Files
archived-asmjit/src/asmjit/x86/x86instapi.cpp
kobalicek 2ab380e0bd [Bug] [Critical] [ABI] Update that fixes all problems discovered by comparison with LLVM-MC
Fixed POP Sreg instruction, which was incorrectly implemented to emit nothing
Fixed CVTSD2SI, CVTSS2SI, CVTTSD2SI, and CVTTSS2SI instructions to not consider the size of the memory operand when calculagint REX.W prefix
Fixed VCMPPD, VCMPPS, VCMPSD, VCMPSS, VPCMPEQ*, VPCMPGT* instructions to always force EVEX prefix when the first operand is K register
Fixed ENDBR32 and ENDBR64 instructions (wrong opcode)
Fixed CLRSSBSY and RSTORSSP instructions (wrong logic in Assembler)
Fixed SLDT, SMSW, and STR instructions to not consider memory size when determining prefixes
Fixed UD0 and UD1 instructions to consider both operands
Fixed VCVTNE2PS2BF16, VCVTNEPS2BF16, and VDPBF16PS instructions (incorrect calculation of LL field) (AVX512)
Fixed VCVTPD2DQ, VCVTPD2PS, VCVTPD2UDQ, VCVTQQ2PS, VCVTTOD2DQ, VCVTTPD2UDQ, VCVTUQQ2PS in AVX512 case (incorrect calculation of LL field)
Fixed VGATHERPF* and VSCATTERPF* instructions (some instructions were encoded incorrectly by not considering the memory index register type in LL field)
Fixed VPBLENDVB (incorrect calculation of LL field)
Fixed VPEXTRW to use use a shorter encoding when possible (vpextrw r32, xmm, imm)
Fixed VPSLLD, VPSLLQ, VPSLLW, VPSRAD, VPSRAQ, VPSRAW, VPSRLD, VPSRLQ, VPSRLW instructions to always force EVEX prefix when the instruction is RMI (AVX512)
Fixed the accepted memory operand size of MMX PUNPCKL??? instructions from m64 to m32 (only affects validation)
Added explicit forms to XSAVE* and XRSTOR* instructions
Added HRESET and UINTR instructions
Changed MOV and all ARITH instructions to output the same binary as LLVM in 'reg, reg' case (it used an alternative encoding initially)
Renamed LRET to RETF
Renamed VBLENDM* instructions to VPBLENDM* (the name was incorrect)
Renamed VPBROADCASTMB2D to VPBROADCASTMW2D (the name was incorrect)
Renamed SYSEXIT64 to SYSEXITQ and SYSRET64 to SYSRETQ
Removed non-standard IRETW (use IRET, IRETD, or IRETQ to select the form)
2021-02-03 09:36:11 +01:00

1672 lines
61 KiB
C++

// AsmJit - Machine code generation for C++
//
// * Official AsmJit Home Page: https://asmjit.com
// * Official Github Repository: https://github.com/asmjit/asmjit
//
// Copyright (c) 2008-2020 The AsmJit Authors
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
// ----------------------------------------------------------------------------
// IMPORTANT: AsmJit now uses an external instruction database to populate
// static tables within this file. Perform the following steps to regenerate
// all tables enclosed by ${...}:
//
// 1. Install node.js environment <https://nodejs.org>
// 2. Go to asmjit/tools directory
// 3. Get the latest asmdb from <https://github.com/asmjit/asmdb> and
// copy/link the `asmdb` directory to `asmjit/tools/asmdb`.
// 4. Execute `node tablegen-x86.js`
//
// Instruction encoding and opcodes were added to the `x86inst.cpp` database
// manually in the past and they are not updated by the script as it became
// tricky. However, everything else is updated including instruction operands
// and tables required to validate them, instruction read/write information
// (including registers and flags), and all indexes to all tables.
