mirror of
https://github.com/PCSX2/pcsx2.git
synced 2026-01-31 01:15:24 +01:00
* Translate more stuff in various place * Fix issue with pot generation on linux namely empty string & quote in asm comment * add missing key on generate_pot script. Note: it also updates the po files with latest pot modification * regenerate new pot & po files. Translator note: previous Tertiary pot miss half of the strings. git-svn-id: http://pcsx2.googlecode.com/svn/trunk@4359 96395faa-99c1-11dd-bbfe-3dabce05a288
601 lines
14 KiB
C++
601 lines
14 KiB
C++
/******************************************************************************
|
|
|
|
Copyright (c) 2001 Advanced Micro Devices, Inc.
|
|
|
|
LIMITATION OF LIABILITY: THE MATERIALS ARE PROVIDED *AS IS* WITHOUT ANY
|
|
EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY,
|
|
NONINFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
|
|
PARTICULAR PURPOSE. IN NO EVENT SHALL AMD OR ITS SUPPLIERS BE LIABLE FOR ANY
|
|
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
|
|
BUSINESS INTERRUPTION, LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR
|
|
INABILITY TO USE THE MATERIALS, EVEN IF AMD HAS BEEN ADVISED OF THE POSSIBILITY
|
|
OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION
|
|
OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY
|
|
NOT APPLY TO YOU.
|
|
|
|
AMD does not assume any responsibility for any errors which may appear in the
|
|
Materials nor any responsibility to support or update the Materials. AMD retains
|
|
the right to make changes to its test specifications at any time, without notice.
|
|
|
|
NO SUPPORT OBLIGATION: AMD is not obligated to furnish, support, or make any
|
|
further information, software, technical information, know-how, or show-how
|
|
available to you.
|
|
|
|
So that all may benefit from your experience, please report any problems
|
|
or suggestions about this software to 3dsdk.support@amd.com
|
|
|
|
AMD Developer Technologies, M/S 585
|
|
Advanced Micro Devices, Inc.
|
|
5900 E. Ben White Blvd.
|
|
Austin, TX 78741
|
|
3dsdk.support@amd.com
|
|
******************************************************************************/
|
|
|
|
#include "PrecompiledHeader.h"
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable:4414)
|
|
#endif
|
|
|
|
/*****************************************************************************
|
|
MEMCPY_AMD.CPP
|
|
******************************************************************************/
|
|
|
|
// NOTE: Since this code uses MOVNTQ (also known as "Non-Temporal MOV" or
|
|
// "Streaming Store"), and also uses the software prefetch instructions,
|
|
// be sure you're running on P4/Core2/i7, Athlon/Phenom or newer CPUs before
|
|
// calling!
|
|
|
|
#define TINY_BLOCK_COPY 64 // upper limit for movsd type copy
|
|
// The smallest copy uses the X86 "movsd" instruction, in an optimized
|
|
// form which is an "unrolled loop".
|
|
|
|
#define IN_CACHE_COPY 2 * 1024 // upper limit for movq/movq copy w/SW prefetch
|
|
// Next is a copy that uses the MMX registers to copy 8 bytes at a time,
|
|
// also using the "unrolled loop" optimization. This code uses
|
|
// the software prefetch instruction to get the data into the cache.
|
|
|
|
#define UNCACHED_COPY 4 * 1024 // upper limit for movq/movntq w/SW prefetch
|
|
// For larger blocks, which will spill beyond the cache, it's faster to
|
|
// use the Streaming Store instruction MOVNTQ. This write instruction
|
|
// bypasses the cache and writes straight to main memory. This code also
|
|
// uses the software prefetch instruction to pre-read the data.
|
|
// USE 64 * 1024 FOR THIS VALUE IF YOU'RE ALWAYS FILLING A "CLEAN CACHE"
|
|
|
|
// Inline assembly syntax for use with Visual C++
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
|
|
// Fast memcpy as coded by AMD, and then improved by air for PCSX2 needs.
