radare2/libr/core/linux_heap_glibc.c
2017-08-07 12:48:02 +02:00

1277 lines
38 KiB
C

/* radare2 - LGPL - Copyright 2016 - n4x0r, soez, pancake */
#ifndef INCLUDE_HEAP_GLIBC_C
#define INCLUDE_HEAP_GLIBC_C
#define HEAP32 1
#include "linux_heap_glibc.c"
#undef HEAP32
#endif
#undef GH
#undef GHT
#undef GHT_MAX
#if HEAP32
#define GH(x) x##_32
#define GHT ut32
#define GHT_MAX UT32_MAX
#else
#define GH(x) x##_64
#define GHT ut64
#define GHT_MAX UT64_MAX
#endif
static void GH(update_main_arena)(RCore *core, GHT m_arena, GH(RHeap_MallocState) *main_arena) {
(void)r_core_read_at (core, m_arena, (ut8 *)main_arena, sizeof (GH(RHeap_MallocState)));
}
static void GH(update_global_max_fast)(RCore *core, GHT g_max_fast, GHT *global_max_fast) {
(void)r_core_read_at (core, g_max_fast, (ut8 *)global_max_fast, sizeof (GHT));
}
static void GH(get_brks)(RCore *core, GHT *brk_start, GHT *brk_end) {
RListIter *iter;
RDebugMap *map;
r_debug_map_sync (core->dbg);
r_list_foreach (core->dbg->maps, iter, map) {
if (strstr (map->name, "[heap]")) {
*brk_start = map->addr;
*brk_end = map->addr_end;
break;
}
}
}
static void GH(print_main_arena)(RCore *core, GHT m_arena, GH(RHeap_MallocState) *main_arena, GHT global_max_fast, int format) {
int i, j, k, start, offset = SZ * 12 + sizeof (int) * 2;
GHT apart[NSMALLBINS + 1] = { 0LL };
if (format == '*') {
for (i = 0; i < NBINS * 2 - 2; i += 2) {
GHT addr = m_arena + offset + SZ * i - SZ * 2;
GHT bina = main_arena->bins[i];
r_cons_printf ("f chunk.%d.bin = 0x%"PFMT64x"\n", i, (ut64)addr);
r_cons_printf ("f chunk.%d.fd = 0x%"PFMT64x"\n", i, (ut64)bina);
bina = main_arena->bins[i + 1];
r_cons_printf ("f chunk.%d.bk = 0x%"PFMT64x"\n", i, (ut64)bina);
}
for (i = 0; i < BINMAPSIZE; i++) {
r_cons_printf ("f binmap.%d = 0x%"PFMT64x, i, (ut64) main_arena->binmap[i]);
}
{ /* maybe use SDB instead of flags for this? */
char *units = r_num_units (NULL, main_arena->max_system_mem);
r_cons_printf ("f heap.maxmem = %s\n", units);
free (units);
units = r_num_units (NULL, main_arena->system_mem);
r_cons_printf ("f heap.sysmem = %s\n", units);
free (units);
units = r_num_units (NULL, main_arena->next_free);
r_cons_printf ("f heap.nextfree = %s\n", units);
free (units);
units = r_num_units (NULL, main_arena->next);
r_cons_printf ("f heap.next= %s\n", units);
free (units);
}
return;
}
PRINT_GA ("malloc_state @ ");
PRINTF_BA ("0x%"PFMT64x"\n\n", (ut64)m_arena);
PRINT_GA ("struct malloc_state main_arena {\n");
PRINT_GA (" mutex = ");
PRINTF_BA ("0x%08x\n", (ut32)main_arena->mutex);
PRINT_GA (" flags = ");
PRINTF_BA ("0x%08x\n", (ut32)main_arena->flags);
PRINT_GA (" fastbinsY = {\n");
for (i = 0, j = 1, k = SZ * 4; i < NFASTBINS; i++, j++, k += SZ * 2) {
if (FASTBIN_IDX_TO_SIZE(j) <= global_max_fast) {
PRINTF_YA (" Fastbin %02d\n", j);
} else {
PRINTF_RA (" Fastbin %02d\n", j);
}
PRINT_GA (" chunksize:");
PRINTF_BA (" == %04d ", k);
PRINTF_GA ("0x%"PFMT64x, (ut64)main_arena->fastbinsY[i]);
PRINT_GA (",\n");
}
PRINT_GA ("}\n");
PRINT_GA (" top = ");
PRINTF_BA ("0x%"PFMT64x, (ut64)main_arena->top);
PRINT_GA (",\n");
PRINT_GA (" last_remainder = ");
PRINTF_BA ("0x%"PFMT64x, (ut64)main_arena->last_remainder);
PRINT_GA (",\n");
PRINT_GA (" bins {\n");
/* Index & size for largebins */
start = SZ * 128;
for (i = start, k = 0, j = 0; j < NBINS - 2 && i < 1024 * 1024; i += 64) {
j = largebin_index (i);
if (j == k + NSMALLBINS + 1) {
apart[k++] = i;
}
}
for (i = 0, j = 1, k = SZ * 4; i < NBINS * 2 - 2; i += 2, j++) {
PRINTF_YA (" Bin %03d: ", j);
if (j == 1) {
PRINT_GA ("Unsorted Bin");
PRINT_GA (" [");
PRINT_GA (" chunksize:");
PRINT_BA (" undefined ");
} else if (j > 1 && j <= NSMALLBINS) {
if (j == 2) {
PRINT_GA ("");
} else if (j == (NSMALLBINS / 2)) {
PRINT_GA (" Small Bins │");
} else if (j != 2 && j != (NSMALLBINS / 2) && j != NSMALLBINS) {
PRINT_GA ("");
} else {
PRINT_GA ("");
}
PRINT_GA (" chunksize:");
PRINTF_BA (" == %06d ", k);
if (j < NSMALLBINS) {
k += SZ * 2;
}
} else {
if (j == NSMALLBINS + 1) {
PRINT_GA ("");
} else if (j == (NSMALLBINS / 2) * 3) {
PRINT_GA (" Large Bins │");
} else if (j != NSMALLBINS + 1 && j != (NSMALLBINS / 2) * 3 && j != NBINS - 1) {
PRINT_GA ("");
} else {
PRINT_GA ("");
}
PRINT_GA (" chunksize:");
if (j != NBINS - 1) {
PRINTF_BA (" >= %06d ", apart[j - NSMALLBINS - 1]);
} else {
PRINT_BA (" remaining ");
}
}
GHT bin = m_arena + offset + SZ * i - SZ * 2;
PRINTF_GA ("0x%"PFMT64x"->fd = ", (ut64)bin);
PRINTF_BA ("0x%"PFMT64x, (ut64)main_arena->bins[i]);
PRINT_GA (", ");
PRINTF_GA ("0x%"PFMT64x"->bk = ", (ut64)bin);
PRINTF_BA ("0x%"PFMT64x, (ut64) main_arena->bins[i + 1] );
PRINT_GA (", ");
