radare2/libr/anal/fcn.c

2382 lines
71 KiB
C

/* radare - LGPL - Copyright 2010-2022 - nibble, alvaro, pancake */
#include <r_anal.h>
#include <r_parse.h>
#include <r_util.h>
#define READ_AHEAD 1
#define SDB_KEY_BB "bb.0x%"PFMT64x ".0x%"PFMT64x
// XXX must be configurable by the user
#define JMPTBLSZ 512
#define JMPTBL_LEA_SEARCH_SZ 64
#define JMPTBL_MAXFCNSIZE 4096
#define R_ANAL_MAX_INCSTACK 8096
#define BB_ALIGN 0x10
#define MAX_SCAN_SIZE 0x7ffffff
/* speedup analysis by removing some function overlapping checks */
#define JAYRO_04 1
// 16 KB is the maximum size for a basic block
#define MAX_FLG_NAME_SIZE 64
#define FIX_JMP_FWD 0
#define D if (a->verbose)
// 64KB max size
// 256KB max function size
#define MAX_FCN_SIZE (1024 * 256)
// Max NOP count to stop analysis
#define MAX_NOP_PREFIX_CNT 1024
#define DB a->sdb_fcns
#define EXISTS(x, ...) snprintf (key, sizeof (key) - 1, x, ## __VA_ARGS__), sdb_exists (DB, key)
#define SETKEY(x, ...) snprintf (key, sizeof (key) - 1, x, ## __VA_ARGS__);
R_API const char *r_anal_functiontype_tostring(int type) {
switch (type) {
case R_ANAL_FCN_TYPE_NULL: return "null";
case R_ANAL_FCN_TYPE_FCN: return "fcn";
case R_ANAL_FCN_TYPE_LOC: return "loc";
case R_ANAL_FCN_TYPE_SYM: return "sym";
case R_ANAL_FCN_TYPE_IMP: return "imp";
case R_ANAL_FCN_TYPE_INT: return "int"; // interrupt
case R_ANAL_FCN_TYPE_ROOT: return "root";
}
return "unk";
}
#if READ_AHEAD
static R_TH_LOCAL ut64 cache_addr = UT64_MAX;
// TODO: move into io :?
static int read_ahead(RAnal *anal, ut64 addr, ut8 *buf, int len) {
static R_TH_LOCAL ut8 cache[1024];
const int cache_len = sizeof (cache);
if (len < 1) {
return 0;
}
if (len > cache_len) {
int a = anal->iob.read_at (anal->iob.io, addr, buf, len); // double read
memcpy (cache, buf, cache_len);
cache_addr = addr;
return a;
}
ut64 addr_end = UT64_ADD_OVFCHK (addr, len)? UT64_MAX: addr + len;
ut64 cache_addr_end = UT64_ADD_OVFCHK (cache_addr, cache_len)? UT64_MAX: cache_addr + cache_len;
bool isCached = ((addr != UT64_MAX) && (addr >= cache_addr) && (addr_end < cache_addr_end));
if (isCached) {
memcpy (buf, cache + (addr - cache_addr), len);
} else {
anal->iob.read_at (anal->iob.io, addr, cache, sizeof (cache));
memcpy (buf, cache, len);
cache_addr = addr;
}
return len;
}
#else
static int read_ahead(RAnal *anal, ut64 addr, ut8 *buf, int len) {
return anal->iob.read_at (anal->iob.io, addr, buf, len);
}
#endif
R_API void r_anal_function_invalidate_read_ahead_cache(void) {
#if READ_AHEAD
cache_addr = UT64_MAX;
#endif
}
R_API int r_anal_function_resize(RAnalFunction *fcn, int newsize) {
RAnal *anal = fcn->anal;
RAnalBlock *bb;
RListIter *iter, *iter2;
r_return_val_if_fail (fcn, false);
if (newsize < 1) {
return false;
}
// XXX this is something we should probably do for all the archs
bool is_arm = anal->cur->arch && !strncmp (anal->cur->arch, "arm", 3);
if (is_arm) {
return true;
}
ut64 eof = fcn->addr + newsize;
r_list_foreach_safe (fcn->bbs, iter, iter2, bb) {
if (bb->addr >= eof) {
r_anal_function_remove_block (fcn, bb);
continue;
}
if (bb->addr + bb->size >= eof) {
r_anal_block_set_size (bb, eof - bb->addr);
r_anal_block_update_hash (bb);
}
if (bb->jump != UT64_MAX && bb->jump >= eof) {
bb->jump = UT64_MAX;
}
if (bb->fail != UT64_MAX && bb->fail >= eof) {
bb->fail = UT64_MAX;
}
}
return true;
}
// Create a new 0-sized basic block inside the function
static RAnalBlock *fcn_append_basic_block(RAnal *anal, RAnalFunction *fcn, ut64 addr) {
RAnalBlock *bb = r_anal_create_block (anal, addr, 0);
if (!bb) {
return NULL;
}
r_anal_function_add_block (fcn, bb);
bb->stackptr = fcn->stack;
bb->parent_stackptr = fcn->stack;
return bb;
}
#define gotoBeach(x) ret = x; goto beach;
static bool is_invalid_memory(RAnal *anal, const ut8 *buf, int len) {
if (anal->opt.nonull > 0) {
int i;
const int count = R_MIN (len, anal->opt.nonull);
for (i = 0; i < count; i++) {
if (buf[i]) {
break;
}
}
if (i == count) {
return true;
}
}
return !memcmp (buf, "\xff\xff\xff\xff", R_MIN (len, 4));
}
static bool is_symbol_flag(const char *name) {
return strstr (name, "imp.")
|| strstr (name, "dbg.")
|| strstr (name, "sym.")
|| !strncmp (name, "entry", 5)
|| !strcmp (name, "main");
}
static bool next_instruction_is_symbol(RAnal *anal, RAnalOp *op) {
r_return_val_if_fail (anal && op && anal->flb.get_at, false);
RFlagItem *fi = anal->flb.get_at (anal->flb.f, op->addr + op->size, false);
return (fi && fi->name && is_symbol_flag (fi->name));
}
static bool is_delta_pointer_table(RAnal *anal, RAnalFunction *fcn, ut64 addr, ut64 lea_ptr, ut64 *jmptbl_addr, ut64 *casetbl_addr, RAnalOp *jmp_aop) {
int i;
ut64 dst;
st32 jmptbl[64] = {0};
/* check if current instruction is followed by an ujmp */
ut8 buf[JMPTBL_LEA_SEARCH_SZ];
RAnalOp *aop = jmp_aop;
RAnalOp omov_aop = {0};
RAnalOp mov_aop = {0};
RAnalOp add_aop = {0};
RRegItem *reg_src = NULL, *o_reg_dst = NULL;
RAnalValue cur_scr, cur_dst = {0};
read_ahead (anal, addr, (ut8*)buf, sizeof (buf));
bool isValid = false;
for (i = 0; i + 8 < JMPTBL_LEA_SEARCH_SZ; i++) {
ut64 at = addr + i;
int left = JMPTBL_LEA_SEARCH_SZ - i;
int len = r_anal_op (anal, aop, at, buf + i, left, R_ANAL_OP_MASK_BASIC | R_ANAL_OP_MASK_HINT | R_ANAL_OP_MASK_VAL);
if (len < 1) {
len = 1;
}
if (aop->type == R_ANAL_OP_TYPE_UJMP || aop->type == R_ANAL_OP_TYPE_RJMP) {
isValid = true;
break;
}
if (aop->type == R_ANAL_OP_TYPE_JMP || aop->type == R_ANAL_OP_TYPE_CJMP) {
break;
}
if (aop->type == R_ANAL_OP_TYPE_MOV) {
omov_aop = mov_aop;
mov_aop = *aop;
o_reg_dst = cur_dst.reg;
if (mov_aop.dst) {
cur_dst = *mov_aop.dst;
}
if (mov_aop.src[0]) {
cur_scr = *mov_aop.src[0];
reg_src = cur_scr.regdelta;
}
}
if (aop->type == R_ANAL_OP_TYPE_ADD) {
add_aop = *aop;
}
r_anal_op_fini (aop);
i += len - 1;
}
if (!isValid) {
return false;
}
// check if we have a msvc 19xx style jump table using rva table entries
// lea reg1, [base_addr]
// mov reg2, dword [reg1 + tbl_off*4 + tbl_loc_off]
// add reg2, reg1
// jmp reg2
if (mov_aop.type && add_aop.type && mov_aop.addr < add_aop.addr && add_aop.addr < jmp_aop->addr
&& mov_aop.disp && mov_aop.disp != UT64_MAX) {
// disp in this case should be tbl_loc_off
*jmptbl_addr += mov_aop.disp;
if (o_reg_dst && reg_src && o_reg_dst->offset == reg_src->offset && omov_aop.disp != UT64_MAX) {
// Special case for indirection
// lea reg1, [base_addr]
// movzx reg2, byte [reg1 + tbl_off + casetbl_loc_off]
// mov reg3, dword [reg1 + reg2*4 + tbl_loc_off]
// add reg3, reg1
// jmp reg3
*casetbl_addr += omov_aop.disp;
}
}
#if 0
// required for the last jmptbl.. but seems to work without it and breaks other tests
if (mov_aop.type && mov_aop.ptr) {
*jmptbl_addr += mov_aop.ptr;
// absjmptbl
lea_ptr = mov_aop.ptr;
}
#endif
/* check if jump table contains valid deltas */
read_ahead (anal, *jmptbl_addr, (ut8 *)&jmptbl, 64);
for (i = 0; i < 3; i++) {
dst = lea_ptr + (st32)r_read_le32 (jmptbl);
if (!anal->iob.is_valid_offset (anal->iob.io, dst, 0)) {
return false;
}
if (dst > fcn->addr + JMPTBL_MAXFCNSIZE) {
return false;
}
if (anal->opt.jmpabove && dst < (fcn->addr < JMPTBL_MAXFCNSIZE ? 0 : fcn->addr - JMPTBL_MAXFCNSIZE)) {
return false;
}
}
return true;
}
static ut64 try_get_cmpval_from_parents(RAnal *anal, RAnalFunction *fcn, RAnalBlock *my_bb, const char *cmp_reg) {
if (!cmp_reg) {
R_LOG_DEBUG ("try_get_cmpval_from_parents: cmp_reg not defined");
return UT64_MAX;
}
r_return_val_if_fail (fcn && fcn->bbs, UT64_MAX);
RListIter *iter;
RAnalBlock *tmp_bb;
r_list_foreach (fcn->bbs, iter, tmp_bb) {
if (tmp_bb->jump == my_bb->addr || tmp_bb->fail == my_bb->addr) {
if (tmp_bb->cmpreg == cmp_reg) {
if (tmp_bb->cond) {
if (tmp_bb->cond->type == R_ANAL_COND_HI || tmp_bb->cond->type == R_ANAL_COND_GT) {
return tmp_bb->cmpval + 1;
}
}
return tmp_bb->cmpval;
}
}
}
return UT64_MAX;
}
static bool regs_exist(RAnalValue *src, RAnalValue *dst) {
r_return_val_if_fail (src && dst, false);
return src->reg && dst->reg && src->reg->name && dst->reg->name;
}
// 0 if not skipped; 1 if skipped; 2 if skipped before
static int skip_hp(RAnal *anal, RAnalFunction *fcn, RAnalOp *op, RAnalBlock *bb, ut64 addr, int oplen, int un_idx, int *idx) {
// this step is required in order to prevent infinite recursion in some cases
if ((addr + un_idx - oplen) == fcn->addr) {
// use addr instead of op->addr to mark repeat
if (!anal->flb.exist_at (anal->flb.f, "skip", 4, addr)) {
char *name = r_str_newf ("skip.%"PFMT64x, addr);
anal->flb.set (anal->flb.f, name, addr, oplen);
free (name);
fcn->addr += oplen;
r_anal_block_relocate (bb, bb->addr + oplen, bb->size - oplen);
*idx = un_idx;
return 1;
}
return 2;
}
return 0;
}
static bool purity_checked(HtUP *ht, RAnalFunction *fcn) {
bool checked;
ht_up_find (ht, fcn->addr, &checked);
return checked;
}
/*
* Checks whether a given function is pure and sets its 'is_pure' field.