|
|
__declspec(naked) void __fastcall memcpy_amd_(void *dest, const void *src, size_t n)
|
|
{
|
|
__asm
|
|
{
|
|
push edi
|
|
push esi
|
|
|
|
mov edi, ecx ; destination
|
|
mov esi, edx ; source
|
|
mov ecx, [esp+12] ; number of bytes to copy
|
|
mov eax, ecx ; keep a copy of count
|
|
|
|
cld
|
|
cmp eax, TINY_BLOCK_COPY
|
|
jb $memcpy_ic_3 ; tiny? skip mmx copy
|
|
|
|
cmp eax, 32*1024 ; dont align between 32k-64k because
|
|
jbe $memcpy_do_align ; it appears to be slower
|
|
cmp eax, 64*1024
|
|
jbe $memcpy_align_done
|
|
|
|
$memcpy_do_align:
|
|
mov eax, 8 ; a trick that s faster than rep movsb...
|
|
sub eax, edi ; align destination to qword
|
|
and eax, 111b ; get the low bits
|
|
sub ecx, eax ; update copy count
|
|
neg eax ; set up to jump into the array
|
|
add eax, offset $memcpy_align_done
|
|
jmp eax ; jump to array of movsb s
|
|
|
|
align 4
|
|
movsb
|
|
movsb
|
|
movsb
|
|
movsb
|
|
movsb
|
|
movsb
|
|
movsb
|
|
movsb
|
|
|
|
$memcpy_align_done: ; destination is dword aligned
|
|
mov eax, ecx ; number of bytes left to copy
|
|
shr eax, 6 ; get 64-byte block count
|
|
jz $memcpy_ic_2 ; finish the last few bytes
|
|
|
|
cmp eax, IN_CACHE_COPY/64 ; too big 4 cache? use uncached copy
|
|
jae $memcpy_uc_test
|
|
|
|
// This is small block copy that uses the MMX registers to copy 8 bytes
|
|
// at a time. It uses the "unrolled loop" optimization, and also uses
|
|
// the software prefetch instruction to get the data into the cache.
|
|
align 16
|
|
$memcpy_ic_1: ; 64-byte block copies, in-cache copy
|
|
|
|
prefetchnta [esi + (200*64/34+192)] ; start reading ahead
|
|
|
|
movq mm0, [esi+0] ; read 64 bits
|
|
movq mm1, [esi+8]
|
|
movq [edi+0], mm0 ; write 64 bits
|
|
movq [edi+8], mm1 ; note: the normal movq writes the
|
|
movq mm2, [esi+16] ; data to cache; a cache line will be
|
|
movq mm3, [esi+24] ; allocated as needed, to store the data
|
|
movq [edi+16], mm2
|
|
movq [edi+24], mm3
|
|
movq mm0, [esi+32]
|
|
movq mm1, [esi+40]
|
|
movq [edi+32], mm0
|
|
movq [edi+40], mm1
|
|
movq mm2, [esi+48]
|
|
movq mm3, [esi+56]
|
|
movq [edi+48], mm2
|
|
movq [edi+56], mm3
|
|
|
|
add esi, 64 ; update source pointer
|
|
add edi, 64 ; update destination pointer
|
|
sub eax, 1
|
|
jnz $memcpy_ic_1 ; last 64-byte block?
|
|
|
|
$memcpy_ic_2:
|
|
mov eax, ecx ; has valid low 6 bits of the byte count
|
|
$memcpy_ic_3:
|
|
shr eax, 2 ; dword count
|
|
and eax, 1111b ; only look at the "remainder" bits
|
|
neg eax ; set up to jump into the array
|
|
add eax, offset $memcpy_last_few
|
|
jmp eax ; jump to array of movsd s
|
|
|
|
$memcpy_uc_test:
|
|
or eax, eax ; tail end of block prefetch will jump here
|
|
jz $memcpy_ic_2 ; no more 64-byte blocks left
|
|
|
|
// For larger blocks, which will spill beyond the cache, it's faster to
|
|
// use the Streaming Store instruction MOVNTQ. This write instruction
|
|
// bypasses the cache and writes straight to main memory. This code also
|
|
// uses the software prefetch instruction to pre-read the data.
