreach (egg->plugins, iter, p) {
if (p->type == R_EGG_PLUGIN_SHELLCODE && !strcmp (name, p->name)) {
b = p->build (egg);
if (!b) {
R_LOG_ERROR ("%s Shellcode has failed", p->name);
return false;
}
ut64 tmpsz;
const ut8 *tmp = r_buf_data (b, &tmpsz);
r_egg_raw (egg, tmp, tmpsz);
return true;
}
}
return false;
}
R_API bool r_egg_encode(REgg *egg, const char *name) {
REggPlugin *p;
RListIter *iter;
r_list_foreach (egg->plugins, iter, p) {
if (p->type == R_EGG_PLUGIN_ENCODER && !strcmp (name, p->name)) {
RBuffer *b = p->build (egg);
if (b) {
r_buf_free (egg->bin);
egg->bin = b;
return true;
}
return false;
}
}
return false;
}
R_API bool r_egg_patch(REgg *egg, int off, const ut8 *buf, int len) {
struct egg_patch_t *ep = R_NEW (struct egg_patch_t);
if (!ep) {
return false;
}
ep->b = r_buf_new_with_bytes (buf, len);
if (!ep->b) {
egg_patch_free (ep);
return false;
}
ep->off = off;
r_list_append (egg->patches, ep);
return true;
}
R_API void r_egg_finalize(REgg *egg) {
struct egg_patch_t *ep;
RListIter *iter;
if (!egg->bin) {
r_buf_free (egg->bin);
egg->bin = r_buf_new ();
}
r_list_foreach (egg->patches, iter, ep) {
if (ep->off < 0) {
ut64 sz;
const ut8 *buf = r_buf_data (ep->b, &sz);
r_egg_append_bytes (egg, buf, sz);
} else if (ep->off < r_buf_size (egg->bin)) {
ut64 sz;
const ut8 *buf = r_buf_data (ep->b, &sz);
int r = r_buf_write_at (egg->bin, ep->off, buf, sz);
if (r < sz) {
R_LOG_ERROR ("cannot write");
return;
}
} else {
R_LOG_ERROR ("Cannot patch outside");
return;
}
}
}
R_API void r_egg_pattern(REgg *egg, int size) {
char *ret = r_debruijn_pattern ((int)size, 0, NULL);
if (ret) {
r_egg_prepend_bytes (egg, (const ut8*)ret, strlen(ret));
free (ret);
} else {
R_LOG_ERROR ("Invalid debruijn pattern length");
}
}