// ----------------------------------------------------------------------------
#include "../core/api-build_p.h"
#ifdef ASMJIT_BUILD_X86
#include "../core/cpuinfo.h"
#include "../core/misc_p.h"
#include "../core/support.h"
#include "../x86/x86features.h"
#include "../x86/x86instapi_p.h"
#include "../x86/x86instdb_p.h"
#include "../x86/x86opcode_p.h"
#include "../x86/x86operand.h"
ASMJIT_BEGIN_SUB_NAMESPACE(x86)
// ============================================================================
// [asmjit::x86::InstInternal - Text]
// ============================================================================
#ifndef ASMJIT_NO_TEXT
Error InstInternal::instIdToString(uint32_t arch, uint32_t instId, String& output) noexcept {
DebugUtils::unused(arch);
if (ASMJIT_UNLIKELY(!Inst::isDefinedId(instId)))
return DebugUtils::errored(kErrorInvalidInstruction);
const InstDB::InstInfo& info = InstDB::infoById(instId);
return output.append(InstDB::_nameData + info._nameDataIndex);
}
uint32_t InstInternal::stringToInstId(uint32_t arch, const char* s, size_t len) noexcept {
DebugUtils::unused(arch);
if (ASMJIT_UNLIKELY(!s))
return Inst::kIdNone;
if (len == SIZE_MAX)
len = strlen(s);
if (ASMJIT_UNLIKELY(len == 0 || len > InstDB::kMaxNameSize))
return Inst::kIdNone;
uint32_t prefix = uint32_t(s[0]) - 'a';
if (ASMJIT_UNLIKELY(prefix > 'z' - 'a'))
return Inst::kIdNone;
uint32_t index = InstDB::instNameIndex[prefix].start;
if (ASMJIT_UNLIKELY(!index))
return Inst::kIdNone;
const char* nameData = InstDB::_nameData;
const InstDB::InstInfo* table = InstDB::_instInfoTable;
const InstDB::InstInfo* base = table + index;
const InstDB::InstInfo* end = table + InstDB::instNameIndex[prefix].end;
for (size_t lim = (size_t)(end - base); lim != 0; lim >>= 1) {
const InstDB::InstInfo* cur = base + (lim >> 1);
int result = Support::cmpInstName(nameData + cur[0]._nameDataIndex, s, len);
if (result < 0) {
base = cur + 1;
lim--;
continue;
}
if (result > 0)
continue;
return uint32_t((size_t)(cur - table));
}
return Inst::kIdNone;
}
#endif // !ASMJIT_NO_TEXT
// ============================================================================
// [asmjit::x86::InstInternal - Validate]
// ============================================================================
#ifndef ASMJIT_NO_VALIDATION
struct X86ValidationData {
//! Allowed registers by reg-type (x86::Reg::kType...).
uint32_t allowedRegMask[Reg::kTypeMax + 1];
uint32_t allowedMemBaseRegs;
uint32_t allowedMemIndexRegs;
};
#define VALUE(x) \
(x == Reg::kTypeGpbLo) ? InstDB::kOpGpbLo : \
(x == Reg::kTypeGpbHi) ? InstDB::kOpGpbHi : \
(x == Reg::kTypeGpw ) ? InstDB::kOpGpw : \
(x == Reg::kTypeGpd ) ? InstDB::kOpGpd : \
(x == Reg::kTypeGpq ) ? InstDB::kOpGpq : \
(x == Reg::kTypeXmm ) ? InstDB::kOpXmm : \
(x == Reg::kTypeYmm ) ? InstDB::kOpYmm : \
(x == Reg::kTypeZmm ) ? InstDB::kOpZmm : \
(x == Reg::kTypeMm ) ? InstDB::kOpMm : \
(x == Reg::kTypeKReg ) ? InstDB::kOpKReg : \