|
|
|
|
align 16
|
|
$memcpy_uc_1: ; 64-byte blocks, uncached copy
|
|
|
|
prefetchnta [esi + (200*64/34+192)] ; start reading ahead
|
|
|
|
movq mm0,[esi+0] ; read 64 bits
|
|
add edi,64 ; update destination pointer
|
|
movq mm1,[esi+8]
|
|
add esi,64 ; update source pointer
|
|
movq mm2,[esi-48]
|
|
movntq [edi-64], mm0 ; write 64 bits, bypassing the cache
|
|
movq mm0,[esi-40] ; note: movntq also prevents the CPU
|
|
movntq [edi-56], mm1 ; from READING the destination address
|
|
movq mm1,[esi-32] ; into the cache, only to be over-written
|
|
movntq [edi-48], mm2 ; so that also helps performance
|
|
movq mm2,[esi-24]
|
|
movntq [edi-40], mm0
|
|
movq mm0,[esi-16]
|
|
movntq [edi-32], mm1
|
|
movq mm1,[esi-8]
|
|
movntq [edi-24], mm2
|
|
movntq [edi-16], mm0
|
|
movntq [edi-8], mm1
|
|
|
|
sub eax, 1
|
|
jnz $memcpy_uc_1 ; last 64-byte block?
|
|
|
|
jmp $memcpy_ic_2 ; almost done (not needed because large copy below was removed)
|
|
|
|
// Note: Pcsx2 rarely invokes large copies, so the large copy "block prefetch" mode has been
|
|
// disabled to help keep the code cache footprint of memcpy_fast to a minimum.
|
|
|
|
// The smallest copy uses the X86 "movsd" instruction, in an optimized
|
|
// form which is an "unrolled loop". Then it handles the last few bytes.
|
|
align 16
|
|
movsd
|
|
movsd ; perform last 1-15 dword copies
|
|
movsd
|
|
movsd
|
|
movsd
|
|
movsd
|
|
movsd
|
|
movsd
|
|
movsd
|
|
movsd ; perform last 1-7 dword copies
|
|
movsd
|
|
movsd
|
|
movsd
|
|
movsd
|
|
movsd
|
|
movsd
|
|
|
|
$memcpy_last_few: ; dword aligned from before movsd s
|
|
and ecx, 11b ; the last few cows must come home
|
|
jz $memcpy_final ; no more, let s leave
|
|
rep movsb ; the last 1, 2, or 3 bytes
|
|
|
|
$memcpy_final:
|
|
pop esi
|
|
pop edi
|
|
|
|
emms ; clean up the MMX state
|
|
sfence ; flush the write buffer
|
|
//mov eax, [dest] ; ret value = destination pointer
|
|
|
|
ret 4
|
|
}
|
|
}
|
|
|
|
// Quadword Copy! Count is in QWCs (128 bits). Neither source nor dest need to be aligned.
|
|
__fi void memcpy_amd_qwc(void *dest, const void *src, size_t qwc)
|
|
{
|
|
// Optimization Analysis: This code is *nearly* optimal. Do not think that using XMM
|
|
// registers will improve copy performance, because they won't. Use of XMMs is only
|
|
// warranted in situations where both source and dest are guaranteed aligned to 16 bytes,
|
|
// and even then the benefits are typically minimal (sometimes slower depending on the
|
|
// amount of data being copied).
|
|
//
|
|
// Thus: MMX are alignment safe, fast, and widely available. Lets just stick with them.
|
|
// --air
|
|
|
|
// Linux Conversion note:
|
|
// This code would benefit nicely from having inline-able GAS syntax, since it should
|
|
// allow GCC to optimize the first 3 instructions out of existence in many scenarios.