* This function marks fcn 'not pure' if fcn, or any function called by fcn, accesses data
* from outside, even if it only READS it.
* Probably worth changing it in the future, so that it marks fcn 'impure' only when it
* (or any function called by fcn) MODIFIES external data.
*/
static void check_purity(HtUP *ht, RAnalFunction *fcn) {
RListIter *iter;
RList *refs = r_anal_function_get_refs (fcn);
RAnalRef *ref;
ht_up_insert (ht, fcn->addr, NULL);
fcn->is_pure = true;
r_list_foreach (refs, iter, ref) {
int rt = R_ANAL_REF_TYPE_MASK (ref->type);
if (rt == R_ANAL_REF_TYPE_CALL || rt == R_ANAL_REF_TYPE_CODE) {
RAnalFunction *called_fcn = r_anal_get_fcn_in (fcn->anal, ref->addr, 0);
if (!called_fcn) {
continue;
}
if (!purity_checked (ht, called_fcn)) {
check_purity (ht, called_fcn);
}
if (!called_fcn->is_pure) {
fcn->is_pure = false;
break;
}
}
if (R_ANAL_REF_TYPE_MASK (ref->type) == R_ANAL_REF_TYPE_DATA) {
fcn->is_pure = false;
break;
}
}
r_list_free (refs);
}
typedef struct {
ut64 op_addr;
ut64 leaddr;
char *reg;
} leaddr_pair;
static void free_leaddr_pair(void *pair) {
leaddr_pair *_pair = pair;
free (_pair->reg);
free (_pair);
}
static RAnalBlock *bbget(RAnal *anal, ut64 addr, bool jumpmid) {
RList *intersecting = r_anal_get_blocks_in (anal, addr);
RListIter *iter;
RAnalBlock *bb, *ret = NULL;
jumpmid &= r_anal_is_aligned (anal, addr);
r_list_foreach (intersecting, iter, bb) {
ut64 eaddr = bb->addr + bb->size;
if (((bb->addr >= eaddr && addr == bb->addr)
|| r_anal_block_contains (bb, addr))
&& (!jumpmid || r_anal_block_op_starts_at (bb, addr))) {
if (anal->opt.delay) {
ut8 *buf = malloc (bb->size);
if (anal->iob.read_at (anal->iob.io, bb->addr, buf, bb->size)) {
const int last_instr_idx = bb->ninstr - 1;
bool in_delay_slot = false;
int i;
for (i = last_instr_idx; i >= 0; i--) {
const ut64 off = r_anal_bb_offset_inst (bb, i);
const ut64 at = bb->addr + off;
if (addr <= at || off >= bb->size) {
continue;
}
RAnalOp op;
int size = r_anal_op (anal, &op, at, buf + off, bb->size - off, R_ANAL_OP_MASK_BASIC);
if (size > 0 && op.delay) {
if (op.delay >= last_instr_idx - i) {
in_delay_slot = true;
}
r_anal_op_fini (&op);
break;
}
r_anal_op_fini (&op);
}
if (in_delay_slot) {
free (buf);
continue;
}
}
free (buf);
}
ret = bb;
break;
}
}
r_list_free (intersecting);
return ret;
}
typedef struct {
RAnalFunction *fcn;
const int stack_diff;
} BlockTakeoverCtx;
static bool fcn_takeover_block_recursive_followthrough_cb(RAnalBlock *block, void *user) {
BlockTakeoverCtx *ctx = user;
RAnalFunction *our_fcn = ctx->fcn;
r_anal_block_ref (block);
while (!r_list_empty (block->fcns)) {
RAnalFunction *other_fcn = r_list_first (block->fcns);
if (other_fcn->addr == block->addr) {
r_anal_block_unref (block);
return false;
}
// Steal vars from this block
size_t i;
for (i = 0; i < block->ninstr; i++) {
const ut64 addr = r_anal_bb_opaddr_i (block, i);
RPVector *vars_used = r_anal_function_get_vars_used_at (other_fcn, addr);
if (!vars_used) {
continue;
}
// vars_used will get modified if r_anal_var_remove_access_at gets called
RPVector *cloned_vars_used = (RPVector *)r_vector_clone ((RVector *)vars_used);
void **it;
r_pvector_foreach (cloned_vars_used, it) {
RAnalVar *other_var = *it;
const int actual_delta = other_var->kind == R_ANAL_VAR_KIND_SPV
? other_var->delta + ctx->stack_diff
: other_var->delta + (other_fcn->bp_off - our_fcn->bp_off);
RAnalVar *our_var = r_anal_function_get_var (our_fcn, other_var->kind, actual_delta);
if (!our_var) {
our_var = r_anal_function_set_var (our_fcn, actual_delta, other_var->kind, other_var->type, 0, other_var->isarg, other_var->name);
}
if (our_var) {
RAnalVarAccess *acc = r_anal_var_get_access_at (other_var, addr);
r_anal_var_set_access (our_var, acc->reg, addr, acc->type, acc->stackptr);
}
r_anal_var_remove_access_at (other_var, addr);
if (r_vector_empty (&other_var->accesses)) {
r_anal_function_delete_var (other_fcn, other_var);
}
}
r_pvector_free (cloned_vars_used);
}
// TODO: remove block->ninstr from other_fcn considering delay slots
r_anal_function_remove_block (other_fcn, block);
}
block->stackptr -= ctx->stack_diff;
block->parent_stackptr -= ctx->stack_diff;
r_anal_function_add_block (our_fcn, block);
// TODO: add block->ninstr from our_fcn considering delay slots
r_anal_block_unref (block);
return true;
}
// Remove block and all of its recursive successors from all its functions and add them only to fcn
static void fcn_takeover_block_recursive(RAnalFunction *fcn, RAnalBlock *start_block) {
BlockTakeoverCtx ctx = { fcn, start_block->parent_stackptr - fcn->stack};
r_anal_block_recurse_followthrough (start_block, fcn_takeover_block_recursive_followthrough_cb, &ctx);
}
static const char *retpoline_reg(RAnal *anal, ut64 addr) {
RFlagItem *flag = anal->flag_get (anal->flb.f, addr);
if (flag) {
const char *token = "x86_indirect_thunk_";
const char *thunk = strstr (flag->name, token);
if (thunk) {
return thunk + strlen (token);
}
}
#if 0
// TODO: implement following code analysis check for stripped binaries:
// 1) op(addr).type == CALL
// 2) call_dest = op(addr).addr
// 3) op(call_dest).type == STORE
// 4) op(call_dest + op(call_dest).size).type == RET
[0x00000a65]> pid 6
0x00000a65 sym.__x86_indirect_thunk_rax:
0x00000a65 .------- e807000000 call 0xa71
0x00000a6a | f390 pause
0x00000a6c | 0faee8 lfence
0x00000a6f | ebf9 jmp 0xa6a
0x00000a71 `----> 48890424 mov qword [rsp], rax
0x00000a75 c3 ret
#endif
return NULL;
}
static void analyze_retpoline(RAnal *anal, RAnalOp *op) {
if (anal->opt.retpoline) {
const char *rr = retpoline_reg (anal, op->jump);
if (rr) {
op->type = R_ANAL_OP_TYPE_RJMP;
op->reg = rr;
}
}
}
static inline bool op_is_set_bp(const char *op_dst, const char *op_src, const char *bp_reg, const char *sp_reg) {
if (op_dst && op_src) {
return !strcmp (bp_reg, op_dst) && !strcmp (sp_reg, op_src);
}
return false;
}
static inline bool does_arch_destroys_dst(const char *arch) {
return arch && (!strncmp (arch, "arm", 3) || !strcmp (arch, "riscv") || !strcmp (arch, "ppc"));
}
static inline bool has_vars(RAnal *anal, ut64 addr) {
RAnalFunction *tmp_fcn = r_anal_get_fcn_in (anal, addr, 0);
if (tmp_fcn) {
return r_anal_var_count_all (tmp_fcn) > 0;
}
return false;
}
static int fcn_recurse(RAnal *anal, RAnalFunction *fcn, ut64 addr, ut64 len, int depth) {
char *bp_reg = NULL;
char *sp_reg = NULL;
char *op_dst = NULL;
char *op_src = NULL;
if (depth < 1) {
R_LOG_DEBUG ("Too deep fcn_recurse at 0x%"PFMT64x, addr);
return R_ANAL_RET_ERROR; // MUST BE TOO DEEP
}
// TODO Store all this stuff in the heap so we save memory in the stack
RAnalOp *op = NULL;
char *movbasereg = NULL;
const int addrbytes = anal->iob.io ? anal->iob.io->addrbytes : 1;
char *last_reg_mov_lea_name = NULL;
RAnalBlock *bb = NULL;
RAnalBlock *bbg = NULL;
int ret = R_ANAL_RET_END, skip_ret = 0;
bool overlapped = false;
int oplen, idx = 0;
size_t lea_cnt = 0;
size_t nop_prefix_cnt = 0;
static R_TH_LOCAL ut64 cmpval = UT64_MAX; // inherited across functions, otherwise it breaks :?
struct {
int cnt;
int idx;
int after;
int pending;
int adjust;
int un_idx; // delay.un_idx
} delay = {
0
};
bool arch_destroys_dst = does_arch_destroys_dst (anal->cur->arch);
const bool is_arm = anal->cur->arch && !strncmp (anal->cur->arch, "arm", 3);
const bool is_v850 = is_arm ? false: (anal->cur->arch && (!strncmp (anal->cur->arch, "v850", 4) || !strncmp (anal->coreb.cfgGet (anal->coreb.core, "asm.cpu"), "v850", 4)));
const bool is_x86 = is_arm ? false: anal->cur->arch && !strncmp (anal->cur->arch, "x86", 3);
const bool is_amd64 = is_x86 ? fcn->cc && !strcmp (fcn->cc, "amd64") : false;
const bool is_dalvik = is_x86 ? false : anal->cur->arch && !strncmp (anal->cur->arch, "dalvik", 6);
RRegItem *variadic_reg = NULL;
if (is_amd64) {
variadic_reg = r_reg_get (anal->reg, "rax", R_REG_TYPE_GPR);
}
bool has_variadic_reg = !!variadic_reg;
if (r_cons_is_breaked ()) {
return R_ANAL_RET_END;
}
if (anal->sleep) {
r_sys_usleep (anal->sleep);
}
// check if address is readable //:
if (!anal->iob.is_valid_offset (anal->iob.io, addr, 0)) {
if (addr != UT64_MAX && !anal->iob.io->va) {
R_LOG_DEBUG ("Invalid address 0x%"PFMT64x ". Try with io.va=true", addr);
}
return R_ANAL_RET_ERROR; // MUST BE TOO DEEP
}
RAnalFunction *fcn_at_addr = r_anal_get_function_at (anal, addr);
if (fcn_at_addr && fcn_at_addr != fcn) {
return R_ANAL_RET_ERROR; // MUST BE NOT FOUND
}
RAnalBlock *existing_bb = bbget (anal, addr, anal->opt.jmpmid);
if (existing_bb) {
bool existing_in_fcn = r_list_contains (existing_bb->fcns, fcn);
existing_bb = r_anal_block_split (existing_bb, addr);
if (!existing_in_fcn && existing_bb) {
if (existing_bb->addr == fcn->addr) {
// our function starts directly there, so we steal what is ours!