(x == Reg::kTypeSReg ) ? InstDB::kOpSReg : \
(x == Reg::kTypeCReg ) ? InstDB::kOpCReg : \
(x == Reg::kTypeDReg ) ? InstDB::kOpDReg : \
(x == Reg::kTypeSt ) ? InstDB::kOpSt : \
(x == Reg::kTypeBnd ) ? InstDB::kOpBnd : \
(x == Reg::kTypeTmm ) ? InstDB::kOpTmm : \
(x == Reg::kTypeRip ) ? InstDB::kOpNone : InstDB::kOpNone
static const uint32_t _x86OpFlagFromRegType[Reg::kTypeMax + 1] = { ASMJIT_LOOKUP_TABLE_32(VALUE, 0) };
#undef VALUE
#define REG_MASK_FROM_REG_TYPE_X86(x) \
(x == Reg::kTypeGpbLo) ? 0x0000000Fu : \
(x == Reg::kTypeGpbHi) ? 0x0000000Fu : \
(x == Reg::kTypeGpw ) ? 0x000000FFu : \
(x == Reg::kTypeGpd ) ? 0x000000FFu : \
(x == Reg::kTypeGpq ) ? 0x000000FFu : \
(x == Reg::kTypeXmm ) ? 0x000000FFu : \
(x == Reg::kTypeYmm ) ? 0x000000FFu : \
(x == Reg::kTypeZmm ) ? 0x000000FFu : \
(x == Reg::kTypeMm ) ? 0x000000FFu : \
(x == Reg::kTypeKReg ) ? 0x000000FFu : \
(x == Reg::kTypeSReg ) ? 0x0000007Eu : \
(x == Reg::kTypeCReg ) ? 0x0000FFFFu : \
(x == Reg::kTypeDReg ) ? 0x000000FFu : \
(x == Reg::kTypeSt ) ? 0x000000FFu : \
(x == Reg::kTypeBnd ) ? 0x0000000Fu : \
(x == Reg::kTypeTmm ) ? 0x000000FFu : \
(x == Reg::kTypeRip ) ? 0x00000001u : 0u
#define REG_MASK_FROM_REG_TYPE_X64(x) \
(x == Reg::kTypeGpbLo) ? 0x0000FFFFu : \
(x == Reg::kTypeGpbHi) ? 0x0000000Fu : \
(x == Reg::kTypeGpw ) ? 0x0000FFFFu : \
(x == Reg::kTypeGpd ) ? 0x0000FFFFu : \
(x == Reg::kTypeGpq ) ? 0x0000FFFFu : \
(x == Reg::kTypeXmm ) ? 0xFFFFFFFFu : \
(x == Reg::kTypeYmm ) ? 0xFFFFFFFFu : \
(x == Reg::kTypeZmm ) ? 0xFFFFFFFFu : \
(x == Reg::kTypeMm ) ? 0x000000FFu : \
(x == Reg::kTypeKReg ) ? 0x000000FFu : \
(x == Reg::kTypeSReg ) ? 0x0000007Eu : \
(x == Reg::kTypeCReg ) ? 0x0000FFFFu : \
(x == Reg::kTypeDReg ) ? 0x0000FFFFu : \
(x == Reg::kTypeSt ) ? 0x000000FFu : \
(x == Reg::kTypeBnd ) ? 0x0000000Fu : \
(x == Reg::kTypeTmm ) ? 0x000000FFu : \
(x == Reg::kTypeRip ) ? 0x00000001u : 0u
static const X86ValidationData _x86ValidationData = {
{ ASMJIT_LOOKUP_TABLE_32(REG_MASK_FROM_REG_TYPE_X86, 0) },
(1u << Reg::kTypeGpw) | (1u << Reg::kTypeGpd) | (1u << Reg::kTypeRip) | (1u << Label::kLabelTag),
(1u << Reg::kTypeGpw) | (1u << Reg::kTypeGpd) | (1u << Reg::kTypeXmm) | (1u << Reg::kTypeYmm) | (1u << Reg::kTypeZmm)
};
static const X86ValidationData _x64ValidationData = {
{ ASMJIT_LOOKUP_TABLE_32(REG_MASK_FROM_REG_TYPE_X64, 0) },
(1u << Reg::kTypeGpd) | (1u << Reg::kTypeGpq) | (1u << Reg::kTypeRip) | (1u << Label::kLabelTag),
(1u << Reg::kTypeGpd) | (1u << Reg::kTypeGpq) | (1u << Reg::kTypeXmm) | (1u << Reg::kTypeYmm) | (1u << Reg::kTypeZmm)
};
#undef REG_MASK_FROM_REG_TYPE_X64
#undef REG_MASK_FROM_REG_TYPE_X86
static ASMJIT_INLINE bool x86IsZmmOrM512(const Operand_& op) noexcept {
return Reg::isZmm(op) || (op.isMem() && op.size() == 64);
}
static ASMJIT_INLINE bool x86CheckOSig(const InstDB::OpSignature& op, const InstDB::OpSignature& ref, bool& immOutOfRange) noexcept {
// Fail if operand types are incompatible.