|
|
// And its called enough times to probably merit the extra effort to ensure proper
|
|
// optimization. --air
|
|
|
|
__asm
|
|
{
|
|
mov ecx, dest
|
|
mov edx, src
|
|
mov eax, qwc ; keep a copy of count
|
|
shr eax, 1
|
|
jz $memcpy_qwc_1 ; only one 16 byte block to copy?
|
|
|
|
cmp eax, IN_CACHE_COPY/32
|
|
jb $memcpy_qwc_loop1 ; small copies should be cached (definite speedup --air)
|
|
|
|
$memcpy_qwc_loop2: ; 32-byte blocks, uncached copy
|
|
prefetchnta [edx + 568] ; start reading ahead (tested: it helps! --air)
|
|
|
|
movq mm0,[edx+0] ; read 64 bits
|
|
movq mm1,[edx+8]
|
|
movq mm2,[edx+16]
|
|
movntq [ecx+0], mm0 ; write 64 bits, bypassing the cache
|
|
movntq [ecx+8], mm1
|
|
movq mm3,[edx+24]
|
|
movntq [ecx+16], mm2
|
|
movntq [ecx+24], mm3
|
|
|
|
add edx,32 ; update source pointer
|
|
add ecx,32 ; update destination pointer
|
|
sub eax,1
|
|
jnz $memcpy_qwc_loop2 ; last 64-byte block?
|
|
sfence ; flush the write buffer
|
|
jmp $memcpy_qwc_1
|
|
|
|
; 32-byte blocks, cached!
|
|
; This *is* important. Removing this and using exclusively non-temporal stores
|
|
; results in noticable speed loss!
|
|
|
|
$memcpy_qwc_loop1:
|
|
prefetchnta [edx + 568] ; start reading ahead (tested: it helps! --air)
|
|
|
|
movq mm0,[edx+0] ; read 64 bits
|
|
movq mm1,[edx+8]
|
|
movq mm2,[edx+16]
|
|
movq [ecx+0], mm0 ; write 64 bits, bypassing the cache
|
|
movq [ecx+8], mm1
|
|
movq mm3,[edx+24]
|
|
movq [ecx+16], mm2
|
|
movq [ecx+24], mm3
|
|
|
|
add edx,32 ; update source pointer
|
|
add ecx,32 ; update destination pointer
|
|
sub eax,1
|
|
jnz $memcpy_qwc_loop1 ; last 64-byte block?
|
|
|
|
$memcpy_qwc_1:
|
|
test qwc,1
|
|
jz $memcpy_qwc_final
|
|
movq mm0,[edx]
|
|
movq mm1,[edx+8]
|
|
movq [ecx], mm0
|
|
movq [ecx+8], mm1
|
|
|
|
$memcpy_qwc_final:
|
|
emms ; clean up the MMX state
|
|
}
|
|
}
|
|
|
|
// mmx mem-compare implementation, size has to be a multiple of 8
|
|
// returns 0 is equal, nonzero value if not equal
|
|
// ~10 times faster than standard memcmp
|
|
// (zerofrog)
|
|
u8 memcmp_mmx(const void* src1, const void* src2, int cmpsize)
|
|
{
|
|
pxAssert( (cmpsize&7) == 0 );
|
|
|
|
__asm {
|
|
mov ecx, cmpsize
|
|
mov edx, src1
|
|
