mirror of
https://github.com/radareorg/radare2.git
synced 2025-01-01 02:33:50 +00:00
1038 lines
29 KiB
C
1038 lines
29 KiB
C
/*
|
|
* FILE: sha2.c
|
|
* AUTHOR: Aaron D. Gifford <me@aarongifford.com>
|
|
*
|
|
* Copyright (c) 2000-2001, Aaron D. Gifford
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the copyright holder nor the names of contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
|
|
*/
|
|
|
|
#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
|
|
#include "r_hash.h"
|
|
#include "sha2.h"
|
|
|
|
#define WEAK_ALIASING 0
|
|
|
|
/*
|
|
* UNROLLED TRANSFORM LOOP NOTE:
|
|
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
|
|
* loop version for the hash transform rounds (defined using macros
|
|
* later in this file). Either define on the command line, for example:
|
|
*
|
|
* cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
|
|
*
|
|
* or define below:
|
|
*
|
|
* #define SHA2_UNROLL_TRANSFORM
|
|
*
|
|
*/
|
|
|
|
|
|
/*** SHA-256/384/512 Machine Architecture Definitions *****************/
|
|
/*
|
|
* BYTE_ORDER NOTE:
|
|
*
|
|
* Please make sure that your system defines BYTE_ORDER. If your
|
|
* architecture is little-endian, make sure it also defines
|
|
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
|
|
* equivilent.
|
|
*
|
|
* If your system does not define the above, then you can do so by
|
|
* hand like this:
|
|
*
|
|
* #define LITTLE_ENDIAN 1234
|
|
* #define BIG_ENDIAN 4321
|
|
*
|
|
* And for little-endian machines, add:
|
|
*
|
|
* #define BYTE_ORDER LITTLE_ENDIAN
|
|
*
|
|
* Or for big-endian machines:
|
|
*
|
|
* #define BYTE_ORDER BIG_ENDIAN
|
|
*
|
|
* The FreeBSD machine this was written on defines BYTE_ORDER
|
|
* appropriately by including <sys/types.h> (which in turn includes
|
|
* <machine/endian.h> where the appropriate definitions are actually
|
|
* made).
|
|
*/
|
|
#ifndef BYTE_ORDER
|
|
// XXX: workaround for windows
|
|
#define LITTLE_ENDIAN 1234
|
|
#define BIG_ENDIAN 4321
|
|
#define BYTE_ORDER LITTLE_ENDIAN
|
|
#endif
|
|
|
|
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
|
|
#warning Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
|
|
#define BYTE_ORDER BIG_ENDIAN
|
|
#endif
|
|
|
|
|
|
/*** SHA-256/384/512 Various Length Definitions ***********************/
|
|
/* NOTE: Most of these are in sha2.h */
|
|
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
|
|
#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
|
|
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
|
|
|
|
|
|
/*** ENDIAN REVERSAL MACROS *******************************************/
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
#define REVERSE32(w, x) {\
|
|
ut32 tmp = (w);\
|
|
tmp = (tmp >> 16) | (tmp << 16);\
|
|
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8);\
|
|
}
|
|
#define REVERSE64(w, x) {\
|
|
ut64 tmp = (w);\
|
|
tmp = (tmp >> 32) | (tmp << 32);\
|
|
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) |\
|
|
((tmp & 0x00ff00ff00ff00ffULL) << 8);\
|
|
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) |\
|
|
((tmp & 0x0000ffff0000ffffULL) << 16);\
|
|
}
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
/*
|
|
* Macro for incrementally adding the unsigned 64-bit integer n to the
|
|
* unsigned 128-bit integer (represented using a two-element array of
|
|
* 64-bit words):
|
|
*/
|
|
#define ADDINC128(w, n) {\
|
|
(w)[0] += (ut64) (n);\
|
|
if ((w)[0] < (n)) {\
|
|
(w)[1]++;\
|
|
}\
|
|
}
|
|
|
|
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
|
|
/*
|
|
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
|
|
*
|
|
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and
|
|
* S is a ROTATION) because the SHA-256/384/512 description document
|
|
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
|
|
* same "backwards" definition.