r_cons_newline ();
}
PRINT_GA (" }\n");
PRINT_GA (" binmap = {");
for (i = 0; i < BINMAPSIZE; i++) {
if (i) {
PRINT_GA (",");
}
PRINTF_BA ("0x%x", (ut32)main_arena->binmap[i]);
}
PRINT_GA ("}\n");
PRINT_GA (" next = ");
PRINTF_BA ("0x%"PFMT64x, (ut64) main_arena->next);
PRINT_GA (",\n");
PRINT_GA (" next_free = ");
PRINTF_BA ("0x%"PFMT64x, (ut64) main_arena->next_free);
PRINT_GA (",\n");
PRINT_GA (" system_mem = ");
PRINTF_BA ("0x%"PFMT64x, (ut64) main_arena->system_mem);
PRINT_GA (",\n");
PRINT_GA (" max_system_mem = ");
PRINTF_BA ("0x%"PFMT64x, (ut64) main_arena->max_system_mem);
PRINT_GA (",\n");
PRINT_GA ("}\n\n");
}
static GHT GH(get_vaddr_symbol)(const char *path, const char *symname) {
RListIter *iter;
RBinSymbol *s;
RCore *core = r_core_new ();
RList * syms = NULL;
GHT vaddr = 0LL;
if (!core) {
return (GHT) -1;
}
r_bin_load (core->bin, path, 0, 0, 0, -1, false);
syms = r_bin_get_symbols (core->bin);
if (!syms) {
return (GHT) -1;
}
r_list_foreach (syms, iter, s) {
if (strstr (s->name, symname)) {
vaddr = s->vaddr;
break;
}
}
r_core_free (core);
return vaddr;
}
static bool GH(r_resolve_symbol)(RCore *core, GHT *symbol, const char *symname) {
const char *dir_dbg = "/usr/lib/debug";
const char *dir_build_id = "/.build-id";
const char *libc_ver_end = NULL;
char hash[64] = R_EMPTY, *path = NULL;
bool is_debug_file[6];
GHT libc_addr = GHT_MAX, vaddr = GHT_MAX;
RListIter *iter;
RDebugMap *map;
if (!core || !core->dbg || !core->dbg->maps) {
return false;
}
r_debug_map_sync (core->dbg);
r_list_foreach (core->dbg->maps, iter, map) {
if (strstr (map->name, "/libc-")) {
libc_addr = map->addr;
libc_ver_end = map->name;
break;
}
}
if (!libc_ver_end) {
eprintf ("Warning: Can't find glibc mapped in memory (see dm)\n");
return false;
}
is_debug_file[0] = str_start_with (libc_ver_end, "/usr/lib/");
is_debug_file[1] = str_start_with (libc_ver_end, "/usr/lib32/");
is_debug_file[2] = str_start_with (libc_ver_end, "/usr/lib64/");
is_debug_file[3] = str_start_with (libc_ver_end, "/lib/");
is_debug_file[4] = str_start_with (libc_ver_end, "/lib32/");
is_debug_file[5] = str_start_with (libc_ver_end, "/lib64/");
if (!is_debug_file[0] && !is_debug_file[1] && \
!is_debug_file[2] && !is_debug_file[3] && \
!is_debug_file[4] && !is_debug_file[5]) {
path = r_cons_input ("Is a custom library? (LD_PRELOAD=..) Enter full path glibc: ");
if (r_file_exists (path)) {
goto found;
}
}
if (is_debug_file[0] || is_debug_file[1] || is_debug_file[2]) {
free (path);
path = r_str_newf ("%s", libc_ver_end);
if (r_file_exists (path)) {
goto found;
}
}
if ((is_debug_file[3] || is_debug_file[4] || is_debug_file[5]) && \
r_file_is_directory ("/usr/lib/debug")) {
free (path);
path = r_str_newf ("%s%s", dir_dbg, libc_ver_end);
if (r_file_exists (path)) {
goto found;
}
path = r_str_append (path, ".debug");
if (r_file_exists (path)) {
goto found;
}
}
if ((is_debug_file[3] || is_debug_file[4] || is_debug_file[5]) && \
r_file_is_directory ("/usr/lib/debug/.build-id")) {
get_hash_debug_file (libc_ver_end, hash, sizeof (hash) - 1);
libc_ver_end = hash;
free (path);
path = r_str_newf ("%s%s%s", dir_dbg, dir_build_id, libc_ver_end);
if (r_file_exists (path)) {
goto found;
}
}
goto not_found;
found:
vaddr = GH(get_vaddr_symbol) (path, symname);
if (libc_addr != GHT_MAX && vaddr && vaddr != GHT_MAX) {
*symbol = libc_addr + vaddr;
free (path);
return true;
}
not_found:
eprintf (
"Warning: glibc library with symbol %s could not be "
"found. Is libc6-dbg installed?\n", symname);
free (path);
return false;
}
static bool GH(r_resolve_global_max_fast)(RCore *core, GHT *g_max_fast, GHT *global_max_fast) {
if (!core || !core->dbg || !core->dbg->maps) {
return false;
}
if (*g_max_fast == GHT_MAX) {
if (GH(r_resolve_symbol) (core, g_max_fast, "global_max_fast")) {
if (global_max_fast) {
GH(update_global_max_fast) (core, *g_max_fast, global_max_fast);
return true;
}
}
return false;
} else {
GH(update_global_max_fast) (core, *g_max_fast, global_max_fast);
}
return true;
}
static bool GH(r_resolve_main_arena)(RCore *core, GHT *m_arena, GH(RHeap_MallocState) *main_arena) {
if (!core || !core->dbg || !core->dbg->maps) {
return false;
}
if (*m_arena == GHT_MAX) {
if (GH(r_resolve_symbol) (core, m_arena, "main_arena")) {
if (main_arena) {
GH(update_main_arena) (core, *m_arena, main_arena);
return true;
}
}
return false;
} else {
GH(update_main_arena) (core, *m_arena, main_arena);
}
return true;
}
void GH(print_heap_chunk)(RCore *core) {
GH(RHeapChunk) *cnk = R_NEW0 (GH(RHeapChunk));
GHT chunk = core->offset;
if (!cnk) {
return;
}
(void) r_core_read_at (core, chunk, (ut8 *)cnk, sizeof (*cnk));