fcn_takeover_block_recursive (fcn, existing_bb);
}
}
if (existing_bb) {
r_anal_block_unref (existing_bb);
}
if (anal->opt.recont) {
return R_ANAL_RET_END;
}
R_LOG_DEBUG ("r_anal_function_bb() fails at 0x%"PFMT64x, addr);
return R_ANAL_RET_ERROR; // MUST BE NOT DUP
}
bb = fcn_append_basic_block (anal, fcn, addr);
if (!bb) {
// we checked before whether there is a bb at addr, so the create should have succeeded
R_LOG_DEBUG ("Missing basic block assertion failed");
return R_ANAL_RET_ERROR;
}
if (!anal->leaddrs) {
anal->leaddrs = r_list_newf (free_leaddr_pair);
if (!anal->leaddrs) {
R_LOG_ERROR ("Cannot create leaddr list");
gotoBeach (R_ANAL_RET_ERROR);
}
}
static R_TH_LOCAL ut64 lea_jmptbl_ip = UT64_MAX;
ut64 last_reg_mov_lea_val = UT64_MAX;
bool last_is_reg_mov_lea = false;
bool last_is_push = false;
bool last_is_mov_lr_pc = false;
ut64 last_push_addr = UT64_MAX;
if (anal->limit && addr + idx < anal->limit->from) {
gotoBeach (R_ANAL_RET_END);
}
bool varset = has_vars (anal, addr); // Checks if var is already analyzed at given addr
ut64 movdisp = UT64_MAX; // used by jmptbl when coded as "mov Reg,[Reg*Scale+Disp]"
ut64 movscale = 0;
int maxlen = len * addrbytes;
if (is_dalvik) {
bool skipAnalysis = false;
if (!strncmp (fcn->name, "sym.", 4)) {
if (!strncmp (fcn->name + 4, "imp.", 4)) {
skipAnalysis = true;
} else if (strstr (fcn->name, "field")) {
skipAnalysis = true;
}
}
if (skipAnalysis) {
gotoBeach (R_ANAL_RET_END);
}
}
if ((maxlen - (addrbytes * idx)) > MAX_SCAN_SIZE) {
if (anal->verbose) {
R_LOG_WARN ("Skipping large memory region");
}
maxlen = 0;
}
const char *_bp_reg = anal->reg->name[R_REG_NAME_BP];
const char *_sp_reg = anal->reg->name[R_REG_NAME_SP];
const bool has_stack_regs = _bp_reg && _sp_reg;
if (has_stack_regs) {
bp_reg = strdup (_bp_reg);
sp_reg = strdup (_sp_reg);
}
op = r_anal_op_new ();
while (addrbytes * idx < maxlen) {
if (!last_is_reg_mov_lea) {
free (last_reg_mov_lea_name);
last_reg_mov_lea_name = NULL;
}
if (anal->limit && anal->limit->to <= addr + idx) {
break;
}
repeat:
if (r_cons_is_breaked ()) {
break;
}
ut8 buf[32]; // 32 bytes is enough to hold any instruction.
ut32 at_delta = addrbytes * idx;
ut64 at = addr + at_delta;
ut64 bytes_read = R_MIN (len - at_delta, sizeof (buf));
ret = read_ahead (anal, at, buf, bytes_read);
if (ret < 0) {
R_LOG_ERROR ("Failed to read");
break;
}
if (is_invalid_memory (anal, buf, bytes_read)) {
if (anal->verbose) {
R_LOG_WARN ("FFFF opcode at 0x%08"PFMT64x, at);
}
gotoBeach (R_ANAL_RET_ERROR)
}
r_anal_op_fini (op);
if ((oplen = r_anal_op (anal, op, at, buf, bytes_read, R_ANAL_OP_MASK_ESIL | R_ANAL_OP_MASK_VAL | R_ANAL_OP_MASK_HINT)) < 1) {
if (anal->verbose) {
R_LOG_WARN ("Invalid instruction at 0x%"PFMT64x" with %d bits", at, anal->config->bits);
}
// gotoBeach (R_ANAL_RET_ERROR);
// RET_END causes infinite loops somehow
gotoBeach (R_ANAL_RET_END);
}
free (op_dst);
op_dst = (op->dst && op->dst->reg && op->dst->reg->name)? strdup (op->dst->reg->name): NULL;
free (op_src);
op_src = (op->src[0] && op->src[0]->reg && op->src[0]->reg->name) ? strdup (op->src[0]->reg->name): NULL;
if (anal->opt.nopskip && fcn->addr == at) {
RFlagItem *fi = anal->flb.get_at (anal->flb.f, addr, false);
if (!fi || strncmp (fi->name, "sym.", 4)) {
if ((addr + delay.un_idx - oplen) == fcn->addr) {
if (r_anal_block_relocate (bb, bb->addr + oplen, bb->size - oplen)) {
fcn->addr += oplen;
idx = delay.un_idx;
goto repeat;
}
}
}
switch (op->type & R_ANAL_OP_TYPE_MASK) {
case R_ANAL_OP_TYPE_TRAP:
case R_ANAL_OP_TYPE_ILL:
case R_ANAL_OP_TYPE_NOP:
nop_prefix_cnt++;
if (nop_prefix_cnt > MAX_NOP_PREFIX_CNT) {
gotoBeach (R_ANAL_RET_ERROR);
}
if (r_anal_block_relocate (bb, at + op->size, bb->size)) {
addr = at + op->size;
fcn->addr = addr;
goto repeat;
}
}
}
if (op->hint.new_bits) {
r_anal_hint_set_bits (anal, op->jump, op->hint.new_bits);
}
if (idx > 0 && !overlapped) {
bbg = bbget (anal, at, anal->opt.jmpmid);
if (bbg && bbg != bb) {
bb->jump = at;
if (anal->opt.jmpmid && r_anal_is_aligned (anal, at)) {
// This happens when we purposefully walked over another block and overlapped it
// and now we hit an offset where the instructions match again.
// So we need to split the overwalked block.
RAnalBlock *split = r_anal_block_split (bbg, at);
r_anal_block_unref (split);
}
overlapped = true;
R_LOG_DEBUG ("Overlapped at 0x%08"PFMT64x, at);
}
}
if (!overlapped) {
const ut64 newbbsize = bb->size + oplen;
if (newbbsize > MAX_FCN_SIZE) {
gotoBeach (R_ANAL_RET_ERROR);
}
r_anal_bb_set_offset (bb, bb->ninstr++, at - bb->addr);
r_anal_block_set_size (bb, newbbsize);
fcn->ninstr++;
}
if (anal->opt.trycatch) {
const char *name = anal->coreb.getName (anal->coreb.core, at);
if (name) {
if (r_str_startswith (name, "try.") && r_str_endswith (name, ".from")) {
char *handle = strdup (name);
// handle = r_str_replace (handle, ".from", ".to", 0);
ut64 from_addr = anal->coreb.numGet (anal->coreb.core, handle);
handle = r_str_replace (handle, ".from", ".catch", 0);
ut64 handle_addr = anal->coreb.numGet (anal->coreb.core, handle);
bb->jump = at + oplen;
if (from_addr != bb->addr) {
bb->fail = handle_addr;
ret = r_anal_function_bb (anal, fcn, handle_addr, depth - 1);
eprintf ("(%s) 0x%08"PFMT64x"\n", handle, handle_addr);
if (bb->size == 0) {
r_anal_function_remove_block (fcn, bb);
}
r_anal_block_unref (bb);
bb = fcn_append_basic_block (anal, fcn, addr);
if (!bb) {
gotoBeach (R_ANAL_RET_ERROR);
}
}
}
}
}
idx += oplen;
delay.un_idx = idx;
if (anal->opt.delay && op->delay > 0 && !delay.pending) {
// Handle first pass through a branch delay jump:
// Come back and handle the current instruction later.
// Save the location of it in `delay.idx`
// note, we have still increased size of basic block
// (and function)
if (anal->verbose) {
eprintf ("Enter branch delay at 0x%08"PFMT64x ". bb->sz=%"PFMT64u"\n", at - oplen, bb->size);
}
delay.idx = idx - oplen;
delay.cnt = op->delay;
delay.pending = 1; // we need this in case the actual idx is zero...
delay.adjust = !overlapped; // adjustment is required later to avoid double count
continue;
}
if (delay.cnt > 0) {
// if we had passed a branch delay instruction, keep
// track of how many still to process.
delay.cnt--;
if (!delay.cnt) {
if (anal->verbose) {
eprintf ("Last branch delayed opcode at 0x%08"PFMT64x ". bb->sz=%"PFMT64u"\n", addr + idx - oplen, bb->size);
}
delay.after = idx;
idx = delay.idx;
// At this point, we are still looking at the
// last instruction in the branch delay group.
// Next time, we will again be looking
// at the original instruction that entered
// the branch delay.
}
} else if (op->delay > 0 && delay.pending) {
if (anal->verbose) {
eprintf ("Revisit branch delay jump at 0x%08"PFMT64x ". bb->sz=%"PFMT64u"\n", addr + idx - oplen, bb->size);
}
// This is the second pass of the branch delaying opcode
// But we also already counted this instruction in the
// size of the current basic block, so we need to fix that
if (delay.adjust) {
r_anal_block_set_size (bb, (ut64)addrbytes * (ut64)delay.after);
fcn->ninstr--;
if (anal->verbose) {
eprintf ("Correct for branch delay @ %08"PFMT64x " bb.addr=%08"PFMT64x " corrected.bb=%"PFMT64u" f.uncorr=%"PFMT64u"\n",
addr + idx - oplen, bb->addr, bb->size, r_anal_function_linear_size (fcn));
}
}
// Next time, we go to the opcode after the delay count
// Take care not to use this below, use delay.un_idx instead ...
idx = delay.after;
delay.pending = delay.after = delay.idx = delay.adjust = 0;
}
// Note: if we got two branch delay instructions in a row due to an
// compiler bug or junk or something it wont get treated as a delay
switch (op->stackop) {
case R_ANAL_STACK_INC:
if (R_ABS (op->stackptr) < R_ANAL_MAX_INCSTACK) {
fcn->stack += op->stackptr;
if (fcn->stack > fcn->maxstack) {
fcn->maxstack = fcn->stack;
}
}
bb->stackptr += op->stackptr;
break;
case R_ANAL_STACK_RESET:
bb->stackptr = 0;
break;
default:
break;
}
if (op->ptr && op->ptr != UT64_MAX && op->ptr != UT32_MAX) {
// swapped parameters wtf
// its read or wr
int dir = 0;
if (op->direction & R_ANAL_OP_DIR_READ) {
dir |= R_ANAL_REF_TYPE_READ;
}
if (op->direction & R_ANAL_OP_DIR_REF) {
dir |= R_ANAL_REF_TYPE_READ;
}
if (op->direction & R_ANAL_OP_DIR_WRITE) {
dir |= R_ANAL_REF_TYPE_WRITE;
}
if (op->direction & R_ANAL_OP_DIR_EXEC) {
dir |= R_ANAL_REF_TYPE_EXEC;
}
r_anal_xrefs_set (anal, op->addr, op->ptr, R_ANAL_REF_TYPE_DATA | dir);
}
if (anal->opt.vars && !varset) {
// XXX uses op.src/dst and fails because regprofile invalidates the regitems
// lets just call this BEFORE retpoline() to avoid such issue
r_anal_extract_vars (anal, fcn, op);
}
// this call may cause regprofile changes which cause ranalop.regitem references to be invalid
analyze_retpoline (anal, op);
switch (op->type & R_ANAL_OP_TYPE_MASK) {
case R_ANAL_OP_TYPE_CMOV:
case R_ANAL_OP_TYPE_MOV:
last_is_reg_mov_lea = false;
if (is_arm) { // mov lr, pc
const char *esil = r_strbuf_get (&op->esil);
if (!r_str_cmp (esil, "pc,lr,=", -1)) {
last_is_mov_lr_pc = true;
}
}
if (has_stack_regs && op_is_set_bp (op_dst, op_src, bp_reg, sp_reg)) {
fcn->bp_off = fcn->stack;
}
// Is this a mov of immediate value into a register?