|
|
*/
|
|
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
|
|
#define R(b, x) ((x) >> (b))
|
|
/* 32-bit Rotate-right (used in SHA-256): */
|
|
#define S32(b, x) (((x) >> (b)) | ((x) << (32 - (b))))
|
|
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
|
|
#define S64(b, x) (((x) >> (b)) | ((x) << (64 - (b))))
|
|
|
|
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
|
|
#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
|
|
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
|
|
|
/* Four of six logical functions used in SHA-256: */
|
|
#define Sigma0_256(x) (S32 (2, (x)) ^ S32 (13, (x)) ^ S32 (22, (x)))
|
|
#define Sigma1_256(x) (S32 (6, (x)) ^ S32 (11, (x)) ^ S32 (25, (x)))
|
|
#define sigma0_256(x) (S32 (7, (x)) ^ S32 (18, (x)) ^ R (3, (x)))
|
|
#define sigma1_256(x) (S32 (17, (x)) ^ S32 (19, (x)) ^ R (10, (x)))
|
|
|
|
/* Four of six logical functions used in SHA-384 and SHA-512: */
|
|
#define Sigma0_512(x) (S64 (28, (x)) ^ S64 (34, (x)) ^ S64 (39, (x)))
|
|
#define Sigma1_512(x) (S64 (14, (x)) ^ S64 (18, (x)) ^ S64 (41, (x)))
|
|
#define sigma0_512(x) (S64 ( 1, (x)) ^ S64 ( 8, (x)) ^ R ( 7, (x)))
|
|
#define sigma1_512(x) (S64 (19, (x)) ^ S64 (61, (x)) ^ R ( 6, (x)))
|
|
|
|
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
|
|
/* NOTE: These should not be accessed directly from outside this
|
|
* library -- they are intended for private internal visibility/use
|
|
* only.
|
|
*/
|
|
void SHA512_Last(R_SHA512_CTX *);
|
|
void SHA256_Transform(R_SHA256_CTX *, const ut32 *);
|
|
void SHA512_Transform(R_SHA512_CTX *, const ut64 *);
|
|
|
|
|
|
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
|
|
/* Hash constant words K for SHA-256: */
|
|
const static ut32 K256[64] = {
|
|
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
|
|
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
|
|
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
|
|
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
|
|
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
|
|
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
|
|
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
|
|
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
|
|
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
|
|
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
|
|
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
|
|
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
|
|
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
|
|
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
|
|
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
|
|
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
|
|
};
|
|
|
|
/* Initial hash value H for SHA-256: */
|
|
const static ut32 sha256_initial_hash_value[8] = {
|
|
0x6a09e667UL,
|
|
0xbb67ae85UL,
|
|
0x3c6ef372UL,
|
|
0xa54ff53aUL,
|
|
0x510e527fUL,
|
|
0x9b05688cUL,
|
|
0x1f83d9abUL,
|
|
0x5be0cd19UL
|
|
};
|
|
|
|
/* Hash constant words K for SHA-384 and SHA-512: */
|
|
const static ut64 K512[80] = {
|
|
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
|
|
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
|
|
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
|
|
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
|
|
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
|
|
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
|
|
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
|
|
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
|
|
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
|
|
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
|
|
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
|
|
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
|
|
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
|
|
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
|
|
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