PRINT_GA ("struct malloc_chunk @ ");
PRINTF_BA ("0x%"PFMT64x, (ut64)chunk);
PRINT_GA (" {\n prev_size = ");
PRINTF_BA ("0x%"PFMT64x, (ut64)cnk->prev_size);
PRINT_GA (",\n size = ");
PRINTF_BA ("0x%"PFMT64x, (ut64)cnk->size & ~(NON_MAIN_ARENA | IS_MMAPPED | PREV_INUSE));
PRINT_GA(",\n flags: |N:");
PRINTF_BA("%1d", cnk->size & NON_MAIN_ARENA);
PRINT_GA(" |M:");
PRINTF_BA("%1d", cnk->size & IS_MMAPPED);
PRINT_GA(" |P:");
PRINTF_BA("%1d", cnk->size & PREV_INUSE);
PRINT_GA (",\n fd = ");
PRINTF_BA ("0x%"PFMT64x, (ut64)cnk->fd);
PRINT_GA (",\n bk = ");
PRINTF_BA ("0x%"PFMT64x, (ut64)cnk->bk);
if (cnk->size > SZ * 128) {
PRINT_GA (",\n fd-nextsize = ");
PRINTF_BA ("0x%"PFMT64x, (ut64) cnk->fd_nextsize);
PRINT_GA (",\n bk-nextsize = ");
PRINTF_BA ("0x%"PFMT64x, (ut64) cnk->bk_nextsize);
}
PRINT_GA (",\n}\n");
GHT size = ((cnk->size >> 3) << 3) - SZ * 2;
if (size > SZ * 128) {
PRINT_GA ("chunk too big to be displayed\n");
size = SZ * 128;
}
char *data = calloc (1, size);
if (data) {
r_core_read_at (core, chunk + SZ * 2, (ut8 *)data, size);
PRINT_GA ("chunk data = \n");
r_print_hexdump (core->print, chunk + SZ * 2, (ut8 *)data, size, SZ * 8, SZ, 1);
free (data);
}
free (cnk);
}
static int GH(print_double_linked_list_bin_simple)(RCore *core, GHT bin, GH(RHeap_MallocState) *main_arena, GHT brk_start) {
GHT next = GHT_MAX;
GH(RHeapChunk) *cnk = R_NEW0 (GH(RHeapChunk));
if (!cnk) {
return -1;
}
r_core_read_at (core, bin, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
PRINTF_GA (" 0x%"PFMT64x, (ut64)bin);
while (cnk->fd != bin) {
PRINTF_BA ("->fd = 0x%"PFMT64x, (ut64)cnk->fd);
next = cnk->fd;
if (next < brk_start || next > main_arena->top) {
PRINT_RA ("Double linked list corrupted\n");
free (cnk);
return -1;
}
r_core_read_at (core, next, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
}
PRINTF_GA ("->fd = 0x%"PFMT64x, (ut64)cnk->fd);
next = cnk->fd;
if (next != bin) {
PRINT_RA ("Double linked list corrupted\n");
free (cnk);
return -1;
}
(void)r_core_read_at (core, next, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
PRINTF_GA ("\n 0x%"PFMT64x, (ut64)bin);
while (cnk->bk != bin) {
PRINTF_BA ("->bk = 0x%"PFMT64x, (ut64) cnk->bk);
next = cnk->bk;
if (next < brk_start || next > main_arena->top) {
PRINT_RA ("Double linked list corrupted.\n");
free (cnk);
return -1;
}
(void)r_core_read_at (core, next, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
}
PRINTF_GA ("->bk = 0x%"PFMT64x, (ut64)cnk->bk);
free (cnk);
return 0;
}
static int GH(print_double_linked_list_bin_graph)(RCore *core, GHT bin, GH(RHeap_MallocState) *main_arena, GHT brk_start) {
RAGraph *g = r_agraph_new (r_cons_canvas_new (1, 1));
GHT next = GHT_MAX;
char title[256], chunk[256];
RANode *bin_node = NULL, *prev_node = NULL, *next_node = NULL;
GH(RHeapChunk) *cnk = R_NEW0 (GH(RHeapChunk));
if (!cnk || !g) {
free (cnk);
r_agraph_free (g);
return -1;
}
g->can->color = r_config_get_i (core->config, "scr.color");
(void)r_core_read_at (core, bin, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
snprintf (title, sizeof (title) - 1, "bin @ 0x%"PFMT64x"\n", (ut64)bin);
snprintf (chunk, sizeof (chunk) - 1, "fd: 0x%"PFMT64x"\nbk: 0x%"PFMT64x"\n",
(ut64)cnk->fd, (ut64)cnk->bk);
bin_node = r_agraph_add_node (g, title, chunk);
prev_node = bin_node;
while (cnk->bk != bin) {
next = cnk->bk;
if (next < brk_start || next > main_arena->top) {
PRINT_RA ("Double linked list corrupted\n");
free (cnk);
free (g);
return -1;
}
r_core_read_at (core, next, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
snprintf (title, sizeof (title) - 1, "Chunk @ 0x%"PFMT64x"\n", (ut64)next);
snprintf (chunk, sizeof (chunk) - 1, "fd: 0x%"PFMT64x"\nbk: 0x%"PFMT64x"\n",
(ut64)cnk->fd, (ut64)cnk->bk);
next_node = r_agraph_add_node (g, title, chunk);
r_agraph_add_edge (g, prev_node, next_node);
r_agraph_add_edge (g, next_node, prev_node);
prev_node = next_node;
}
r_agraph_add_edge (g, prev_node, bin_node);
r_agraph_add_edge (g, bin_node, prev_node);
r_agraph_print (g);
free (cnk);
r_agraph_free (g);
return 0;
}
static int GH(print_double_linked_list_bin)(RCore *core, GH(RHeap_MallocState)*main_arena, GHT m_arena, GHT offset, GHT num_bin, int graph) {
if (!core || !core->dbg || !core->dbg->maps) {
return -1;
}
int ret = 0;
GHT brk_start = GHT_MAX, brk_end = GHT_MAX;
if (num_bin < 0 || num_bin > 126) {
return -1;
}
GHT bin = main_arena->bins[num_bin];
if (!bin) {
return -1;
}
GH(get_brks) (core, &brk_start, &brk_end);
if (brk_start == GHT_MAX || brk_end == GHT_MAX) {
eprintf ("No Heap section\n");
return -1;
}
bin = m_arena + offset + SZ * num_bin * 2 - SZ * 2;