if (op->dst && op->dst->reg && op->dst->reg->name && op->val > 0 && op->val != UT64_MAX) {
free (last_reg_mov_lea_name);
if ((last_reg_mov_lea_name = strdup (op->dst->reg->name))) {
last_reg_mov_lea_val = op->val;
last_is_reg_mov_lea = true;
}
}
// skip mov reg, reg
if (anal->opt.jmptbl && op->scale && op->ireg) {
movdisp = op->disp;
movscale = op->scale;
if (op->src[0] && op->src[0]->reg) {
free (movbasereg);
movbasereg = strdup (op->src[0]->reg->name);
} else {
R_FREE (movbasereg);
}
}
if (anal->opt.hpskip && regs_exist (op->src[0], op->dst) && !strcmp (op->src[0]->reg->name, op->dst->reg->name)) {
skip_ret = skip_hp (anal, fcn, op, bb, addr, oplen, delay.un_idx, &idx);
if (skip_ret == 1) {
goto repeat;
}
if (skip_ret == 2) {
gotoBeach (R_ANAL_RET_END);
}
}
break;
case R_ANAL_OP_TYPE_LEA:
last_is_reg_mov_lea = false;
// if first byte in op->ptr is 0xff, then set leaddr assuming its a jumptable
#if 0
{
ut8 buf[4];
anal->iob.read_at (anal->iob.io, op->ptr, buf, sizeof (buf));
if ((buf[2] == 0xff || buf[2] == 0xfe) && buf[3] == 0xff) {
leaddr_pair *pair = R_NEW (leaddr_pair);
if (!pair) {
R_LOG_ERROR ("Cannot create leaddr_pair");
gotoBeach (R_ANAL_RET_ERROR);
}
pair->op_addr = op->addr;
pair->leaddr = op->ptr; // XXX movdisp is dupped but seems to be trashed sometimes(?), better track leaddr separately
r_list_append (anal->leaddrs, pair);
}
if (has_stack_regs && op_is_set_bp (op, bp_reg, sp_reg)) {
fcn->bp_off = fcn->stack - op->src[0]->delta;
}
if (op->dst && op->dst->reg && op->dst->reg->name && op->ptr > 0 && op->ptr != UT64_MAX) {
free (last_reg_mov_lea_name);
if ((last_reg_mov_lea_name = strdup (op->dst->reg->name))) {
last_reg_mov_lea_val = op->ptr;
last_is_reg_mov_lea = true;
}
}
#else
if (op->ptr != UT64_MAX) {
leaddr_pair *pair = R_NEW (leaddr_pair);
if (!pair) {
R_LOG_ERROR ("Cannot create leaddr_pair");
gotoBeach (R_ANAL_RET_ERROR);
}
pair->op_addr = op->addr;
pair->leaddr = op->ptr; // XXX movdisp is dupped but seems to be trashed sometimes(?), better track leaddr separately
pair->reg = op->reg
? strdup (op->reg)
: op->dst && op->dst->reg
? strdup (op->dst->reg->name)
: NULL;
lea_cnt++;
r_list_append (anal->leaddrs, pair);
}
if (has_stack_regs && op_is_set_bp (op_dst, op_src, bp_reg, sp_reg) ) {
fcn->bp_off = fcn->stack - op->src[0]->delta;
}
if (op->dst && op->dst->reg && op->dst->reg->name && op->ptr > 0 && op->ptr != UT64_MAX) {
free (last_reg_mov_lea_name);
if ((last_reg_mov_lea_name = strdup(op->dst->reg->name))) {
last_reg_mov_lea_val = op->ptr;
last_is_reg_mov_lea = true;
}
}
#endif
// skip lea reg,[reg]
if (anal->opt.hpskip && regs_exist (op->src[0], op->dst)
&& !strcmp (op->src[0]->reg->name, op->dst->reg->name)) {
skip_ret = skip_hp (anal, fcn, op, bb, at, oplen, delay.un_idx, &idx);
if (skip_ret == 1) {
goto repeat;
}
if (skip_ret == 2) {
gotoBeach (R_ANAL_RET_END);
}
}
if (anal->opt.jmptbl) {
RAnalOp *jmp_aop = r_anal_op_new ();
ut64 jmptbl_addr = op->ptr;
ut64 casetbl_addr = op->ptr;
if (is_delta_pointer_table (anal, fcn, op->addr, op->ptr, &jmptbl_addr, &casetbl_addr, jmp_aop)) {
ut64 table_size, default_case = 0;
st64 case_shift = 0;
// we require both checks here since try_get_jmptbl_info uses
// BB info of the final jmptbl jump, which is no present with
// is_delta_pointer_table just scanning ahead
// try_get_delta_jmptbl_info doesn't work at times where the
// lea comes after the cmp/default case cjmp, which can be
// handled with try_get_jmptbl_info
ut64 addr = jmp_aop->addr;
bool ready = false;
if (try_get_jmptbl_info (anal, fcn, addr, bb, &table_size, &default_case, &case_shift)) {
ready = true;
} else if (try_get_delta_jmptbl_info (anal, fcn, addr, op->addr, &table_size, &default_case, &case_shift)) {
ready = true;
}
// TODO: -1-
if (ready) {
ret = casetbl_addr == op->ptr
? try_walkthrough_jmptbl (anal, fcn, bb, depth, addr, case_shift, jmptbl_addr, op->ptr, 4, table_size, default_case, 4)
: try_walkthrough_casetbl (anal, fcn, bb, depth, addr, case_shift, jmptbl_addr, casetbl_addr, op->ptr, 4, table_size, default_case, 4);
if (ret) {
lea_jmptbl_ip = addr;
}
}
}
r_anal_op_free (jmp_aop);
}
break;
case R_ANAL_OP_TYPE_LOAD:
if (anal->opt.loads) {
if (anal->iob.is_valid_offset (anal->iob.io, op->ptr, 0)) {
r_meta_set (anal, R_META_TYPE_DATA, op->ptr, 4, "");
}
}
break;
// Case of valid but unused "add [rax], al"
case R_ANAL_OP_TYPE_ADD:
if (anal->opt.ijmp) {
if ((op->size + 4 <= bytes_read) && !memcmp (buf + op->size, "\x00\x00\x00\x00", 4)) {
r_anal_block_set_size (bb, bb->size - oplen);
op->type = R_ANAL_OP_TYPE_RET;
gotoBeach (R_ANAL_RET_END);
}
}
break;
case R_ANAL_OP_TYPE_ILL:
gotoBeach (R_ANAL_RET_END);
case R_ANAL_OP_TYPE_TRAP:
gotoBeach (R_ANAL_RET_END);
case R_ANAL_OP_TYPE_NOP:
// do nothing, because the nopskip goes before this switch
break;
case R_ANAL_OP_TYPE_JMP:
if (op->jump == UT64_MAX) {
gotoBeach (R_ANAL_RET_END);
}
{
RFlagItem *fi = anal->flb.get_at (anal->flb.f, op->jump, false);
if (fi && strstr (fi->name, "imp.")) {
gotoBeach (R_ANAL_RET_END);
}
}
if (r_cons_is_breaked ()) {
gotoBeach (R_ANAL_RET_END);
}
if (anal->opt.jmpref) {
(void) r_anal_xrefs_set (anal, op->addr, op->jump, R_ANAL_REF_TYPE_CODE | R_ANAL_REF_TYPE_EXEC);
}
if (!anal->opt.jmpabove && (op->jump < fcn->addr)) {
gotoBeach (R_ANAL_RET_END);
}
if (r_anal_noreturn_at (anal, op->jump)) {
gotoBeach (R_ANAL_RET_END);
}
{
bool must_eob = true;
RIOMap *map = anal->iob.map_get_at (anal->iob.io, addr);
if (map) {
must_eob = ( ! r_io_map_contain (map, op->jump) );
}
if (must_eob) {
op->jump = UT64_MAX;
gotoBeach (R_ANAL_RET_END);
}
}
#if FIX_JMP_FWD
bb->jump = op->jump;
bb->fail = UT64_MAX;
FITFCNSZ ();
gotoBeach (R_ANAL_RET_END);
#else
if (!overlapped) {
bb->jump = op->jump;
bb->fail = UT64_MAX;
}
// -1
ret = r_anal_function_bb (anal, fcn, op->jump, depth);
int tc = anal->opt.tailcall;
if (tc) {
int diff = op->jump - op->addr;
if (tc < 0) {
ut8 buf[32];
(void)anal->iob.read_at (anal->iob.io, op->jump, (ut8 *) buf, sizeof (buf));
if (r_anal_is_prelude (anal, buf, sizeof (buf))) {
fcn_recurse (anal, fcn, op->jump, anal->opt.bb_max_size, depth - 1);
}
} else if (R_ABS (diff) > tc) {
(void) r_anal_xrefs_set (anal, op->addr, op->jump, R_ANAL_REF_TYPE_CALL | R_ANAL_REF_TYPE_EXEC);
fcn_recurse (anal, fcn, op->jump, anal->opt.bb_max_size, depth - 1);
gotoBeach (R_ANAL_RET_END);
}
}
goto beach;
#endif
break;
case R_ANAL_OP_TYPE_SUB:
if (op->val != UT64_MAX && op->val > 0) {
// if register is not stack
cmpval = op->val;
}
break;
case R_ANAL_OP_TYPE_CMP: {
ut64 val = (is_x86 || is_v850)? op->val : op->ptr;
if (val) {
cmpval = val;
bb->cmpval = cmpval;
bb->cmpreg = op->reg;
r_anal_cond_free (bb->cond);
bb->cond = r_anal_cond_new_from_op (op);
}
}
break;
case R_ANAL_OP_TYPE_CJMP:
case R_ANAL_OP_TYPE_MCJMP:
case R_ANAL_OP_TYPE_RCJMP:
case R_ANAL_OP_TYPE_UCJMP:
if (anal->opt.cjmpref) {
(void) r_anal_xrefs_set (anal, op->addr, op->jump, R_ANAL_REF_TYPE_CODE);
}
if (!overlapped) {
bb->jump = op->jump;
bb->fail = op->fail;
}
if (bb->cond) {
bb->cond->type = op->cond;
}
if (anal->opt.jmptbl) {
if (op->ptr != UT64_MAX) {
ut64 table_size, default_case;
table_size = cmpval + 1;
default_case = op->fail; // is this really default case?