|
|
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
|
|
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
|
|
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
|
|
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
|
|
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
|
|
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
|
|
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
|
|
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
|
|
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
|
|
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
|
|
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
|
|
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
|
|
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
|
|
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
|
|
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
|
|
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
|
|
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
|
|
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
|
|
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
|
|
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
|
|
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
|
|
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
|
|
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
|
|
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
|
|
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
|
|
};
|
|
|
|
/* Initial hash value H for SHA-384 */
|
|
const static ut64 sha384_initial_hash_value[8] = {
|
|
0xcbbb9d5dc1059ed8ULL,
|
|
0x629a292a367cd507ULL,
|
|
0x9159015a3070dd17ULL,
|
|
0x152fecd8f70e5939ULL,
|
|
0x67332667ffc00b31ULL,
|
|
0x8eb44a8768581511ULL,
|
|
0xdb0c2e0d64f98fa7ULL,
|
|
0x47b5481dbefa4fa4ULL
|
|
};
|
|
|
|
/* Initial hash value H for SHA-512 */
|
|
const static ut64 sha512_initial_hash_value[8] = {
|
|
0x6a09e667f3bcc908ULL,
|
|
0xbb67ae8584caa73bULL,
|
|
0x3c6ef372fe94f82bULL,
|
|
0xa54ff53a5f1d36f1ULL,
|
|
0x510e527fade682d1ULL,
|
|
0x9b05688c2b3e6c1fULL,
|
|
0x1f83d9abfb41bd6bULL,
|
|
0x5be0cd19137e2179ULL
|
|
};
|
|
|
|
/*
|
|
* Constant used by SHA256/384/512_End() functions for converting the
|
|
* digest to a readable hexadecimal character string:
|
|
*/
|
|
static const char *sha2_hex_digits = "0123456789abcdef";
|
|
|
|
|
|
/*** SHA-256: *********************************************************/
|
|
void SHA256_Init(R_SHA256_CTX *context) {
|
|
if (context == (R_SHA256_CTX *) 0) {
|
|
return;
|
|
}
|
|
memcpy (context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
|
|
memset (context->buffer, 0, SHA256_BLOCK_LENGTH);
|
|
context->bitcount = 0;
|
|
}
|
|
|
|
#ifdef SHA2_UNROLL_TRANSFORM
|
|
|
|
/* Unrolled SHA-256 round macros: */
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
|
|
#define ROUND256_0_TO_15(a, b, c, d, e, f, g, h)\
|
|
REVERSE32 (*data++, W256[j]);\
|
|
T1 = (h) + Sigma1_256 (e) + Ch ((e), (f), (g)) +\
|
|
K256[j] + W256[j];\
|
|
(d) += T1;\
|
|
(h) = T1 + Sigma0_256 (a) + Maj ((a), (b), (c));\
|
|
j++
|
|
|
|
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
#define ROUND256_0_TO_15(a, b, c, d, e, f, g, h)\
|
|
T1 = (h) + Sigma1_256 (e) + Ch ((e), (f), (g)) +\
|
|
K256[j] + (W256[j] = *data++);\
|
|
(d) += T1;\
|
|
(h) = T1 + Sigma0_256 (a) + Maj ((a), (b), (c));\
|
|
j++
|
|
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
#define ROUND256(a, b, c, d, e, f, g, h)\
|
|
s0 = W256[(j + 1) & 0x0f];\
|
|
s0 = sigma0_256 (s0);\
|
|
s1 = W256[(j + 14) & 0x0f];\
|
|
s1 = sigma1_256 (s1);\
|
|
T1 = (h) + Sigma1_256 (e) + Ch ((e), (f), (g)) + K256[j] +\
|
|
(W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0);\
|
|
(d) += T1;\
|
|
(h) = T1 + Sigma0_256 (a) + Maj ((a), (b), (c));\
|
|
j++
|
|
|
|
void SHA256_Transform(R_SHA256_CTX *context, const ut32 *data) {
|
|
ut32 a, b, c, d, e, f, g, h, s0, s1;