switch (num_bin) {
case 0:
PRINT_GA (" double linked list unsorted bin {\n");
break;
case 1 ... NSMALLBINS - 1:
PRINT_GA (" double linked list small bin {\n");
break;
case NSMALLBINS ... NBINS - 2:
PRINT_GA (" double linked list large bin {\n");
break;
}
if (!graph || graph == 1) {
ret = GH(print_double_linked_list_bin_simple)(core, bin, main_arena, brk_start);
} else {
ret = GH(print_double_linked_list_bin_graph)(core, bin, main_arena, brk_start);
}
PRINT_GA ("\n }\n");
return ret;
}
static void GH(print_heap_bin)(RCore *core, GHT m_arena, GH(RHeap_MallocState) *main_arena, const char *input) {
int i, j = 2;
GHT num_bin = GHT_MAX;
GHT offset = 12 * SZ + sizeof (int) * 2;
switch (input[0]) {
case '\0': // dmhb
PRINT_YA ("Bins {\n");
for (i = 0; i < NBINS - 1; i++) {
PRINTF_YA (" Bin %03d:\n", i + 1);
if (!GH(print_double_linked_list_bin)(core, main_arena, m_arena, offset, i, 0)) {
PRINT_GA (" Empty bin");
PRINT_BA (" 0x0\n");
}
}
PRINT_YA ("\n}\n");
break;
case ' ': // dmhb [bin_num]
j--; // for spaces after input
/* fallthu */
case 'g': // dmhbg [bin_num]
num_bin = r_num_math (core->num, input + j) - 1;
if (num_bin > NBINS - 2) {
eprintf ("Error: 0 < bin <= %d\n", NBINS - 1);
break;
}
PRINTF_YA (" Bin %03d:\n", num_bin + 1);
if (!GH(print_double_linked_list_bin)(core, main_arena, m_arena, offset, num_bin, j)) {
PRINT_GA ("Empty bin");
PRINT_BA (" 0x0\n");
}
break;
}
}
static int GH(print_single_linked_list_bin)(RCore *core, GH(RHeap_MallocState) *main_arena, GHT m_arena, GHT offset, GHT bin_num) {
if (!core || !core->dbg || !core->dbg->maps) {
return -1;
}
GHT next = GHT_MAX, brk_start = GHT_MAX, brk_end = GHT_MAX;
GHT bin = main_arena->fastbinsY[bin_num];
if (!bin) {
return -1;
}
GH(RHeapChunk) *cnk = R_NEW0 (GH(RHeapChunk));
if (!cnk) {
return 0;
}
bin = m_arena + offset + SZ * bin_num;
r_core_read_at (core, bin, (ut8 *)&next, SZ);
GH(get_brks)(core, &brk_start, &brk_end);
if (brk_start == GHT_MAX || brk_end == GHT_MAX) {
eprintf ("No Heap section\n");
free (cnk);
return 0;
}
PRINTF_GA (" fastbin %d @ ", bin_num + 1);
PRINTF_GA ("0x%"PFMT64x" {\n ", (ut64)bin);
GHT size = main_arena->top - brk_start;
GHT next_root = next, next_tmp = next, double_free = GHT_MAX;
while (next && next >= brk_start && next < main_arena->top) {
PRINTF_BA ("0x%"PFMT64x, (ut64)next);
while (double_free == GHT_MAX && next_tmp && next_tmp >= brk_start && next_tmp <= main_arena->top) {
r_core_read_at (core, next_tmp, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
next_tmp = cnk->fd;
if (cnk->prev_size > size || ((cnk->size >> 3) << 3) > size) {
break;
}
if (next_root == next_tmp) {
double_free = next_root;
break;
}
}
r_core_read_at (core, next, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
next = cnk->fd;
PRINTF_BA ("%s", next ? "->fd = " : "");
if (cnk->prev_size > size || ((cnk->size >> 3) << 3) > size) {
PRINTF_RA (" 0x%"PFMT64x, (ut64)next);
PRINT_RA (" Linked list corrupted\n");
PRINT_GA ("\n }\n");
free (cnk);
return -1;
}
next_root = next_tmp = next;
if (double_free == next) {
PRINTF_RA ("0x%"PFMT64x, (ut64)next);
PRINT_RA (" Double free detected\n");
PRINT_GA ("\n }\n");
free (cnk);
return -1;
}
}
if (next && (next < brk_start || next >= main_arena->top)) {
PRINTF_RA ("0x%"PFMT64x, (ut64)next);
PRINT_RA (" Linked list corrupted\n");
PRINT_GA ("\n }\n");
free (cnk);
return -1;
}
PRINT_GA ("\n }\n");
free (cnk);
return 0;
}
void GH(print_heap_fastbin)(RCore *core, GHT m_arena, GH(RHeap_MallocState) *main_arena, GHT global_max_fast, const char *input) {
int i;
GHT num_bin = GHT_MAX;
GHT offset = sizeof (int) * 2;
switch (input[0]) {
case '\0': // dmhf
PRINT_YA ("fastbinY {\n");
for (i = 1; i <= NFASTBINS; i++) {
if (FASTBIN_IDX_TO_SIZE(i) <= global_max_fast) {
PRINTF_YA (" Fastbin %02d\n", i);
} else {
PRINTF_RA (" Fastbin %02d\n", i);
}
if (!GH(print_single_linked_list_bin) (core, main_arena, m_arena, offset, i - 1)) {
PRINT_GA (" Empty bin");
PRINT_BA (" 0x0\n");
}
}
PRINT_YA ("}\n");
break;
case ' ': // dmhf [bin_num]
num_bin = r_num_math (core->num, input + 1) - 1;
if (num_bin >= NFASTBINS) {
eprintf ("Error: 0 < bin <= %d\n", NFASTBINS);
break;
}
if (!GH(print_single_linked_list_bin)(core, main_arena, m_arena, offset, num_bin)) {
PRINT_GA (" Empty bin");
PRINT_BA (" 0x0\n");
}
break;
}
}
static void GH(print_mmap_graph)(RCore *core, GH(RHeap_MallocState) *malloc_state, GHT m_state) {
int w, h;
GHT top_size = GHT_MAX;
if (!core || !core->dbg || !core->dbg->maps) {
return;
}
RConfigHold *hc = r_config_hold_new (core->config);
if (!hc) {
return;
}
w = r_cons_get_size (&h);
RConsCanvas *can = r_cons_canvas_new (w, h);