if (cmpval != UT64_MAX && default_case != UT64_MAX && (op->reg || op->ireg)) {
// TODO -1
if (op->ireg) {
ret = try_walkthrough_jmptbl (anal, fcn, bb, depth, op->addr, 0, op->ptr, op->ptr, anal->config->bits >> 3, table_size, default_case, ret);
} else { // op->reg
ret = walkthrough_arm_jmptbl_style (anal, fcn, bb, depth, op->addr, op->ptr, anal->config->bits >> 3, table_size, default_case, ret);
}
// check if op->jump and op->fail contain jump table location
// clear jump address, because it's jump table location
if (op->jump == op->ptr) {
op->jump = UT64_MAX;
} else if (op->fail == op->ptr) {
op->fail = UT64_MAX;
}
cmpval = UT64_MAX;
}
}
}
int saved_stack = fcn->stack;
// TODO: depth -1 in here
r_anal_function_bb (anal, fcn, op->jump, depth);
fcn->stack = saved_stack;
ret = r_anal_function_bb (anal, fcn, op->fail, depth);
fcn->stack = saved_stack;
// XXX breaks mips analysis too !op->delay
// this will be all x86, arm (at least)
// without which the analysis is really slow,
// presumably because each opcode would get revisited
// (and already covered by a bb) many times
goto beach;
// For some reason, branch delayed code (MIPS) needs to continue
break;
case R_ANAL_OP_TYPE_UCALL:
case R_ANAL_OP_TYPE_RCALL:
case R_ANAL_OP_TYPE_ICALL:
case R_ANAL_OP_TYPE_IRCALL:
/* call [dst] */
// XXX: this is TYPE_MCALL or indirect-call
(void) r_anal_xrefs_set (anal, op->addr, op->ptr, R_ANAL_REF_TYPE_CALL);
if (r_anal_noreturn_at (anal, op->ptr)) {
RAnalFunction *f = r_anal_get_function_at (anal, op->ptr);
if (f) {
f->is_noreturn = true;
}
gotoBeach (R_ANAL_RET_END);
}
break;
case R_ANAL_OP_TYPE_CCALL:
case R_ANAL_OP_TYPE_CALL:
/* call dst */
(void) r_anal_xrefs_set (anal, op->addr, op->jump, R_ANAL_REF_TYPE_CALL | R_ANAL_REF_TYPE_EXEC);
if (r_anal_noreturn_at (anal, op->jump)) {
RAnalFunction *f = r_anal_get_function_at (anal, op->jump);
if (f) {
f->is_noreturn = true;
}
gotoBeach (R_ANAL_RET_END);
}
break;
case R_ANAL_OP_TYPE_UJMP:
case R_ANAL_OP_TYPE_RJMP:
if (is_arm && last_is_mov_lr_pc) {
break;
} else if (is_v850 && anal->opt.jmptbl) {
int ptsz = cmpval? cmpval + 1: 4;
if ((int)cmpval > 0) {
ret = try_walkthrough_jmptbl (anal, fcn, bb, depth, op->addr,
0, op->addr + 2, op->addr + 2, 2, ptsz, 0, ret);
}
gotoBeach (R_ANAL_RET_END);
break;
}
/* fall through */
case R_ANAL_OP_TYPE_MJMP:
case R_ANAL_OP_TYPE_IJMP:
case R_ANAL_OP_TYPE_IRJMP:
// if the next instruction is a symbol
if (anal->opt.ijmp && next_instruction_is_symbol (anal, op)) {
gotoBeach (R_ANAL_RET_END);
}
// switch statement
if (anal->opt.jmptbl && lea_jmptbl_ip != op->addr) {
ut8 buf[32]; // 32 bytes is enough to hold any instruction.
// op->ireg since rip relative addressing produces way too many false positives otherwise
// op->ireg is 0 for rip relative, "rax", etc otherwise
if (op->ptr != UT64_MAX && op->ireg) { // direct jump
ut64 table_size, default_case;
st64 case_shift = 0;
if (try_get_jmptbl_info (anal, fcn, op->addr, bb, &table_size, &default_case, &case_shift)) {
bool case_table = false;
RAnalOp *prev_op = r_anal_op_new ();
anal->iob.read_at (anal->iob.io, op->addr - op->size, buf, sizeof (buf));
if (r_anal_op (anal, prev_op, op->addr - op->size, buf, sizeof (buf), R_ANAL_OP_MASK_VAL) > 0) {
bool prev_op_has_dst_name = prev_op->dst && prev_op->dst->reg && prev_op->dst->reg->name;
bool op_has_src_name = op->src[0] && op->src[0]->reg && op->src[0]->reg->name;
bool same_reg = (op->ireg && prev_op_has_dst_name && !strcmp (op->ireg, prev_op->dst->reg->name))
|| (op_has_src_name && prev_op_has_dst_name && !strcmp (op->src[0]->reg->name, prev_op->dst->reg->name));
if (prev_op->type == R_ANAL_OP_TYPE_MOV && prev_op->disp && prev_op->disp != UT64_MAX && same_reg) {
// movzx reg, byte [reg + case_table]
// jmp dword [reg*4 + jump_table]
if (try_walkthrough_casetbl (anal, fcn, bb, depth - 1, op->addr, case_shift, op->ptr, prev_op->disp, op->ptr, anal->config->bits >> 3, table_size, default_case, ret)) {
ret = case_table = true;
}
}
}
r_anal_op_free (prev_op);
if (!case_table) {
ret = try_walkthrough_jmptbl (anal, fcn, bb, depth, op->addr, case_shift, op->ptr, op->ptr, anal->config->bits >> 3, table_size, default_case, ret);
}
}
} else if (op->ptr != UT64_MAX && op->reg) { // direct jump
ut64 table_size, default_case;
st64 case_shift = 0;
if (try_get_jmptbl_info (anal, fcn, op->addr, bb, &table_size, &default_case, &case_shift)) {
ret = try_walkthrough_jmptbl (anal, fcn, bb, depth - 1, op->addr, case_shift, op->ptr, op->ptr, anal->config->bits >> 3, table_size, default_case, ret);
}
} else if (movdisp != UT64_MAX) {
st64 case_shift = 0;
ut64 table_size, default_case;
ut64 jmptbl_base = 0; //UT64_MAX;
ut64 lea_op_off = UT64_MAX;
RListIter *iter;
leaddr_pair *pair;
if (movbasereg) {
// find nearest candidate leaddr before op.addr
r_list_foreach_prev (anal->leaddrs, iter, pair) {
if (pair->op_addr >= op->addr) {
continue;
}
if ((lea_op_off == UT64_MAX || lea_op_off > op->addr - pair->op_addr) && pair->reg && !strcmp (movbasereg, pair->reg)) {
lea_op_off = op->addr - pair->op_addr;
jmptbl_base = pair->leaddr;
}
}
}
if (!try_get_jmptbl_info (anal, fcn, op->addr, bb, &table_size, &default_case, &case_shift)) {
table_size = cmpval + 1;
default_case = -1;
}
ret = try_walkthrough_jmptbl (anal, fcn, bb, depth - 1, op->addr, case_shift, jmptbl_base + movdisp, jmptbl_base, movscale, table_size, default_case, ret);
cmpval = UT64_MAX;
#if 0
} else if (movdisp != UT64_MAX) {
ut64 table_size, default_case;
st64 case_shift;
if (try_get_jmptbl_info (anal, fcn, op->addr, bb, &table_size, &default_case, &case_shift)) {
op->ptr = movdisp;
ret = try_walkthrough_jmptbl (anal, fcn, bb, depth - 1, op->addr, case_shift, op->ptr, op->ptr, anal->config->bits >> 3, table_size, default_case, ret);
}
movdisp = UT64_MAX;
#endif
} else if (is_arm) {
if (op->ptrsize == 1) { // TBB
ut64 pred_cmpval = try_get_cmpval_from_parents(anal, fcn, bb, op->ireg);
ut64 table_size = 0;
if (pred_cmpval != UT64_MAX) {
table_size += pred_cmpval;
} else {
table_size += cmpval;
}
ret = try_walkthrough_jmptbl (anal, fcn, bb, depth - 1, op->addr, 0, op->addr + op->size,
op->addr + 4, 1, table_size, UT64_MAX, ret);
// skip inlined jumptable
idx += table_size;
}
if (op->ptrsize == 2) { // LDRH on thumb/arm
ut64 pred_cmpval = try_get_cmpval_from_parents(anal, fcn, bb, op->ireg);
int tablesize = 1;
if (pred_cmpval != UT64_MAX) {
tablesize += pred_cmpval;
} else {
tablesize += cmpval;
}
ret = try_walkthrough_jmptbl (anal, fcn, bb, depth - 1, op->addr, 0, op->addr + op->size,
op->addr + 4, 2, tablesize, UT64_MAX, ret);
// skip inlined jumptable
idx += (tablesize * 2);
}
}
}
if (lea_jmptbl_ip == op->addr) {
lea_jmptbl_ip = UT64_MAX;
}
if (anal->opt.ijmp) {
r_anal_function_bb (anal, fcn, op->jump, depth - 1);
ret = r_anal_function_bb (anal, fcn, op->fail, depth - 1);
if (overlapped) {
goto analopfinish;
}
if (r_anal_noreturn_at (anal, op->jump) || op->eob) {
goto analopfinish;
}
} else {
analopfinish:
if (op->type == R_ANAL_OP_TYPE_RJMP) {
gotoBeach (R_ANAL_RET_NOP);
} else {
gotoBeach (R_ANAL_RET_END);
}
}
break;
/* fallthru */
case R_ANAL_OP_TYPE_PUSH:
last_is_push = true;
last_push_addr = op->val;
if (anal->iob.is_valid_offset (anal->iob.io, last_push_addr, 1)) {
(void) r_anal_xrefs_set (anal, op->addr, last_push_addr, R_ANAL_REF_TYPE_DATA | R_ANAL_REF_TYPE_WRITE);
}
break;
case R_ANAL_OP_TYPE_UPUSH:
if ((op->type & R_ANAL_OP_TYPE_REG) && last_is_reg_mov_lea && op->src[0] && op->src[0]->reg
&& op->src[0]->reg->name && !strcmp (op->src[0]->reg->name, last_reg_mov_lea_name)) {
last_is_push = true;
last_push_addr = last_reg_mov_lea_val;
if (anal->iob.is_valid_offset (anal->iob.io, last_push_addr, 1)) {
(void) r_anal_xrefs_set (anal, op->addr, last_push_addr, R_ANAL_REF_TYPE_DATA | R_ANAL_REF_TYPE_WRITE);
}
}
break;
case R_ANAL_OP_TYPE_RET:
if (op->family == R_ANAL_OP_FAMILY_PRIV) {
fcn->type = R_ANAL_FCN_TYPE_INT;
}
if (last_is_push && anal->opt.pushret) {
op->type = R_ANAL_OP_TYPE_JMP;
op->jump = last_push_addr;
bb->jump = op->jump;
ret = r_anal_function_bb (anal, fcn, op->jump, depth - 1);
goto beach;
}
if (!op->cond) {
if (anal->verbose) {
eprintf ("RET 0x%08"PFMT64x ". overlap=%s %"PFMT64u" %"PFMT64u"\n",
addr + delay.un_idx - oplen, r_str_bool (overlapped),
bb->size, r_anal_function_linear_size (fcn));
}
gotoBeach (R_ANAL_RET_END);
}
break;
}
if (has_stack_regs && arch_destroys_dst) {
// op->dst->reg->name is invalid pointer
if (op_is_set_bp (op_dst, op_src, bp_reg, sp_reg) && op->src[1]) {
switch (op->type & R_ANAL_OP_TYPE_MASK) {
case R_ANAL_OP_TYPE_ADD:
fcn->bp_off = fcn->stack - op->src[1]->imm;
break;
case R_ANAL_OP_TYPE_SUB:
fcn->bp_off = fcn->stack + op->src[1]->imm;
break;