|
|
ut32 T1, *W256;
|
|
int j;
|
|
|
|
W256 = (ut32 *) context->buffer;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->state[0];
|
|
b = context->state[1];
|
|
c = context->state[2];
|
|
d = context->state[3];
|
|
e = context->state[4];
|
|
f = context->state[5];
|
|
g = context->state[6];
|
|
h = context->state[7];
|
|
|
|
j = 0;
|
|
do {
|
|
/* Rounds 0 to 15 (unrolled): */
|
|
ROUND256_0_TO_15 (a, b, c, d, e, f, g, h);
|
|
ROUND256_0_TO_15 (h, a, b, c, d, e, f, g);
|
|
ROUND256_0_TO_15 (g, h, a, b, c, d, e, f);
|
|
ROUND256_0_TO_15 (f, g, h, a, b, c, d, e);
|
|
ROUND256_0_TO_15 (e, f, g, h, a, b, c, d);
|
|
ROUND256_0_TO_15 (d, e, f, g, h, a, b, c);
|
|
ROUND256_0_TO_15 (c, d, e, f, g, h, a, b);
|
|
ROUND256_0_TO_15 (b, c, d, e, f, g, h, a);
|
|
} while (j < 16);
|
|
|
|
/* Now for the remaining rounds to 64: */
|
|
do {
|
|
ROUND256 (a, b, c, d, e, f, g, h);
|
|
ROUND256 (h, a, b, c, d, e, f, g);
|
|
ROUND256 (g, h, a, b, c, d, e, f);
|
|
ROUND256 (f, g, h, a, b, c, d, e);
|
|
ROUND256 (e, f, g, h, a, b, c, d);
|
|
ROUND256 (d, e, f, g, h, a, b, c);
|
|
ROUND256 (c, d, e, f, g, h, a, b);
|
|
ROUND256 (b, c, d, e, f, g, h, a);
|
|
} while (j < 64);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->state[0] += a;
|
|
context->state[1] += b;
|
|
context->state[2] += c;
|
|
context->state[3] += d;
|
|
context->state[4] += e;
|
|
context->state[5] += f;
|
|
context->state[6] += g;
|
|
context->state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = 0;
|
|
}
|
|
|
|
#else /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void SHA256_Transform(R_SHA256_CTX *context, const ut32 *data) {
|
|
ut32 a, b, c, d, e, f, g, h, s0, s1;
|
|
ut32 T1, T2, *W256;
|
|
int j;
|
|
|
|
W256 = (ut32 *) context->buffer;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->state[0];
|
|
b = context->state[1];
|
|
c = context->state[2];
|
|
d = context->state[3];
|
|
e = context->state[4];
|
|
f = context->state[5];
|
|
g = context->state[6];
|
|
h = context->state[7];
|
|
|
|
j = 0;
|
|
do {
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
/* Copy data while converting to host byte order */
|
|
REVERSE32 (*data++, W256[j]);
|
|
/* Apply the SHA-256 compression function to update a..h */
|
|
T1 = h + Sigma1_256 (e) + Ch (e, f, g) + K256[j] + W256[j];
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
/* Apply the SHA-256 compression function to update a..h with copy */
|
|
T1 = h + Sigma1_256 (e) + Ch (e, f, g) + K256[j] + (W256[j] = *data++);
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
T2 = Sigma0_256 (a) + Maj (a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 16);
|
|
|
|
do {
|
|
/* Part of the message block expansion: */
|
|
s0 = W256[(j + 1) & 0x0f];
|
|
s0 = sigma0_256 (s0);
|
|
s1 = W256[(j + 14) & 0x0f];
|
|
s1 = sigma1_256 (s1);
|
|
|
|
/* Apply the SHA-256 compression function to update a..h */
|
|
T1 = h + Sigma1_256 (e) + Ch (e, f, g) + K256[j] +
|
|
(W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0);
|
|
T2 = Sigma0_256 (a) + Maj (a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 64);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->state[0] += a;
|
|
context->state[1] += b;
|
|
context->state[2] += c;
|
|
context->state[3] += d;
|
|
context->state[4] += e;
|
|
context->state[5] += f;
|
|
context->state[6] += g;
|
|
context->state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
|
}
|
|
|
|
#endif /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void SHA256_Update(R_SHA256_CTX *context, const ut8 *data, size_t len) {
|
|
unsigned int freespace, usedspace;
|
|
|
|
/* Sanity check: */
|
|
if (!context || !data || len == 0) {
|
|
return;
|
|
}
|
|
|
|
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
|
if (usedspace > 0) {
|
|
/* Calculate how much free space is available in the buffer */
|
|
freespace = SHA256_BLOCK_LENGTH - usedspace;