mov esi, src2
|
|
|
|
cmp ecx, 32
|
|
jl Done4
|
|
|
|
// custom test first 8 to make sure things are ok
|
|
movq mm0, [esi]
|
|
movq mm1, [esi+8]
|
|
pcmpeqd mm0, [edx]
|
|
pcmpeqd mm1, [edx+8]
|
|
pand mm0, mm1
|
|
movq mm2, [esi+16]
|
|
pmovmskb eax, mm0
|
|
movq mm3, [esi+24]
|
|
|
|
// check if eq
|
|
cmp eax, 0xff
|
|
je NextComp
|
|
mov eax, 1
|
|
jmp End
|
|
|
|
NextComp:
|
|
pcmpeqd mm2, [edx+16]
|
|
pcmpeqd mm3, [edx+24]
|
|
pand mm2, mm3
|
|
pmovmskb eax, mm2
|
|
|
|
sub ecx, 32
|
|
add esi, 32
|
|
add edx, 32
|
|
|
|
// check if eq
|
|
cmp eax, 0xff
|
|
je ContinueTest
|
|
mov eax, 1
|
|
jmp End
|
|
|
|
cmp ecx, 64
|
|
jl Done8
|
|
|
|
Cmp8:
|
|
movq mm0, [esi]
|
|
movq mm1, [esi+8]
|
|
movq mm2, [esi+16]
|
|
movq mm3, [esi+24]
|
|
movq mm4, [esi+32]
|
|
movq mm5, [esi+40]
|
|
movq mm6, [esi+48]
|
|
movq mm7, [esi+56]
|
|
pcmpeqd mm0, [edx]
|
|
pcmpeqd mm1, [edx+8]
|
|
pcmpeqd mm2, [edx+16]
|
|
pcmpeqd mm3, [edx+24]
|
|
pand mm0, mm1
|
|
pcmpeqd mm4, [edx+32]
|
|
pand mm0, mm2
|
|
pcmpeqd mm5, [edx+40]
|
|
pand mm0, mm3
|
|
pcmpeqd mm6, [edx+48]
|
|
pand mm0, mm4
|
|
pcmpeqd mm7, [edx+56]
|
|
pand mm0, mm5
|
|
pand mm0, mm6
|
|
pand mm0, mm7
|
|
pmovmskb eax, mm0
|
|
|
|
// check if eq
|
|
cmp eax, 0xff
|
|
je Continue
|
|
mov eax, 1
|
|
jmp End
|
|
|
|
Continue:
|
|
sub ecx, 64
|
|
add esi, 64
|
|
add edx, 64
|
|
ContinueTest:
|
|
cmp ecx, 64
|
|
jge Cmp8
|
|
|
|
Done8:
|
|
test ecx, 0x20
|
|
jz Done4
|
|
movq mm0, [esi]
|
|
movq mm1, [esi+8]
|
|
movq mm2, [esi+16]
|
|
movq mm3, [esi+24]
|
|
pcmpeqd mm0, [edx]
|
|
pcmpeqd mm1, [edx+8]
|
|
pcmpeqd mm2, [edx+16]
|
|
pcmpeqd mm3, [edx+24]
|
|
pand mm0, mm1
|
|
pand mm0, mm2
|
|
pand mm0, mm3
|
|
pmovmskb eax, mm0
|
|
sub ecx, 32
|
|
add esi, 32
|
|
add edx, 32
|
|
|
|
// check if eq
|
|
cmp eax, 0xff
|
|
je Done4
|
|
mov eax, 1
|
|
jmp End
|
|
|
|
Done4:
|
|
cmp ecx, 24
|
|
jne Done2
|
|
movq mm0, [esi]
|
|
movq mm1, [esi+8]
|
|
movq mm2, [esi+16]
|
|
pcmpeqd mm0, [edx]
|
|
pcmpeqd mm1, [edx+8]
|
|
pcmpeqd mm2, [edx+16]
|
|
pand mm0, mm1
|
|
pand mm0, mm2
|
|
pmovmskb eax, mm0
|
|
|
|
// check if eq
|
|
cmp eax, 0xff
|
|
setne al
|
|
jmp End
|
|
|
|
Done2:
|
|
cmp ecx, 16
|
|
jne Done1
|
|
|