}
}
}
#if 0
if (anal->opt.vars && !varset) {
// XXX uses op.src/dst and fails because regprofile invalidates the regitems
// we must ranalop in here to avoid uaf
r_anal_extract_vars (anal, fcn, op);
}
#endif
if (op->type != R_ANAL_OP_TYPE_MOV && op->type != R_ANAL_OP_TYPE_CMOV && op->type != R_ANAL_OP_TYPE_LEA) {
last_is_reg_mov_lea = false;
}
if (op->type != R_ANAL_OP_TYPE_PUSH && op->type != R_ANAL_OP_TYPE_RPUSH) {
last_is_push = false;
}
if (is_arm && op->type != R_ANAL_OP_TYPE_MOV) {
last_is_mov_lr_pc = false;
}
if (has_variadic_reg && !fcn->is_variadic) {
variadic_reg = r_reg_get (anal->reg, "rax", R_REG_TYPE_GPR);
bool dst_is_variadic = op->dst && op->dst->reg
&& variadic_reg && op->dst->reg->offset == variadic_reg->offset;
bool op_is_cmp = (op->type == R_ANAL_OP_TYPE_CMP) || op->type == R_ANAL_OP_TYPE_ACMP;
if (dst_is_variadic && !op_is_cmp) {
has_variadic_reg = false;
} else if (op_is_cmp) {
if (op->src[0] && op->src[0]->reg && (op->dst->reg == op->src[0]->reg) && dst_is_variadic) {
fcn->is_variadic = true;
}
}
}
}
beach:
free (op_src);
free (op_dst);
free (bp_reg);
free (sp_reg);
while (lea_cnt > 0) {
r_list_delete (anal->leaddrs, r_list_tail (anal->leaddrs));
lea_cnt--;
}
r_anal_op_free (op);
R_FREE (last_reg_mov_lea_name);
if (bb && bb->size == 0) {
r_anal_function_remove_block (fcn, bb);
}
r_anal_block_update_hash (bb);
r_anal_block_unref (bb);
free (movbasereg);
return ret;
}
R_API int r_anal_function_bb(RAnal *anal, RAnalFunction *fcn, ut64 addr, int depth) {
r_return_val_if_fail (anal && fcn, -1);
return fcn_recurse (anal, fcn, addr, anal->opt.bb_max_size, depth - 1);
}
R_API bool r_anal_check_fcn(RAnal *anal, ut8 *buf, ut16 bufsz, ut64 addr, ut64 low, ut64 high) {
r_return_val_if_fail (anal && buf, false);
RAnalOp op = {
0
};
int i, oplen, opcnt = 0, pushcnt = 0, movcnt = 0, brcnt = 0;
if (r_anal_is_prelude (anal, buf, bufsz)) {
return true;
}
for (i = 0; i < bufsz && opcnt < 10; i += oplen, opcnt++) {
r_anal_op_fini (&op);
if ((oplen = r_anal_op (anal, &op, addr + i, buf + i, bufsz - i, R_ANAL_OP_MASK_BASIC | R_ANAL_OP_MASK_HINT)) < 1) {
return false;
}
switch (op.type) {
case R_ANAL_OP_TYPE_PUSH:
case R_ANAL_OP_TYPE_UPUSH:
case R_ANAL_OP_TYPE_RPUSH:
pushcnt++;
break;
case R_ANAL_OP_TYPE_MOV:
case R_ANAL_OP_TYPE_CMOV:
movcnt++;
break;
case R_ANAL_OP_TYPE_JMP:
case R_ANAL_OP_TYPE_CJMP:
case R_ANAL_OP_TYPE_CALL:
if (op.jump < low || op.jump >= high) {
return false;
}
brcnt++;
break;
case R_ANAL_OP_TYPE_UNK:
return false;
default:
break;
}
}
return (pushcnt + movcnt + brcnt > 5);
}
R_API void r_anal_trim_jmprefs(RAnal *anal, RAnalFunction *fcn) {
r_return_if_fail (anal && fcn);
RAnalRef *ref;
RList *refs = r_anal_function_get_refs (fcn);
RListIter *iter;
const bool is_x86 = anal->cur->arch && !strcmp (anal->cur->arch, "x86"); // HACK
r_list_foreach (refs, iter, ref) {
int rt = R_ANAL_REF_TYPE_MASK (ref->type);
if (rt == R_ANAL_REF_TYPE_CODE && r_anal_function_contains (fcn, ref->addr)
&& (!is_x86 || !r_anal_function_contains (fcn, ref->at))) {
r_anal_xrefs_deln (anal, ref->at, ref->addr, ref->type);
}
}
r_list_free (refs);
}
R_API void r_anal_del_jmprefs(RAnal *anal, RAnalFunction *fcn) {
r_return_if_fail (anal && fcn);
RAnalRef *ref;
RList *refs = r_anal_function_get_refs (fcn);
RListIter *iter;
r_list_foreach (refs, iter, ref) {
int rt = R_ANAL_REF_TYPE_MASK (ref->type);
if (rt == R_ANAL_REF_TYPE_CODE) {
r_anal_xrefs_deln (anal, ref->at, ref->addr, ref->type);
}
}
r_list_free (refs);
}
/* Does NOT invalidate read-ahead cache. */
R_API int r_anal_function(RAnal *anal, RAnalFunction *fcn, ut64 addr, ut64 len, int reftype) {
r_return_val_if_fail (anal && fcn, 0);
RPVector *metas = r_meta_get_all_in (anal, addr, R_META_TYPE_ANY);
if (metas) {
void **it;
r_pvector_foreach (metas, it) {
RAnalMetaItem *meta = ((RIntervalNode *)*it)->data;
switch (meta->type) {
case R_META_TYPE_DATA:
case R_META_TYPE_STRING:
case R_META_TYPE_FORMAT:
r_pvector_free (metas);
return 0;
default:
break;
}
}
r_pvector_free (metas);
}
if (anal->opt.norevisit) {
if (!anal->visited) {
anal->visited = set_u_new ();
}
if (set_u_contains (anal->visited, addr)) {
R_LOG_ERROR ("visit at 0x%08"PFMT64x" %c", addr, reftype);
return R_ANAL_RET_END;
}
set_u_add (anal->visited, addr);
} else {
if (anal->visited) {
set_u_free (anal->visited);
anal->visited = NULL;
}
}
/* defines fcn. or loc. prefix */
fcn->type = (R_ANAL_REF_TYPE_MASK (reftype) == R_ANAL_REF_TYPE_CODE) ? R_ANAL_FCN_TYPE_LOC : R_ANAL_FCN_TYPE_FCN;
if (fcn->addr == UT64_MAX) {
fcn->addr = addr;
}
fcn->maxstack = 0;
if (fcn->cc && !strcmp (fcn->cc, "ms")) {
// Probably should put this on the cc sdb
const int shadow_store = 0x28; // First 4 args + retaddr
fcn->stack = fcn->maxstack = fcn->reg_save_area = shadow_store;
}
// XXX -1 here results in lots of errors
int ret = r_anal_function_bb (anal, fcn, addr, anal->opt.depth);
if (ret < 0) {
R_LOG_DEBUG ("Failed to analyze basic block at 0x%"PFMT64x, addr);
}
return ret;
}
// XXX deprecate
R_API int r_anal_function_del_locs(RAnal *anal, ut64 addr) {
RListIter *iter, *iter2;
RAnalFunction *fcn, *f = r_anal_get_fcn_in (anal, addr, R_ANAL_FCN_TYPE_ROOT);
if (!f) {
return false;
}
r_list_foreach_safe (anal->fcns, iter, iter2, fcn) {
if (fcn->type != R_ANAL_FCN_TYPE_LOC) {
continue;
}
if (r_anal_function_contains (fcn, addr)) {
r_anal_function_delete (fcn);
break;
}
}
r_anal_function_del (anal, addr);
return true;
}
R_API int r_anal_function_del(RAnal *a, ut64 addr) {
RAnalFunction *fcn = r_anal_get_function_at (a, addr);
if (fcn) {
r_anal_function_delete (fcn);
// r_anal_function_free (fcn);
return true;
}
return false;
}
R_API RAnalFunction *r_anal_get_fcn_in(RAnal *anal, ut64 addr, int type) {
RList *list = r_anal_get_functions_in (anal, addr);
RAnalFunction *ret = NULL;
if (list && !r_list_empty (list)) {
if (type == R_ANAL_FCN_TYPE_ROOT) {
RAnalFunction *fcn;
RListIter *iter;
r_list_foreach (list, iter, fcn) {
if (fcn->addr == addr) {
ret = fcn;
break;
}
}
} else {
ret = r_list_first (list);
}
}
r_list_free (list);
return ret;
}
R_API RAnalFunction *r_anal_get_fcn_in_bounds(RAnal *anal, ut64 addr, int type) {
RAnalFunction *fcn, *ret = NULL;
RListIter *iter;
if (type == R_ANAL_FCN_TYPE_ROOT) {
r_list_foreach (anal->fcns, iter, fcn) {
if (addr == fcn->addr) {
return fcn;
}
}
return NULL;
}
r_list_foreach (anal->fcns, iter, fcn) {
if (!type || (fcn && fcn->type & type)) {
if (r_anal_function_contains (fcn, addr)) {
return fcn;
}
}
}
return ret;
}
R_API RAnalFunction *r_anal_get_function_byname(RAnal *a, const char *name) {
bool found = false;
RAnalFunction *f = ht_pp_find (a->ht_name_fun, name, &found);
if (f && found) {
return f;
}
return NULL;
}
/* rename RAnalFunctionBB.add() */
// R2580 - R_API bool r_anal_function_add_new_block(RAnalFunction *fcn, ut64 addr, ut64 size, ut64 jump, ut64 fail, R_BORROW RAnalDiff *diff) {
R_API bool r_anal_function_add_bb(RAnal *a, RAnalFunction *fcn, ut64 addr, ut64 size, ut64 jump, ut64 fail, R_BORROW RAnalDiff *diff) {
if (size == 0) { // empty basic blocks allowed?
R_LOG_WARN ("empty basic block at 0x%08"PFMT64x" is not allowed. pending discussion", addr);
r_warn_if_reached ();
return false;
}
if (size > a->opt.bb_max_size) {
R_LOG_WARN ("can't allocate such big bb of %"PFMT64d" bytes at 0x%08"PFMT64x, (st64)size, addr);
r_warn_if_reached ();
return false;
}
RAnalBlock *block = r_anal_get_block_at (a, addr);
if (block) {
r_anal_delete_block (block);
block = NULL;
}
const bool is_x86 = a->cur->arch && !strcmp (a->cur->arch, "x86");
// TODO fix this x86-ism
if (is_x86) {
r_anal_function_invalidate_read_ahead_cache ();
fcn_recurse (a, fcn, addr, size, 1);
block = r_anal_get_block_at (a, addr);
if (block) {
r_anal_block_set_size (block, size);
}
} else {
block = r_anal_create_block (a, addr, size);
}
if (!block) {
D R_LOG_WARN ("r_anal_function_add_bb failed in fcn 0x%08"PFMT64x" at 0x%08"PFMT64x, fcn->addr, addr);
return false;
}
r_anal_function_add_block (fcn, block);
block->jump = jump;
block->fail = fail;
if (diff) {
if (!block->diff) {
block->diff = r_anal_diff_new ();
}
if (block->diff) {
block->diff->type = diff->type;
block->diff->addr = diff->addr;
if (diff->name) {
R_FREE (block->diff->name);
block->diff->name = strdup (diff->name);
}
}
}
return true;
}
R_API int r_anal_function_loops(RAnalFunction *fcn) {
RListIter *iter;
RAnalBlock *bb;
ut32 loops = 0;
r_list_foreach (fcn->bbs, iter, bb) {
if (bb->jump != UT64_MAX && bb->jump < bb->addr) {
loops ++;
}
if (bb->fail != UT64_MAX && bb->fail < bb->addr) {
loops ++;
}
}
return loops;
}
R_API int r_anal_function_complexity(RAnalFunction *fcn) {
/*
* CC = E - N + 2P
* E = the number of edges of the graph.