|
|
|
|
if (len >= freespace) {
|
|
/* Fill the buffer completely and process it */
|
|
memcpy (&context->buffer[usedspace], data, freespace);
|
|
context->bitcount += freespace << 3;
|
|
len -= freespace;
|
|
data += freespace;
|
|
SHA256_Transform (context, (ut32 *) context->buffer);
|
|
} else {
|
|
/* The buffer is not yet full */
|
|
memcpy (&context->buffer[usedspace], data, len);
|
|
context->bitcount += len << 3;
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
return;
|
|
}
|
|
}
|
|
while (len >= SHA256_BLOCK_LENGTH) {
|
|
/* Process as many complete blocks as we can */
|
|
SHA256_Transform (context, (ut32 *) data);
|
|
context->bitcount += SHA256_BLOCK_LENGTH << 3;
|
|
len -= SHA256_BLOCK_LENGTH;
|
|
data += SHA256_BLOCK_LENGTH;
|
|
}
|
|
if (len > 0) {
|
|
/* There's left-overs, so save 'em */
|
|
memcpy (context->buffer, data, len);
|
|
context->bitcount += len << 3;
|
|
}
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
}
|
|
|
|
void SHA256_Final(ut8 digest[], R_SHA256_CTX *context) {
|
|
ut32 *d = (ut32 *) digest;
|
|
unsigned int usedspace;
|
|
|
|
/* Sanity check: */
|
|
if (!context) {
|
|
return;
|
|
}
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != (ut8 *) 0) {
|
|
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
/* Convert FROM host byte order */
|
|
REVERSE64 (context->bitcount, context->bitcount);
|
|
#endif
|
|
if (usedspace > 0) {
|
|
/* Begin padding with a 1 bit: */
|
|
context->buffer[usedspace++] = 0x80;
|
|
|
|
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
|
|
/* Set-up for the last transform: */
|
|
memset (&context->buffer[usedspace], 0, SHA256_SHORT_BLOCK_LENGTH - usedspace);
|
|
} else {
|
|
if (usedspace < SHA256_BLOCK_LENGTH) {
|
|
memset (&context->buffer[usedspace], 0, SHA256_BLOCK_LENGTH - usedspace);
|
|
}
|
|
/* Do second-to-last transform: */
|
|
SHA256_Transform (context, (ut32 *) context->buffer);
|
|
|
|
/* And set-up for the last transform: */
|
|
memset (context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
|
|
}
|
|
} else {
|
|
/* Set-up for the last transform: */
|
|
memset (context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
|
|
|
|
/* Begin padding with a 1 bit: */
|
|
*context->buffer = 0x80;
|
|
}
|
|
/* Set the bit count: */
|
|
#if WEAK_ALIASING
|
|
*(ut64 *) &context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
|
|
#else
|
|
{
|
|
ut64 *p = (ut64 *) ((ut8 *) context->buffer + SHA256_SHORT_BLOCK_LENGTH);
|
|
*p = (ut64) context->bitcount;
|
|
}
|
|
#endif
|
|
|
|
/* Final transform: */
|
|
SHA256_Transform (context, (ut32 *) context->buffer);
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
for (j = 0; j < 8; j++) {
|
|
REVERSE32 (context->state[j], context->state[j]);
|
|
*d++ = context->state[j];
|
|
}
|
|
}
|
|
#else
|
|
memcpy (d, context->state, SHA256_DIGEST_LENGTH);
|
|
#endif
|
|
}
|
|
|
|
/* Clean up state data: */
|
|
memset (context, 0, sizeof(*context));
|
|
usedspace = 0;
|
|
}
|
|
|
|
char *SHA256_End(R_SHA256_CTX *context, char buffer[]) {
|
|
ut8 digest[SHA256_DIGEST_LENGTH], *d = digest;
|
|
int i;
|
|
|
|
if (!context) {
|
|
return NULL;
|
|
}
|
|
|
|
if (buffer) {
|
|
SHA256_Final (digest, context);
|
|
|
|
for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
|
|
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
|
|
*buffer++ = sha2_hex_digits[*d & 0x0f];
|
|
d++;
|
|
}
|
|
*buffer = (char) 0;
|
|
} else {
|
|
memset (context, 0, sizeof(*context));
|
|
}
|
|
memset (digest, 0, SHA256_DIGEST_LENGTH);
|
|
return buffer;
|
|
}
|
|
|
|
char *SHA256_Data(const ut8 *data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
|
|
R_SHA256_CTX context;
|
|
|
|
SHA256_Init (&context);
|
|
SHA256_Update (&context, data, len);
|
|
return SHA256_End (&context, digest);
|
|
}
|
|
|
|
|
|
/*** SHA-512: *********************************************************/
|
|