uint32_t opFlags = op.opFlags;
if ((opFlags & ref.opFlags) == 0) {
// Mark temporarily `immOutOfRange` so we can return a more descriptive error later.
if ((opFlags & InstDB::kOpAllImm) && (ref.opFlags & InstDB::kOpAllImm)) {
immOutOfRange = true;
return true;
}
return false;
}
// Fail if memory specific flags and sizes do not match the signature.
uint32_t opMemFlags = op.memFlags;
if (opMemFlags != 0) {
uint32_t refMemFlags = ref.memFlags;
if ((refMemFlags & opMemFlags) == 0)
return false;
if ((refMemFlags & InstDB::kMemOpBaseOnly) && !(opMemFlags & InstDB::kMemOpBaseOnly))
return false;
}
// Specific register index.
if (opFlags & InstDB::kOpAllRegs) {
uint32_t refRegMask = ref.regMask;
if (refRegMask && !(op.regMask & refRegMask))
return false;
}
return true;
}
ASMJIT_FAVOR_SIZE Error InstInternal::validate(uint32_t arch, const BaseInst& inst, const Operand_* operands, size_t opCount, uint32_t validationFlags) noexcept {
// Only called when `arch` matches X86 family.
ASMJIT_ASSERT(Environment::isFamilyX86(arch));
const X86ValidationData* vd;
if (arch == Environment::kArchX86)
vd = &_x86ValidationData;
else
vd = &_x64ValidationData;
uint32_t i;
uint32_t mode = InstDB::modeFromArch(arch);
// Get the instruction data.
uint32_t instId = inst.id();
uint32_t options = inst.options();
if (ASMJIT_UNLIKELY(!Inst::isDefinedId(instId)))
return DebugUtils::errored(kErrorInvalidInstruction);
const InstDB::InstInfo& instInfo = InstDB::infoById(instId);
const InstDB::CommonInfo& commonInfo = instInfo.commonInfo();
uint32_t iFlags = instInfo.flags();
// --------------------------------------------------------------------------
// [Validate LOCK|XACQUIRE|XRELEASE]
// --------------------------------------------------------------------------
const uint32_t kLockXAcqRel = Inst::kOptionXAcquire | Inst::kOptionXRelease;
if (options & (Inst::kOptionLock | kLockXAcqRel)) {
if (options & Inst::kOptionLock) {
if (ASMJIT_UNLIKELY(!(iFlags & InstDB::kFlagLock) && !(options & kLockXAcqRel)))
return DebugUtils::errored(kErrorInvalidLockPrefix);
if (ASMJIT_UNLIKELY(opCount < 1 || !operands[0].isMem()))
return DebugUtils::errored(kErrorInvalidLockPrefix);
}
if (options & kLockXAcqRel) {
if (ASMJIT_UNLIKELY(!(options & Inst::kOptionLock) || (options & kLockXAcqRel) == kLockXAcqRel))
return DebugUtils::errored(kErrorInvalidPrefixCombination);
if (ASMJIT_UNLIKELY((options & Inst::kOptionXAcquire) && !(iFlags & InstDB::kFlagXAcquire)))
return DebugUtils::errored(kErrorInvalidXAcquirePrefix);
if (ASMJIT_UNLIKELY((options & Inst::kOptionXRelease) && !(iFlags & InstDB::kFlagXRelease)))
return DebugUtils::errored(kErrorInvalidXReleasePrefix);
}
}
// Validate REP and REPNE prefixes.