|
movq mm0, [esi]
|
|
movq mm1, [esi+8]
|
|
pcmpeqd mm0, [edx]
|
|
pcmpeqd mm1, [edx+8]
|
|
pand mm0, mm1
|
|
pmovmskb eax, mm0
|
|
|
|
// check if eq
|
|
cmp eax, 0xff
|
|
setne al
|
|
jmp End
|
|
|
|
Done1:
|
|
cmp ecx, 8
|
|
jne Done
|
|
|
|
mov eax, [esi]
|
|
mov esi, [esi+4]
|
|
cmp eax, [edx]
|
|
je Next
|
|
mov eax, 1
|
|
jmp End
|
|
|
|
Next:
|
|
cmp esi, [edx+4]
|
|
setne al
|
|
jmp End
|
|
|
|
Done:
|
|
xor eax, eax
|
|
|
|
End:
|
|
emms
|
|
}
|
|
}
|
|
|
|
|
|
// returns the xor of all elements, cmpsize has to be mult of 8
|
|
void memxor_mmx(void* dst, const void* src1, int cmpsize)
|
|
{
|
|
pxAssert( (cmpsize&7) == 0 );
|
|
|
|
__asm {
|
|
mov ecx, cmpsize
|
|
mov eax, src1
|
|
mov edx, dst
|
|
|
|
cmp ecx, 64
|
|
jl Setup4
|
|
|
|
movq mm0, [eax]
|
|
movq mm1, [eax+8]
|
|
movq mm2, [eax+16]
|
|
movq mm3, [eax+24]
|
|
movq mm4, [eax+32]
|
|
movq mm5, [eax+40]
|
|
movq mm6, [eax+48]
|
|
movq mm7, [eax+56]
|
|
sub ecx, 64
|
|
add eax, 64
|
|
cmp ecx, 64
|
|
jl End8
|
|
|
|
Cmp8:
|
|
pxor mm0, [eax]
|
|
pxor mm1, [eax+8]
|
|
pxor mm2, [eax+16]
|
|
pxor mm3, [eax+24]
|
|
pxor mm4, [eax+32]
|
|
pxor mm5, [eax+40]
|
|
pxor mm6, [eax+48]
|
|
pxor mm7, [eax+56]
|
|
|
|
sub ecx, 64
|
|
add eax, 64
|
|
cmp ecx, 64
|
|
jge Cmp8
|
|
|
|
End8:
|
|
pxor mm0, mm4
|
|
pxor mm1, mm5
|
|
pxor mm2, mm6
|
|
pxor mm3, mm7
|
|
|
|
cmp ecx, 32
|
|
jl End4
|
|
pxor mm0, [eax]
|
|
pxor mm1, [eax+8]
|
|
pxor mm2, [eax+16]
|
|
pxor mm3, [eax+24]
|
|
sub ecx, 32
|
|
add eax, 32
|
|
jmp End4
|
|
|
|
Setup4:
|
|
cmp ecx, 32
|
|
jl Setup2
|
|
|
|
movq mm0, [eax]
|
|
movq mm1, [eax+8]
|
|
movq mm2, [eax+16]
|
|
movq mm3, [eax+24]
|
|
sub ecx, 32
|
|
add eax, 32
|
|
|
|
End4:
|
|
pxor mm0, mm2
|
|
pxor mm1, mm3
|
|
|
|
cmp ecx, 16
|
|
jl End2
|
|
pxor mm0, [eax]
|
|
pxor mm1, [eax+8]
|
|
sub ecx, 16
|
|
add eax, 16
|
|
jmp End2
|
|
|
|
Setup2:
|
|
cmp ecx, 16
|
|
jl Setup1
|
|
|
|
movq mm0, [eax]
|
|
movq mm1, [eax+8]
|
|
sub ecx, 16
|
|
add eax, 16
|
|
|
|
End2:
|
|
pxor mm0, mm1
|
|
|
|
cmp ecx, 8
|
|
jl End1
|
|
pxor mm0, [eax]
|
|
End1:
|
|
movq [edx], mm0
|
|
jmp End
|
|
|
|
Setup1:
|
|
movq mm0, [eax]
|
|
movq [edx], mm0
|
|
End:
|
|
emms
|
|
}
|
|
}
|
|
|
|
#endif
|