void SHA512_Init(R_SHA512_CTX *context) {
|
|
if (context == (R_SHA512_CTX *) 0) {
|
|
return;
|
|
}
|
|
memcpy (context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
|
|
memset (context->buffer, 0, SHA512_BLOCK_LENGTH);
|
|
context->bitcount[0] = context->bitcount[1] = 0;
|
|
}
|
|
|
|
#ifdef SHA2_UNROLL_TRANSFORM
|
|
|
|
/* Unrolled SHA-512 round macros: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
|
|
#define ROUND512_0_TO_15(a, b, c, d, e, f, g, h)\
|
|
REVERSE64 (*data++, W512[j]);\
|
|
T1 = (h) + Sigma1_512 (e) + Ch ((e), (f), (g)) +\
|
|
K512[j] + W512[j];\
|
|
(d) += T1,\
|
|
(h) = T1 + Sigma0_512 (a) + Maj ((a), (b), (c)),\
|
|
j++
|
|
|
|
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
#define ROUND512_0_TO_15(a, b, c, d, e, f, g, h)\
|
|
T1 = (h) + Sigma1_512 (e) + Ch ((e), (f), (g)) +\
|
|
K512[j] + (W512[j] = *data++);\
|
|
(d) += T1;\
|
|
(h) = T1 + Sigma0_512 (a) + Maj ((a), (b), (c));\
|
|
j++
|
|
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
#define ROUND512(a, b, c, d, e, f, g, h)\
|
|
s0 = W512[(j + 1) & 0x0f];\
|
|
s0 = sigma0_512 (s0);\
|
|
s1 = W512[(j + 14) & 0x0f];\
|
|
s1 = sigma1_512 (s1);\
|
|
T1 = (h) + Sigma1_512 (e) + Ch ((e), (f), (g)) + K512[j] +\
|
|
(W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);\
|
|
(d) += T1;\
|
|
(h) = T1 + Sigma0_512 (a) + Maj ((a), (b), (c));\
|
|
j++
|
|
|
|
void SHA512_Transform(R_SHA512_CTX *context, const ut64 *data) {
|
|
ut64 a, b, c, d, e, f, g, h, s0, s1;
|
|
ut64 T1, *W512 = (ut64 *) context->buffer;
|
|
int j;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->state[0];
|
|
b = context->state[1];
|
|
c = context->state[2];
|
|
d = context->state[3];
|
|
e = context->state[4];
|
|
f = context->state[5];
|
|
g = context->state[6];
|
|
h = context->state[7];
|
|
|
|
j = 0;
|
|
do {
|
|
ROUND512_0_TO_15 (a, b, c, d, e, f, g, h);
|
|
ROUND512_0_TO_15 (h, a, b, c, d, e, f, g);
|
|
ROUND512_0_TO_15 (g, h, a, b, c, d, e, f);
|
|
ROUND512_0_TO_15 (f, g, h, a, b, c, d, e);
|
|
ROUND512_0_TO_15 (e, f, g, h, a, b, c, d);
|
|
ROUND512_0_TO_15 (d, e, f, g, h, a, b, c);
|
|
ROUND512_0_TO_15 (c, d, e, f, g, h, a, b);
|
|
ROUND512_0_TO_15 (b, c, d, e, f, g, h, a);
|
|
} while (j < 16);
|
|
|
|
/* Now for the remaining rounds up to 79: */
|
|
do {
|
|
ROUND512 (a, b, c, d, e, f, g, h);
|
|
ROUND512 (h, a, b, c, d, e, f, g);
|
|
ROUND512 (g, h, a, b, c, d, e, f);
|
|
ROUND512 (f, g, h, a, b, c, d, e);
|
|
ROUND512 (e, f, g, h, a, b, c, d);
|
|
ROUND512 (d, e, f, g, h, a, b, c);
|
|
ROUND512 (c, d, e, f, g, h, a, b);
|
|
ROUND512 (b, c, d, e, f, g, h, a);
|
|
} while (j < 80);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->state[0] += a;
|
|
context->state[1] += b;
|
|
context->state[2] += c;
|
|
context->state[3] += d;
|
|
context->state[4] += e;
|
|
context->state[5] += f;
|
|
context->state[6] += g;
|
|
context->state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = 0;
|
|
}
|
|
|
|
#else /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void SHA512_Transform(R_SHA512_CTX *context, const ut64 *data) {
|
|
ut64 a, b, c, d, e, f, g, h, s0, s1;
|
|
ut64 T1, T2, *W512 = (ut64 *) context->buffer;
|
|
int j;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->state[0];
|
|
b = context->state[1];
|
|
c = context->state[2];
|
|
d = context->state[3];
|
|
e = context->state[4];
|
|
f = context->state[5];
|
|
g = context->state[6];
|
|
h = context->state[7];
|
|
|
|
j = 0;
|
|
do {
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
/* Convert TO host byte order */
|
|
REVERSE64 (*data++, W512[j]);
|
|
/* Apply the SHA-512 compression function to update a..h */
|
|
T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + W512[j];
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
/* Apply the SHA-512 compression function to update a..h with copy */
|
|
T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + (W512[j] = *data++);