if (!can) {
r_config_hold_free (hc);
return;
}
can->linemode = r_config_get_i (core->config, "graph.linemode");
can->color = r_config_get_i (core->config, "scr.color");
core->cons->use_utf8 = r_config_get_i (core->config, "scr.utf8");
RAGraph *g = r_agraph_new (can);
if (!g) {
r_cons_canvas_free (can);
r_config_restore (hc);
r_config_hold_free (hc);
return;
}
g->layout = r_config_get_i (core->config, "graph.layout");
RANode *top = R_EMPTY, *chunk_node = R_EMPTY, *prev_node = R_EMPTY;
GH(RHeapChunk) *cnk = R_NEW0 (GH(RHeapChunk)),*prev_c = R_NEW0 (GH(RHeapChunk));
if (!cnk || !prev_c) {
free (cnk);
free (prev_c);
r_cons_canvas_free (can);
r_agraph_free (g);
r_config_restore (hc);
r_config_hold_free (hc);
return;
}
GHT next_chunk_ref, prev_chunk_ref, size_tmp;
char *top_title, *top_data, *node_title, *node_data;
bool first_node = true;
r_agraph_set_title (g, "Mmmaped Heap");
top_title = r_str_newf ("Top chunk @ 0x%"PFMT64x"\n", (ut64)malloc_state->top);
GHT start_mmap = m_state + sizeof (GH (RHeap_MallocState)); //0x8b0;
r_core_read_at (core, malloc_state->top, (ut8*)cnk, sizeof (GH(RHeapChunk)));
GHT end_mmap = malloc_state->top;
top_data = r_str_newf ("[mmap_start:0x%"PFMT64x", mmap_end:0x%"PFMT64x"]\n",
(ut64)start_mmap, (ut64)end_mmap + ((cnk->size >> 3) << 3));
next_chunk_ref = start_mmap, prev_chunk_ref = next_chunk_ref;
top_size = (cnk->size >> 3) << 3;
while (next_chunk_ref != malloc_state->top && next_chunk_ref != end_mmap) {
r_core_read_at (core, next_chunk_ref, (ut8 *)prev_c, sizeof (GH(RHeapChunk)));
node_title = r_str_newf (" Malloc chunk @ 0x%"PFMT64x" ", (ut64)prev_chunk_ref);
size_tmp = (prev_c->size >> 3) << 3;
if (size_tmp > top_size || next_chunk_ref + size_tmp > malloc_state->top) {
node_data = r_str_newf ("[corrupted] size: 0x%"PFMT64x"\n fd: 0x%"PFMT64x", bk: 0x%"PFMT64x
"\nHeap graph could not be recovered\n", (ut64)prev_c->size, (ut64)prev_c->fd, (ut64)prev_c->bk) ;
r_agraph_add_node (g, node_title, node_data);
if (first_node) {
first_node = false;
}
break;
}
next_chunk_ref += size_tmp;
prev_chunk_ref = next_chunk_ref;
r_core_read_at (core, next_chunk_ref, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
node_data = r_str_newf ("size: 0x%"PFMT64x"\n fd: 0x%"PFMT64x", bk: 0x%"PFMT64x"\n",
(ut64)prev_c->size, (ut64)prev_c->fd, (ut64)prev_c->bk) ;
chunk_node = r_agraph_add_node (g, node_title, node_data);
if (first_node) {
first_node = false;
} else {
r_agraph_add_edge (g, prev_node, chunk_node);
}
prev_node = chunk_node;
}
top = r_agraph_add_node (g, top_title, top_data);
if (!first_node) {
r_agraph_add_edge (g, prev_node, top);
free (node_data);
free (node_title);
}
r_agraph_print (g);
r_cons_canvas_free (can);
r_config_restore (hc);
r_config_hold_free (hc);
free (g);
free (cnk);
free (prev_c);
free (top_data);
free (top_title);
}
static void GH(print_heap_graph)(RCore *core, GH(RHeap_MallocState) *main_arena, GHT *initial_brk) {
int w, h;
GHT top_size = GHT_MAX;
if (!core || !core->dbg || !core->config || !core->dbg->maps) {
return;
}
RConfigHold *hc = r_config_hold_new (core->config);
if (!hc) {
return;
}
w = r_cons_get_size (&h);
RConsCanvas *can = r_cons_canvas_new (w, h);
if (!can) {
r_config_hold_free (hc);
return;
}
can->linemode = r_config_get_i (core->config, "graph.linemode");
can->color = r_config_get_i (core->config, "scr.color");
core->cons->use_utf8 = r_config_get_i (core->config, "scr.utf8");
RAGraph *g = r_agraph_new (can);
if (!g) {
r_cons_canvas_free (can);
r_config_restore (hc);
r_config_hold_free (hc);
return;
}
g->layout = r_config_get_i (core->config, "graph.layout");
RANode *top = R_EMPTY, *chunk_node = R_EMPTY, *prev_node = R_EMPTY;
GH(RHeapChunk) *cnk = R_NEW0 (GH(RHeapChunk)), *prev_c = R_NEW0 (GH(RHeapChunk));
if (!cnk || !prev_c) {
r_cons_canvas_free (can);
r_config_restore (hc);
r_config_hold_free (hc);
free (cnk);
free (prev_c);
free (g);
return;
}
GHT next_chunk_ref, prev_chunk_ref, brk_start = GHT_MAX, brk_end = GHT_MAX, size_tmp;
char *top_title, *top_data, *node_title, *node_data;
bool first_node = true;
r_agraph_set_title (g, "Heap Layout");
top_title = r_str_newf ("Top chunk @ 0x%"PFMT64x"\n", (ut64)main_arena->top);
GH (get_brks)(core, &brk_start, &brk_end);
*initial_brk = (brk_start >> 12) << 12;
if (brk_start == GHT_MAX || brk_end == GHT_MAX || *initial_brk == GHT_MAX) {
eprintf ("No Heap section\n");
r_cons_canvas_free (can);
r_config_restore (hc);
r_config_hold_free (hc);
free (cnk);
free (prev_c);
free (g);
free (top_title);
return;
}
top_data = r_str_newf ("[brk_start:0x%"PFMT64x", brk_end:0x%"PFMT64x"]\n", (ut64)brk_start, (ut64)brk_end);