* N = the number of nodes of the graph.
* P = the number of connected components (exit nodes).
*/
RAnal *anal = fcn->anal;
int E = 0, N = 0, P = 0;
RListIter *iter;
RAnalBlock *bb;
r_list_foreach (fcn->bbs, iter, bb) {
N++; // nodes
if ((!anal || anal->verbose) && bb->jump == UT64_MAX && bb->fail != UT64_MAX) {
R_LOG_WARN ("invalid bb jump/fail pair at 0x%08"PFMT64x" (fcn 0x%08"PFMT64x, bb->addr, fcn->addr);
}
if (bb->jump == UT64_MAX && bb->fail == UT64_MAX) {
P++; // exit nodes
} else {
E++; // edges
if (bb->fail != UT64_MAX) {
E++;
}
}
if (bb->switch_op && bb->switch_op->cases) {
E += r_list_length (bb->switch_op->cases);
}
}
int result = E - N + (2 * P);
if (result < 1 && (!anal || anal->verbose)) {
R_LOG_WARN ("CC = E(%d) - N(%d) + (2 * P(%d)) < 1 at 0x%08"PFMT64x, E, N, P, fcn->addr);
}
// r_return_val_if_fail (result > 0, 0);
return result;
}
// tfj and afsj call this function
R_API char *r_anal_function_get_json(RAnalFunction *function) {
RAnal *a = function->anal;
PJ *pj = a->coreb.pjWithEncoding (a->coreb.core);
const char *realname = NULL, *import_substring = NULL;
RFlagItem *flag = a->flag_get (a->flb.f, function->addr);
// Can't access R_FLAGS_FS_IMPORTS, since it is defined in r_core.h
if (flag && flag->space && !strcmp (flag->space->name, "imports")) {
// Get substring after last dot
import_substring = r_str_rchr (function->name, NULL, '.');
if (import_substring) {
realname = import_substring + 1;
}
} else {
realname = function->name;
}
char *args = strdup ("");
char *sdb_ret = r_str_newf ("func.%s.ret", realname);
char *sdb_args = r_str_newf ("func.%s.args", realname);
// RList *args_list = r_list_newf ((RListFree) free);
unsigned int i;
const char *ret_type = sdb_const_get (a->sdb_types, sdb_ret, 0);
const char *argc_str = sdb_const_get (a->sdb_types, sdb_args, 0);
int argc = argc_str? atoi (argc_str): 0;
pj_o (pj);
pj_ks (pj, "name", function->name);
const bool no_return = r_anal_noreturn_at_addr (a, function->addr);
pj_kb (pj, "noreturn", no_return);
pj_ks (pj, "ret", r_str_get_fail (ret_type, "void"));
if (function->cc) {
pj_ks (pj, "cc", function->cc);
}
pj_kn (pj, "argc", argc);
pj_k (pj, "args");
pj_a (pj);
for (i = 0; i < argc; i++) {
char *sdb_arg_i = r_str_newf ("func.%s.arg.%d", realname, i);
char *arg_i = sdb_get (a->sdb_types, sdb_arg_i, 0);
if (!arg_i) {
continue;
}
pj_o (pj);
char *comma = strchr (arg_i, ',');
if (comma) {
*comma = 0;
pj_ks (pj, "name", comma + 1);
pj_ks (pj, "type", arg_i);
r_strf_var (regname, 32, "A%d", i);
const char *cc_arg = r_reg_get_name (a->reg, r_reg_get_name_idx (regname));
if (cc_arg) {
pj_ks (pj, "cc", cc_arg);
}
}
free (arg_i);
free (sdb_arg_i);
pj_end (pj);
}
pj_end (pj);
free (sdb_args);
free (sdb_ret);
free (args);
pj_end (pj);
return pj_drain (pj);
}
R_API char *r_anal_function_get_signature(RAnalFunction *function) {
RAnal *a = function->anal;
const char *realname = NULL, *import_substring = NULL;
RFlagItem *flag = a->flag_get (a->flb.f, function->addr);
// Can't access R_FLAGS_FS_IMPORTS, since it is defined in r_core.h
if (flag && flag->space && !strcmp (flag->space->name, "imports")) {
// Get substring after last dot
import_substring = r_str_rchr (function->name, NULL, '.');
if (import_substring) {
realname = import_substring + 1;
}
} else {
realname = function->name;
}
char *ret = NULL, *args = strdup ("");
char *sdb_ret = r_str_newf ("func.%s.ret", realname);
char *sdb_args = r_str_newf ("func.%s.args", realname);
// RList *args_list = r_list_newf ((RListFree) free);
unsigned int i, j;
const char *ret_type = sdb_const_get (a->sdb_types, sdb_ret, 0);
const char *argc_str = sdb_const_get (a->sdb_types, sdb_args, 0);
int argc = argc_str? atoi (argc_str): 0;
for (i = 0; i < argc; i++) {
char *sdb_arg_i = r_str_newf ("func.%s.arg.%d", realname, i);
char *arg_i = sdb_get (a->sdb_types, sdb_arg_i, 0);
if (!arg_i) {
free (sdb_arg_i);
break;
}
// parse commas
int arg_i_len = strlen (arg_i);
for (j = 0; j < arg_i_len; j++) {
if (j > 0 && arg_i[j] == ',') {
if (arg_i[j - 1] == '*') {
// remove whitespace
memmove (arg_i + j, arg_i + j + 1, strlen (arg_i) - j);
} else {
arg_i[j] = ' ';
}
}
}
char *new_args = (i + 1 == argc)
? r_str_newf ("%s%s", args, arg_i)
: r_str_newf ("%s%s, ", args, arg_i);
free (args);
args = new_args;
free (arg_i);
free (sdb_arg_i);
}
char *sane = r_name_filter_dup (realname);
if (sane) {
r_str_replace_ch (sane, ':', '_', true);
realname = sane;
}
ret = r_str_newf ("%s %s (%s);", r_str_get_fail (ret_type, "void"), realname, args);
free (sane);
free (sdb_args);
free (sdb_ret);
free (args);
return ret;
}
/* set function signature from string */
R_API int r_anal_str_to_fcn(RAnal *a, RAnalFunction *f, const char *sig) {
r_return_val_if_fail (a || f || sig, false);
char *error_msg = NULL;
const char *out = r_parse_c_string (a, sig, &error_msg);
if (out) {
r_anal_save_parsed_type (a, out);
}
if (error_msg) {
R_LOG_ERROR ("%s", error_msg);
free (error_msg);
}
return true;
}
R_API RAnalFunction *r_anal_function_next(RAnal *anal, ut64 addr) {
RAnalFunction *fcni;
RListIter *iter;
RAnalFunction *closer = NULL;
r_list_foreach (anal->fcns, iter, fcni) {
// if (fcni->addr == addr)
if (fcni->addr > addr && (!closer || fcni->addr < closer->addr)) {
closer = fcni;
}
}
return closer;
}
R_API int r_anal_function_count(RAnal *anal, ut64 from, ut64 to) {
int n = 0;
RAnalFunction *fcni;
RListIter *iter;
r_list_foreach (anal->fcns, iter, fcni) {
if (fcni->addr >= from && fcni->addr < to) {
n++;
}
}
return n;
}
/* return the basic block in fcn found at the given address.
* NULL is returned if such basic block doesn't exist. */
R_API RAnalBlock *r_anal_function_bbget_in(RAnal *anal, RAnalFunction *fcn, ut64 addr) {
r_return_val_if_fail (anal && fcn, NULL);
if (addr == UT64_MAX) {
return NULL;
}
RListIter *iter;
RAnalBlock *bb;
bool jmpmid = r_anal_is_aligned (anal, addr);
r_list_foreach (fcn->bbs, iter, bb) {
if (addr >= bb->addr && addr < (bb->addr + bb->size)
&& (!anal->opt.jmpmid || !jmpmid || r_anal_block_op_starts_at (bb, addr))) {
return bb;
}
}
return NULL;
}
R_API RAnalBlock *r_anal_function_bbget_at(RAnal *anal, RAnalFunction *fcn, ut64 addr) {
r_return_val_if_fail (fcn && addr != UT64_MAX, NULL);
RAnalBlock *b = r_anal_get_block_at (anal, addr);
if (b) {
return b;
}
RListIter *iter;
RAnalBlock *bb;
r_list_foreach (fcn->bbs, iter, bb) {
if (addr == bb->addr) {
return bb;
}
}
return NULL;
}
// compute the cyclomatic cost
R_API ut32 r_anal_function_cost(RAnalFunction *fcn) {
RListIter *iter;
RAnalBlock *bb;
ut32 totalCycles = 0;
if (!fcn) {
return 0;
}
RAnal *anal = fcn->anal;
r_list_foreach (fcn->bbs, iter, bb) {
RAnalOp op;
ut64 at, end = bb->addr + bb->size;
ut8 *buf = malloc (bb->size);
if (!buf) {
continue;
}
(void)anal->iob.read_at (anal->iob.io, bb->addr, (ut8 *) buf, bb->size);
int idx = 0;
for (at = bb->addr; at < end;) {
memset (&op, 0, sizeof (op));
(void) r_anal_op (anal, &op, at, buf + idx, bb->size - idx, R_ANAL_OP_MASK_BASIC);
if (op.size < 1) {
op.size = 1;
}
idx += op.size;
at += op.size;
totalCycles += op.cycles;
r_anal_op_fini (&op);
}
free (buf);
}
return totalCycles;
}
R_API int r_anal_function_count_edges(const RAnalFunction *fcn, R_NULLABLE int *ebbs) {
r_return_val_if_fail (fcn, 0);
RListIter *iter;
RAnalBlock *bb;
int edges = 0;
if (ebbs) {
*ebbs = 0;
}
r_list_foreach (fcn->bbs, iter, bb) {
if (ebbs && bb->jump == UT64_MAX && bb->fail == UT64_MAX) {
*ebbs = *ebbs + 1;
} else {
if (bb->jump != UT64_MAX) {
edges ++;
}
if (bb->fail != UT64_MAX) {
edges ++;
}
}
}
return edges;
}
R_API bool r_anal_function_purity(RAnalFunction *fcn) {
if (fcn->has_changed) {
HtUP *ht = ht_up_new (NULL, NULL, NULL);
if (ht) {
check_purity (ht, fcn);
ht_up_free (ht);
}
}
return fcn->is_pure;
}
static bool can_affect_bp(RAnal *anal, RAnalOp* op) {
RAnalValue *dst = op->dst;
RAnalValue *src = op->src[0];
const char *opdreg = (dst && dst->reg) ? dst->reg->name : NULL;
const char *opsreg = (src && src->reg) ? src->reg->name : NULL;
const char *bp_name = anal->reg->name[R_REG_NAME_BP];
bool is_bp_dst = opdreg && !dst->memref && !strcmp (opdreg, bp_name);
bool is_bp_src = opsreg && !src->memref && !strcmp (opsreg, bp_name);
if (op->type == R_ANAL_OP_TYPE_XCHG) {
return is_bp_src || is_bp_dst;
}
return is_bp_dst;
}
/*
* This function checks whether any operation in a given function may change bp (excluding "mov bp, sp"
* and "pop bp" at the end).