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
T2 = Sigma0_512 (a) + Maj (a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 16);
|
|
|
|
do {
|
|
/* Part of the message block expansion: */
|
|
s0 = W512[(j + 1) & 0x0f];
|
|
s0 = sigma0_512 (s0);
|
|
s1 = W512[(j + 14) & 0x0f];
|
|
s1 = sigma1_512 (s1);
|
|
|
|
/* Apply the SHA-512 compression function to update a..h */
|
|
T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] +
|
|
(W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
|
|
T2 = Sigma0_512 (a) + Maj (a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 80);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->state[0] += a;
|
|
context->state[1] += b;
|
|
context->state[2] += c;
|
|
context->state[3] += d;
|
|
context->state[4] += e;
|
|
context->state[5] += f;
|
|
context->state[6] += g;
|
|
context->state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
|
}
|
|
|
|
#endif /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void SHA512_Update(R_SHA512_CTX *context, const ut8 *data, size_t len) {
|
|
unsigned int freespace, usedspace;
|
|
|
|
if (len == 0) {
|
|
/* Calling with no data is valid - we do nothing */
|
|
return;
|
|
}
|
|
|
|
/* Sanity check: */
|
|
if (!context || !data) {
|
|
return;
|
|
}
|
|
|
|
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
|
|
if (usedspace > 0) {
|
|
/* Calculate how much free space is available in the buffer */
|
|
freespace = SHA512_BLOCK_LENGTH - usedspace;
|
|
|
|
if (len >= freespace) {
|
|
/* Fill the buffer completely and process it */
|
|
memcpy (&context->buffer[usedspace], data, freespace);
|
|
ADDINC128 (context->bitcount, freespace << 3);
|
|
len -= freespace;
|
|
data += freespace;
|
|
SHA512_Transform (context, (ut64 *) context->buffer);
|
|
} else {
|
|
/* The buffer is not yet full */
|
|
memcpy (&context->buffer[usedspace], data, len);
|
|
ADDINC128 (context->bitcount, len << 3);
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
return;
|
|
}
|
|
}
|
|
while (len >= SHA512_BLOCK_LENGTH) {
|
|
/* Process as many complete blocks as we can */
|
|
SHA512_Transform (context, (ut64 *) data);
|
|
ADDINC128 (context->bitcount, SHA512_BLOCK_LENGTH << 3);
|
|
len -= SHA512_BLOCK_LENGTH;
|
|
data += SHA512_BLOCK_LENGTH;
|
|
}
|
|
if (len > 0) {
|
|
/* There's left-overs, so save 'em */
|
|
memcpy (context->buffer, data, len);
|
|
ADDINC128 (context->bitcount, len << 3);
|
|
}
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
}
|
|
|
|
void SHA512_Last(R_SHA512_CTX *context) {
|
|
unsigned int usedspace;
|
|
|
|
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
/* Convert FROM host byte order */
|
|
REVERSE64 (context->bitcount[0], context->bitcount[0]);
|
|
REVERSE64 (context->bitcount[1], context->bitcount[1]);
|
|
#endif
|
|
if (usedspace > 0) {
|
|
/* Begin padding with a 1 bit: */
|
|
context->buffer[usedspace++] = 0x80;
|
|
|
|
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
|
|
/* Set-up for the last transform: */
|
|
memset (&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
|
|
} else {
|
|
if (usedspace < SHA512_BLOCK_LENGTH) {
|
|
memset (&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
|
|
}
|
|
/* Do second-to-last transform: */
|
|
SHA512_Transform (context, (ut64 *) context->buffer);
|
|
|
|
/* And set-up for the last transform: */
|
|
memset (context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
|
|
}
|
|
} else {
|
|
/* Prepare for final transform: */
|
|
memset (context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
|
|
|
|
/* Begin padding with a 1 bit: */
|
|
*context->buffer = 0x80;
|
|
}
|
|
/* Store the length of input data (in bits): */
|
|
#if WEAK_ALIASING
|
|
*(ut64 *) &context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
|
|
*(ut64 *) &context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8] = context->bitcount[0];