next_chunk_ref = *initial_brk, prev_chunk_ref = next_chunk_ref;
top_size = main_arena->top - brk_start;
while (next_chunk_ref != main_arena->top && next_chunk_ref != brk_end) {
r_core_read_at (core, next_chunk_ref, (ut8 *)prev_c, sizeof (GH(RHeapChunk)));
node_title = r_str_newf (" Malloc chunk @ 0x%"PFMT64x" ", (ut64)prev_chunk_ref);
size_tmp = (prev_c->size >> 3) << 3;
if (top_size != GHT_MAX && (size_tmp > top_size || next_chunk_ref + size_tmp > main_arena->top)) {
node_data = r_str_newf ("[corrupted] size: 0x%"PFMT64x"\n fd: 0x%"PFMT64x", bk: 0x%"PFMT64x
"\nHeap graph could not be recovered\n", (ut64)prev_c->size, (ut64)prev_c->fd, (ut64)prev_c->bk) ;
r_agraph_add_node (g, node_title, node_data);
if (first_node) {
first_node = false;
}
//r_agraph_add_edge (g, prev_node, chunk_node);
break;
}
next_chunk_ref += size_tmp;
prev_chunk_ref = next_chunk_ref;
r_core_read_at (core, next_chunk_ref, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
node_data = r_str_newf ("size: 0x%"PFMT64x"\n fd: 0x%"PFMT64x", bk: 0x%"PFMT64x"\n",
(ut64)prev_c->size, (ut64)prev_c->fd, (ut64)prev_c->bk) ;
chunk_node = r_agraph_add_node (g, node_title, node_data);
if (first_node) {
first_node = false;
} else {
r_agraph_add_edge (g, prev_node, chunk_node);
}
prev_node = chunk_node;
}
top = r_agraph_add_node (g, top_title, top_data);
if (!first_node) {
r_agraph_add_edge (g, prev_node, top);
free (node_data);
free (node_title);
}
r_agraph_print (g);
r_cons_canvas_free (can);
r_config_restore (hc);
r_config_hold_free (hc);
free (cnk);
free (g);
free (prev_c);
free (top_data);
free (top_title);
}
static void GH(print_heap_segment)(RCore *core, GH(RHeap_MallocState) *main_arena, GHT *initial_brk) {
if (!core || !core->dbg || !core->dbg->maps) {
return;
}
GHT brk_start = GHT_MAX, brk_end = GHT_MAX, size_tmp, top_size = GHT_MAX;
GH(RHeapChunk) *cnk = R_NEW0 (GH(RHeapChunk));
if (!cnk) {
return;
}
GH(get_brks) (core, &brk_start, &brk_end);
*initial_brk = (brk_start >> 12) << 12;
if (brk_start == GHT_MAX || brk_end == GHT_MAX || *initial_brk == GHT_MAX) {
eprintf ("No Heap section\n");
free (cnk);
return;
}
GHT next_chunk = *initial_brk, prev_chunk = next_chunk;
top_size = main_arena->top - brk_start;
while (next_chunk && next_chunk >= brk_start && next_chunk < main_arena->top) {
(void)r_core_read_at (core, next_chunk, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
size_tmp = (cnk->size >> 3) << 3;
if (size_tmp > top_size || next_chunk + size_tmp > main_arena->top) {
PRINT_YA ("\n Malloc chunk @ ");
PRINTF_BA ("0x%"PFMT64x" ", (ut64)next_chunk);
PRINT_RA ("[corrupted]\n");
PRINTF_RA (" size: 0x%"PFMT64x"\n fd: 0x%"PFMT64x", bk: 0x%"PFMT64x"\n",
(ut64)cnk->size, (ut64)cnk->fd, (ut64)cnk->bk);
break;
}
PRINT_YA ("\n Malloc chunk @ ");
PRINTF_BA ("0x%"PFMT64x" ", (ut64)prev_chunk);
bool is_free = false;
GHT double_free = GHT_MAX;
if (size_tmp >= SZ * 4 && size_tmp <= SZ * 24) {
int i = (size_tmp / (SZ * 2)) - 2;
GHT next = (GHT)main_arena->fastbinsY[i];
double_free = next;
while (next && next >= brk_start && next < main_arena->top) {
if (prev_chunk == next) {
is_free = true;
}
(void)r_core_read_at (core, next, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
next = cnk->fd;
if (double_free == next) {
if (prev_chunk <= double_free) {
PRINT_RA ("Double free detected ");
}
break;
}
}
}
next_chunk += size_tmp;
prev_chunk = next_chunk;
r_core_read_at (core, next_chunk, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
PRINT_GA ("[size: ");
PRINTF_BA ("0x%"PFMT64x, (ut64)cnk->size);
PRINT_GA ("]");
if (is_free) {
PRINT_GA ("[free]");
} else {
if (cnk->size % 2 == 0) {
PRINT_GA ("[free]");
} else {
PRINT_GA ("[allocated]");
}
}
}
PRINT_YA ("\n Top chunk @ ");
PRINTF_BA ("0x%"PFMT64x, (ut64)main_arena->top);
PRINT_GA (" - [brk_start: ");
PRINTF_BA ("0x%"PFMT64x, (ut64)brk_start);
PRINT_GA (", brk_end: ");
PRINTF_BA ("0x%"PFMT64x, (ut64)brk_end);
PRINT_GA ("]\n");
//r_cons_println (); giving me a compile error
r_cons_printf("\n");
free (cnk);
}
static void GH(print_heap_mmaped)(RCore *core, GHT malloc_state) {
if (!core || !core->dbg || !core->dbg->maps) {
return;
}
GHT mmap_start = GHT_MAX, mmap_end = GHT_MAX, size_tmp;
GHT top_size = GHT_MAX;
GH(RHeapChunk) *cnk = R_NEW0 (GH(RHeapChunk));
GH(RHeap_MallocState) *ms = R_NEW0 (GH(RHeap_MallocState));
if (!cnk || !ms) {
free (cnk);
free (ms);
return;
}
mmap_start = ((malloc_state >> 16) << 16) + sizeof (GH(RHeapInfo)) + sizeof(GH(RHeap_MallocState)); //0x460;
r_core_read_at (core, malloc_state, (ut8*)ms, sizeof (GH(RHeap_MallocState)));
mmap_end = ms->top;
GHT next_chunk = mmap_start, prev_chunk = next_chunk;