*/
static void __anal_fcn_check_bp_use(RAnal *anal, RAnalFunction *fcn) {
RListIter *iter;
RAnalBlock *bb;
char *pos;
char str_to_find[40];
snprintf (str_to_find, sizeof (str_to_find),
"\"type\":\"reg\",\"value\":\"%s", anal->reg->name[R_REG_NAME_BP]);
if (!fcn) {
return;
}
r_list_foreach (fcn->bbs, iter, bb) {
RAnalOp op;
ut64 at, end = bb->addr + bb->size;
ut8 *buf = malloc (bb->size);
if (!buf) {
continue;
}
(void)anal->iob.read_at (anal->iob.io, bb->addr, (ut8 *) buf, bb->size);
int idx = 0;
for (at = bb->addr; at < end;) {
r_anal_op (anal, &op, at, buf + idx, bb->size - idx, R_ANAL_OP_MASK_VAL | R_ANAL_OP_MASK_OPEX);
if (op.size < 1) {
op.size = 1;
}
switch (op.type) {
case R_ANAL_OP_TYPE_MOV:
case R_ANAL_OP_TYPE_LEA:
if (can_affect_bp (anal, &op) && op.src[0] && op.src[0]->reg && op.src[0]->reg->name
&& strcmp (op.src[0]->reg->name, anal->reg->name[R_REG_NAME_SP])) {
fcn->bp_frame = false;
r_anal_op_fini (&op);
free (buf);
return;
}
break;
case R_ANAL_OP_TYPE_ADD:
case R_ANAL_OP_TYPE_AND:
case R_ANAL_OP_TYPE_CMOV:
case R_ANAL_OP_TYPE_NOT:
case R_ANAL_OP_TYPE_OR:
case R_ANAL_OP_TYPE_ROL:
case R_ANAL_OP_TYPE_ROR:
case R_ANAL_OP_TYPE_SAL:
case R_ANAL_OP_TYPE_SAR:
case R_ANAL_OP_TYPE_SHR:
case R_ANAL_OP_TYPE_SUB:
case R_ANAL_OP_TYPE_XOR:
case R_ANAL_OP_TYPE_SHL:
// op.dst is not filled for these operations, so for now, check for bp as dst looks like this; in the future it may be just replaced with call to can_affect_bp
pos = op.opex.ptr ? strstr (op.opex.ptr, str_to_find) : NULL;
if (pos && pos - op.opex.ptr < 60) {
fcn->bp_frame = false;
r_anal_op_fini (&op);
free (buf);
return;
}
break;
case R_ANAL_OP_TYPE_XCHG:
if (op.opex.ptr && strstr (op.opex.ptr, str_to_find)) {
fcn->bp_frame = false;
r_anal_op_fini (&op);
free (buf);
return;
}
break;
case R_ANAL_OP_TYPE_POP:
break;
default:
break;
}
idx += op.size;
at += op.size;
r_anal_op_fini (&op);
}
free (buf);
}
}
R_API void r_anal_function_check_bp_use(RAnalFunction *fcn) {
r_return_if_fail (fcn);
__anal_fcn_check_bp_use (fcn->anal, fcn);
}
typedef struct {
RAnalFunction *fcn;
HtUP *visited;
} BlockRecurseCtx;
static bool mark_as_visited(RAnalBlock *bb, void *user) {
BlockRecurseCtx *ctx = user;
ht_up_insert (ctx->visited, bb->addr, NULL);
return true;
}
static bool analize_addr_cb(ut64 addr, void *user) {
BlockRecurseCtx *ctx = user;
RAnal *anal = ctx->fcn->anal;
RAnalBlock *existing_bb = r_anal_get_block_at (anal, addr);
if (!existing_bb || !r_list_contains (ctx->fcn->bbs, existing_bb)) {
int old_len = r_list_length (ctx->fcn->bbs);
r_anal_function_bb (ctx->fcn->anal, ctx->fcn, addr, anal->opt.depth);
if (old_len != r_list_length (ctx->fcn->bbs)) {
r_anal_block_recurse (r_anal_get_block_at (anal, addr), mark_as_visited, user);
}
}
ht_up_insert (ctx->visited, addr, NULL);
return true;
}
static bool analize_descendents(RAnalBlock *bb, void *user) {
return r_anal_block_successor_addrs_foreach (bb, analize_addr_cb, user);
}
static void free_ht_up(HtUPKv *kv) {
ht_up_free ((HtUP *)kv->value);
}
static void update_var_analysis(RAnalFunction *fcn, int align, ut64 from, ut64 to) {
RAnal *anal = fcn->anal;
ut64 cur_addr;
int opsz;
from = align ? from - (from % align) : from;
to = align ? R_ROUND (to, align) : to;
if (UT64_SUB_OVFCHK (to, from)) {
return;
}
ut64 len = to - from;
ut8 *buf = malloc (len);
if (!buf) {
return;
}
if (anal->iob.read_at (anal->iob.io, from, buf, len) < len) {
return;
}
for (cur_addr = from; cur_addr < to; cur_addr += opsz, len -= opsz) {
RAnalOp op;
int ret = r_anal_op (anal->coreb.core, &op, cur_addr, buf, len, R_ANAL_OP_MASK_ESIL | R_ANAL_OP_MASK_VAL);
if (ret < 1 || op.size < 1) {
r_anal_op_fini (&op);
break;
}
opsz = op.size;
r_anal_extract_vars (anal, fcn, &op);
r_anal_op_fini (&op);
}
free (buf);
}
// Clear function variable acesses inside in a block
static void clear_bb_vars(RAnalFunction *fcn, RAnalBlock *bb, ut64 from, ut64 to) {
int i;
if (r_pvector_empty (&fcn->vars)) {
return;
}
for (i = 0; i < bb->ninstr; i++) {
const ut64 addr = r_anal_bb_opaddr_i (bb, i);
if (addr < from) {
continue;
}
if (addr >= to || addr == UT64_MAX) {
break;
}
RPVector *vars = r_anal_function_get_vars_used_at (fcn, addr);
if (vars) {
RPVector *vars_clone = (RPVector *)r_vector_clone ((RVector *)vars);
void **v;
r_pvector_foreach (vars_clone, v) {
r_anal_var_remove_access_at ((RAnalVar *)*v, addr);
}
r_pvector_clear (vars_clone);
}
}
}
static void update_analysis(RAnal *anal, RList *fcns, HtUP *reachable) {
// huge slowdown
RListIter *it, *it2, *tmp;
RAnalFunction *fcn;
bool old_jmpmid = anal->opt.jmpmid;
anal->opt.jmpmid = true;
r_anal_function_invalidate_read_ahead_cache ();
r_list_foreach (fcns, it, fcn) {
// Recurse through blocks of function, mark reachable,
// analyze edges that don't have a block
RAnalBlock *bb = r_anal_get_block_at (anal, fcn->addr);
if (!bb) {
r_anal_function_bb (anal, fcn, fcn->addr, anal->opt.depth);
bb = r_anal_get_block_at (anal, fcn->addr);
if (!bb) {
continue;
}
}
HtUP *ht = ht_up_new0 ();
ht_up_insert (ht, bb->addr, NULL);
BlockRecurseCtx ctx = { fcn, ht };
r_anal_block_recurse (bb, analize_descendents, &ctx);
// Remove non-reachable blocks
r_list_foreach_safe (fcn->bbs, it2, tmp, bb) {
if (ht_up_find_kv (ht, bb->addr, NULL)) {
continue;
}
HtUP *o_visited = ht_up_find (reachable, fcn->addr, NULL);
if (!ht_up_find_kv (o_visited, bb->addr, NULL)) {
// Avoid removing blocks that were already not reachable
continue;
}
fcn->ninstr -= bb->ninstr;
r_anal_function_remove_block (fcn, bb);
}
RList *bbs = r_list_clone (fcn->bbs);
r_anal_block_automerge (bbs);
r_anal_function_delete_unused_vars (fcn);
r_list_free (bbs);
}
anal->opt.jmpmid = old_jmpmid;
}
static void calc_reachable_and_remove_block(RList *fcns, RAnalFunction *fcn, RAnalBlock *bb, HtUP *reachable) {
clear_bb_vars (fcn, bb, bb->addr, bb->addr + bb->size);
if (!r_list_contains (fcns, fcn)) {
r_list_append (fcns, fcn);
// Calculate reachable blocks from the start of function
HtUP *ht = ht_up_new0 ();
BlockRecurseCtx ctx = { fcn, ht };
r_anal_block_recurse (r_anal_get_block_at (fcn->anal, fcn->addr), mark_as_visited, &ctx);
ht_up_insert (reachable, fcn->addr, ht);
}
fcn->ninstr -= bb->ninstr;
r_anal_function_remove_block (fcn, bb);
}
R_API void r_anal_update_analysis_range(RAnal *anal, ut64 addr, int size) {
r_return_if_fail (anal);
RListIter *it, *it2, *tmp;
RAnalBlock *bb;
RAnalFunction *fcn;
RList *blocks = r_anal_get_blocks_intersect (anal, addr, size);
if (r_list_empty (blocks)) {
r_list_free (blocks);
return;
}
RList *fcns = r_list_new ();
HtUP *reachable = ht_up_new (NULL, free_ht_up, NULL);
const int align = r_anal_archinfo (anal, R_ANAL_ARCHINFO_ALIGN);
const ut64 end_write = addr + size;
r_list_foreach (blocks, it, bb) {
if (!r_anal_block_was_modified (bb)) {
continue;
}
r_list_foreach_safe (bb->fcns, it2, tmp, fcn) {
if (align > 1) {
if ((end_write < r_anal_bb_opaddr_i (bb, bb->ninstr - 1))
&& (!bb->switch_op || end_write < bb->switch_op->addr)) {
// Special case when instructions are aligned and we don't
// need to worry about a write messing with the jump instructions
clear_bb_vars (fcn, bb, addr > bb->addr ? addr : bb->addr, end_write);
update_var_analysis (fcn, align, addr > bb->addr ? addr : bb->addr, end_write);
r_anal_function_delete_unused_vars (fcn);
continue;
}
}
calc_reachable_and_remove_block (fcns, fcn, bb, reachable);
}
}
r_list_free (blocks); // This will call r_anal_block_unref to actually remove blocks from RAnal
update_analysis (anal, fcns, reachable);
ht_up_free (reachable);
r_list_free (fcns);
}
R_API void r_anal_function_update_analysis(RAnalFunction *fcn) {
r_return_if_fail (fcn);
RListIter *it, *it2, *tmp, *tmp2;
RAnalBlock *bb;
RAnalFunction *f;
RList *fcns = r_list_new ();
HtUP *reachable = ht_up_new (NULL, free_ht_up, NULL);
r_list_foreach_safe (fcn->bbs, it, tmp, bb) {
if (r_anal_block_was_modified (bb)) {
r_list_foreach_safe (bb->fcns, it2, tmp2, f) {
calc_reachable_and_remove_block (fcns, f, bb, reachable);
}
}
}
update_analysis (fcn->anal, fcns, reachable);
ht_up_free (reachable);
r_list_free (fcns);
}