|
|
#else
|
|
{
|
|
ut64 *p = (ut64 *) ((ut8 *) context->buffer + SHA512_SHORT_BLOCK_LENGTH);
|
|
*p = (ut64) context->bitcount[1];
|
|
p = (ut64 *) ((ut8 *) context->buffer + SHA512_SHORT_BLOCK_LENGTH + 8);
|
|
*p = (ut64) context->bitcount[0];
|
|
}
|
|
#endif
|
|
|
|
/* Final transform: */
|
|
SHA512_Transform (context, (ut64 *) context->buffer);
|
|
}
|
|
|
|
void SHA512_Final(ut8 digest[], R_SHA512_CTX *context) {
|
|
ut64 *d = (ut64 *) digest;
|
|
|
|
/* Sanity check: */
|
|
if (!context) {
|
|
return;
|
|
}
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != (ut8 *) 0) {
|
|
SHA512_Last (context);
|
|
|
|
/* Save the hash data for output: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
for (j = 0; j < 8; j++) {
|
|
REVERSE64 (context->state[j], context->state[j]);
|
|
*d++ = context->state[j];
|
|
}
|
|
}
|
|
#else
|
|
memcpy (d, context->state, SHA512_DIGEST_LENGTH);
|
|
#endif
|
|
}
|
|
|
|
/* Zero out state data */
|
|
memset (context, 0, sizeof(*context));
|
|
}
|
|
|
|
char *SHA512_End(R_SHA512_CTX *context, char buffer[]) {
|
|
ut8 digest[SHA512_DIGEST_LENGTH], *d = digest;
|
|
int i;
|
|
|
|
/* Sanity check: */
|
|
if (!context) {
|
|
return NULL;
|
|
}
|
|
|
|
if (buffer != (char *) 0) {
|
|
SHA512_Final (digest, context);
|
|
|
|
for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
|
|
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
|
|
*buffer++ = sha2_hex_digits[*d & 0x0f];
|
|
d++;
|
|
}
|
|
*buffer = (char) 0;
|
|
} else {
|
|
memset (context, 0, sizeof(*context));
|
|
}
|
|
memset (digest, 0, SHA512_DIGEST_LENGTH);
|
|
return buffer;
|
|
}
|
|
|
|
char *SHA512_Data(const ut8 *data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
|
|
R_SHA512_CTX context;
|
|
|
|
SHA512_Init (&context);
|
|
SHA512_Update (&context, data, len);
|
|
return SHA512_End (&context, digest);
|
|
}
|
|
|
|
|
|
/*** SHA-384: *********************************************************/
|
|
void SHA384_Init(R_SHA384_CTX *context) {
|
|
if (context == (R_SHA384_CTX *) 0) {
|
|
return;
|
|
}
|
|
memcpy (context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
|
|
memset (context->buffer, 0, SHA384_BLOCK_LENGTH);
|
|
context->bitcount[0] = context->bitcount[1] = 0;
|
|
}
|
|
|
|
void SHA384_Update(R_SHA384_CTX *context, const ut8 *data, size_t len) {
|
|
SHA512_Update ((R_SHA512_CTX *) context, data, len);
|
|
}
|
|
|
|
void SHA384_Final(ut8 digest[], R_SHA384_CTX *context) {
|
|
ut64 *d = (ut64 *) digest;
|
|
|
|
/* Sanity check: */
|
|
if (!context) {
|
|
return;
|
|
}
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != (ut8 *) 0) {
|
|
SHA512_Last ((R_SHA512_CTX *) context);
|
|
|
|
/* Save the hash data for output: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
for (j = 0; j < 6; j++) {
|
|
REVERSE64 (context->state[j], context->state[j]);
|
|
*d++ = context->state[j];
|
|
}
|
|
}
|
|
#else
|
|
memcpy (d, context->state, SHA384_DIGEST_LENGTH);
|
|
#endif
|
|
}
|
|
|
|
/* Zero out state data */
|
|
memset (context, 0, sizeof(*context));
|
|
}
|
|
|
|
char *SHA384_End(R_SHA384_CTX *context, char buffer[]) {
|
|
ut8 digest[SHA384_DIGEST_LENGTH], *d = digest;
|
|
int i;
|
|
|
|
/* Sanity check: */
|
|
if (!context) {
|
|
return NULL;
|
|
}
|
|
|
|
if (buffer != (char *) 0) {
|
|
SHA384_Final (digest, context);
|
|
|
|
for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
|
|
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
|
|
*buffer++ = sha2_hex_digits[*d & 0x0f];
|
|
d++;
|
|
}
|
|
*buffer = (char) 0;
|
|
} else {
|
|
memset (context, 0, sizeof(*context));
|
|
}
|
|
memset (digest, 0, SHA384_DIGEST_LENGTH);
|
|
return buffer;
|
|
}
|
|
|
|
char *SHA384_Data(const ut8 *data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
|
|
R_SHA384_CTX context;
|
|
SHA384_Init (&context);
|
|
SHA384_Update (&context, data, len);
|
|
return SHA384_End (&context, digest);
|
|
}
|