(void)r_core_read_at (core, malloc_state, (ut8*)ms, sizeof (GH(RHeap_MallocState)));
(void)r_core_read_at (core, ms->top, (ut8*)cnk, sizeof (GH(RHeapChunk)));
top_size = (cnk->size >> 3) << 3;
while (next_chunk && next_chunk >= mmap_start && next_chunk < ms->top) {
r_core_read_at (core, next_chunk, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
size_tmp = (cnk->size >> 3) << 3;
if (top_size != GHT_MAX && (size_tmp > top_size)) {
PRINT_YA ("\n Malloc chunk @ ");
PRINTF_BA ("0x%"PFMT64x" ", (ut64)next_chunk);
PRINT_RA ("[corrupted]\n");
PRINTF_RA (" size: %0x"PFMT64x"\n fd: 0x%"PFMT64x", bk: 0x%"PFMT64x"\n",
(ut64)cnk->size, (ut64)cnk->fd, (ut64)cnk->bk);
break;
}
PRINT_YA ("\n Malloc chunk @ ");
PRINTF_BA ("0x%"PFMT64x" ", (ut64)prev_chunk);
bool is_free = false;
GHT double_free = GHT_MAX;
if (size_tmp >= (GHT)SZ * 4 && size_tmp <= (GHT)SZ * 24) {
int i = (size_tmp / (SZ * 2)) - 2;
GHT next = ms->fastbinsY[i];
double_free = next;
while (next && next >= mmap_start && next < ms->top) {
if (prev_chunk == next) {
is_free = true;
}
r_core_read_at (core, next, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
next = cnk->fd;
if (double_free == next) {
if (prev_chunk <= double_free) {
PRINT_RA ("Double free detected ");
}
break;
}
}
}
next_chunk += size_tmp;
prev_chunk = next_chunk;
r_core_read_at (core, next_chunk, (ut8 *)cnk, sizeof (GH(RHeapChunk)));
PRINT_GA ("[size: ");
PRINTF_BA ("0x%"PFMT64x, (ut64)cnk->size);
PRINT_GA ("]");
if (is_free) {
PRINT_GA ("[free]");
} else {
if (cnk->size % 2 == 0) {
PRINT_GA ("[free]");
} else {
PRINT_GA ("[allocated]");
}
}
}
PRINT_YA ("\n Top chunk @ ");
PRINTF_BA ("0x%"PFMT64x, (ut64)ms->top);
PRINT_GA (" - [mmap_start: ");
PRINTF_BA ("0x%"PFMT64x, (ut64)mmap_start);
PRINT_GA (", mmap_end: ");
r_core_read_at (core, ms->top, (ut8*)cnk, sizeof(GH(RHeapChunk)));
PRINTF_BA ("0x%"PFMT64x, (ut64) mmap_end + ((cnk->size >> 3) << 3));
PRINT_GA ("]\n");
// r_cons_println (); gives me a compile error
r_cons_printf ("\n");
free (cnk);
free (ms);
}
void GH(print_malloc_states)( RCore *core, GHT m_arena, GH(RHeap_MallocState) *main_arena) {
GH(RHeap_MallocState) *ta = R_NEW0 (GH(RHeap_MallocState));
if (!ta) {
return;
}
PRINT_YA ("main_arena @ ");
PRINTF_BA ("0x%"PFMT64x"\n", (ut64)m_arena);
if (main_arena->next != m_arena) {
ta->next = main_arena->next;
while (ta->next != GHT_MAX && ta->next != m_arena) {
PRINT_YA ("thread arena @ ");
PRINTF_BA ("0x%"PFMT64x"\n", (ut64)ta->next);
r_core_read_at (core, ta->next, (ut8 *)ta, sizeof (GH(RHeap_MallocState)));
}
}
free(ta);
}
void GH(print_inst_minfo)(GH(RHeapInfo) *heap_info, GHT hinfo) {
PRINT_YA ("malloc_info @ ");
PRINTF_BA ("0x%"PFMT64x, (ut64)hinfo);
PRINT_YA ("{\n ar_ptr = " );
PRINTF_BA ("0x%"PFMT64x"\n", (ut64)heap_info->ar_ptr);
PRINT_YA (" prev = ");
PRINTF_BA ("0x%"PFMT64x"\n", (ut64)heap_info->prev);
PRINT_YA (" size = ");
PRINTF_BA ("0x%"PFMT64x"\n", (ut64)heap_info->size);
PRINT_YA (" mprotect_size = ");
PRINTF_BA ("0x%"PFMT64x"\n", (ut64)heap_info->mprotect_size);
PRINT_YA ("}\n\n");
}
void GH(print_malloc_info)(RCore *core, GHT m_state) {
GHT malloc_state = core->offset, h_info;
if (malloc_state == m_state) {
PRINT_RA ("main_arena does not have an instance of malloc_info\n");
} else {
h_info = (malloc_state >> 16) << 16;
GH(RHeapInfo) *heap_info = R_NEW0 (GH(RHeapInfo));
r_core_read_at (core, h_info, (ut8*)heap_info, sizeof (GH(RHeapInfo)));
GH(print_inst_minfo) (heap_info, h_info);
GH(RHeap_MallocState) *ms = R_NEW0 (GH(RHeap_MallocState));
while (heap_info->prev != 0x0 && heap_info->prev != GHT_MAX) {
r_core_read_at (core, h_info, (ut8*)ms, sizeof (GH(RHeap_MallocState)));
if ((ms->top >> 16) << 16 != h_info) {
h_info = (ms->top >> 16) << 16;
r_core_read_at (core, h_info, (ut8*)heap_info, sizeof (GH(RHeapInfo)));
GH(print_inst_minfo) (heap_info, h_info);
}
}
free (heap_info);
free (ms);
}
return;
}
static const char* GH(help_msg)[] = {
"Usage:", " dmh", " # Memory map heap",
"dmh", "", "List chunks in heap segment",
"dmh", " [malloc_state]", "List heap chunks of a particular arena",
"dmha", "", "List all malloc_state instances in application",
"dmhb", "", "Display all parsed Double linked list of main_arena's bins instance",
"dmhb", " [bin_num|bin_num:malloc_state]", "Display parsed double linked list of bins instance from a particular arena",
"dmhbg"," [bin_num]", "Display double linked list graph of main_arena's bin [Under developemnt]",
"dmhc", " @[chunk_addr]", "Display malloc_chunk struct for a given malloc chunk",
"dmhf", "", "Display all parsed fastbins of main_arena's fastbinY instance",
"dmhf", " [fastbin_num|fastbin_num:malloc_state]", "Display parsed single linked list in fastbinY instance from a particular arena",
"dmhg", "", "Display heap graph of heap segment",
"dmhg", " [malloc_state]", "Display heap graph of a particular arena",
"dmhi", " @[malloc_state]", "Display heap_info structure/structures for a given arena",
"dmhm", "", "List all elements of struct malloc_state of main thread (main_arena)",
"dmhm", " [malloc_state]", "List all malloc_state instance of a particular arena",
"dmh?", "", "Show map heap help",
NULL
};
static int GH(cmd_dbg_map_heap_glibc)(RCore *core, const char *input) {
static GHT m_arena = GHT_MAX, g_max_fast = GHT_MAX, initial_brk = GHT_MAX;
GH(RHeap_MallocState) *main_arena = R_NEW0 (GH(RHeap_MallocState));
GHT global_max_fast = GHT_MAX;
if (!main_arena) {
return false;
}
switch (input[0]) {
case '\0': // dmh
if (GH(r_resolve_main_arena) (core, &m_arena, main_arena)) {
GH(print_heap_segment) (core, main_arena, &initial_brk);
}
break;
case ' ' : // dmh [malloc_state]
if (GH(r_resolve_main_arena) (core, &m_arena, main_arena)) {
GHT m_state = strstr (input, "0x")
? (GHT)strtol (input, NULL, 0)
: (GHT)strtol (input, NULL, 16);
if (m_state == m_arena) GH(print_heap_segment) (core, main_arena, &initial_brk);
GH(print_heap_mmaped)(core, m_state);
}
break;
case 'a': // dmha
if (GH(r_resolve_main_arena) (core, &m_arena, main_arena)) {
GH(print_malloc_states) (core, m_arena, main_arena);
}
break;
case 'i': //dmhi
if (GH(r_resolve_main_arena) (core, &m_arena, main_arena)) {
GH(print_malloc_info) (core, m_arena);
}
break;
case '*':
case 'm': // "dmhm"
if (GH(r_resolve_main_arena) (core, &m_arena, main_arena) &&
GH(r_resolve_global_max_fast) (core, &g_max_fast, &global_max_fast)) {
input += 1;
if (!strcmp (input,"\0")) {
GH(print_main_arena) (core, m_arena, main_arena, global_max_fast, *input);
} else {
GHT m_state = strstr (input, "0x")
? (GHT)strtol (input, NULL, 0)
: (GHT)strtol (input, NULL, 16);
GH(RHeap_MallocState) *malloc_state = R_NEW0 (GH(RHeap_MallocState));
(void) r_core_read_at (core, m_state, (ut8*)malloc_state, sizeof (GH(RHeap_MallocState)));
GH(print_main_arena) (core, m_state, malloc_state, global_max_fast, *input);
free (malloc_state);
}
}
break;
case 'b': // "dmhb"
if (GH(r_resolve_main_arena) (core, &m_arena, main_arena)) {
if (!strstr (input + 1, ":")) {
GH(print_heap_bin) (core, m_arena, main_arena, input+1);
} else {
char *m_state_str, *bin, *dup = strdup (input + 1);
bin = strtok (dup, ":");
m_state_str = strtok (NULL, ":");
GHT m_state = strstr (m_state_str, "0x")
? (GHT) strtol (m_state_str, NULL, 0)
: (GHT)strtol (m_state_str, NULL, 16);
GH (RHeap_MallocState) *malloc_state = R_NEW0 (GH (RHeap_MallocState));
(void)r_core_read_at (core, m_state, (ut8*)malloc_state, sizeof (GH(RHeap_MallocState)));
GH (print_heap_bin) (core, m_state, malloc_state, bin);
free (malloc_state);
free (dup);
}
}
break;
case 'c': // "dmhc"
if (GH(r_resolve_main_arena)(core, &m_arena, main_arena)) {
GH(print_heap_chunk) (core);
}
break;
case 'f': // "dmhf"
if (GH(r_resolve_main_arena) (core, &m_arena, main_arena) &&
GH(r_resolve_global_max_fast) (core, &g_max_fast, &global_max_fast)) {
if (!strchr (input + 1, ':')) {
GH(print_heap_fastbin) (core, m_arena, main_arena, global_max_fast, input+1);
} else {
char *m_state_str, *bin, *dup = strdup (input+1);
bin = strtok (dup, ":");
m_state_str = strtok (NULL, ":");
GHT m_state = strstr (m_state_str, "0x")
? (GHT)strtol (m_state_str, NULL, 0)
: (GHT)strtol (m_state_str, NULL, 16);
GH(RHeap_MallocState) *malloc_state = R_NEW0 (GH(RHeap_MallocState));
r_core_read_at (core, m_state, (ut8*)malloc_state, sizeof (GH(RHeap_MallocState)));
GH(print_heap_fastbin) (core, m_state, malloc_state, global_max_fast, bin);
free (malloc_state);
free (dup);
}
}
break;
case 'g': // "dmhg"
if (GH (r_resolve_main_arena) (core, &m_arena, main_arena)) {
input += 1;
if (!strcmp (input, "\0")) {
GH(print_heap_graph) (core, main_arena, &initial_brk);
} else {
GHT m_state = strstr (input, "0x")
? (GHT)strtol (input, NULL, 0)
: (GHT)strtol (input, NULL, 16);
if (m_state == m_arena) {
GH (print_heap_graph) (core, main_arena, &initial_brk);
} else {
GH(RHeap_MallocState) *malloc_state = R_NEW0 (GH (RHeap_MallocState));
(void)r_core_read_at (core, m_state, (ut8*)malloc_state, sizeof (GH(RHeap_MallocState)));
GH (print_mmap_graph) (core, malloc_state, m_state);
free (malloc_state);
}
}
}
break;
case 'j': // "dmhj"
eprintf ("TODO: JSON output for dmh is not yet implemented\n");
break;
case '?':
r_core_cmd_help (core, GH(help_msg));
break;
}
free (main_arena);
return true;
}