const uint32_t kRepAny = Inst::kOptionRep | Inst::kOptionRepne;
if (options & kRepAny) {
if (ASMJIT_UNLIKELY((options & kRepAny) == kRepAny))
return DebugUtils::errored(kErrorInvalidPrefixCombination);
if (ASMJIT_UNLIKELY(!(iFlags & InstDB::kFlagRep)))
return DebugUtils::errored(kErrorInvalidRepPrefix);
}
// --------------------------------------------------------------------------
// [Translate Each Operand to the Corresponding OpSignature]
// --------------------------------------------------------------------------
InstDB::OpSignature oSigTranslated[Globals::kMaxOpCount];
uint32_t combinedOpFlags = 0;
uint32_t combinedRegMask = 0;
const Mem* memOp = nullptr;
for (i = 0; i < opCount; i++) {
const Operand_& op = operands[i];
if (op.opType() == Operand::kOpNone)
break;
uint32_t opFlags = 0;
uint32_t memFlags = 0;
uint32_t regMask = 0;
switch (op.opType()) {
case Operand::kOpReg: {
uint32_t regType = op.as<BaseReg>().type();
if (ASMJIT_UNLIKELY(regType >= Reg::kTypeCount))
return DebugUtils::errored(kErrorInvalidRegType);
opFlags = _x86OpFlagFromRegType[regType];
if (ASMJIT_UNLIKELY(opFlags == 0))
return DebugUtils::errored(kErrorInvalidRegType);
// If `regId` is equal or greater than Operand::kVirtIdMin it means
// that the register is virtual and its index will be assigned later
// by the register allocator. We must pass unless asked to disallow
// virtual registers.
uint32_t regId = op.id();
if (regId < Operand::kVirtIdMin) {
if (ASMJIT_UNLIKELY(regId >= 32))
return DebugUtils::errored(kErrorInvalidPhysId);
if (ASMJIT_UNLIKELY(Support::bitTest(vd->allowedRegMask[regType], regId) == 0))
return DebugUtils::errored(kErrorInvalidPhysId);
regMask = Support::bitMask(regId);
combinedRegMask |= regMask;
}
else {
if (!(validationFlags & InstAPI::kValidationFlagVirtRegs))
return DebugUtils::errored(kErrorIllegalVirtReg);
regMask = 0xFFFFFFFFu;
}
break;
}
// TODO: Validate base and index and combine these with `combinedRegMask`.
case Operand::kOpMem: {
const Mem& m = op.as<Mem>();
memOp = &m;
uint32_t memSize = m.size();
uint32_t baseType = m.baseType();
uint32_t indexType = m.indexType();
if (m.segmentId() > 6)
return DebugUtils::errored(kErrorInvalidSegment);
// Validate AVX-512 broadcast {1tox}.
if (m.hasBroadcast()) {
if (memSize != 0) {
// If the size is specified it has to match the broadcast size.
if (ASMJIT_UNLIKELY(commonInfo.hasAvx512B32() && memSize != 4))
return DebugUtils::errored(kErrorInvalidBroadcast);
if (ASMJIT_UNLIKELY(commonInfo.hasAvx512B64() && memSize != 8))
return DebugUtils::errored(kErrorInvalidBroadcast);
}
else {
// If there is no size we implicitly calculate it so we can validate N in {1toN} properly.
memSize = commonInfo.hasAvx512B32() ? 4 : 8;
}
memSize <<= m.getBroadcast();
}
if (baseType != 0 && baseType > Label::kLabelTag) {
uint32_t baseId = m.baseId();
if (m.isRegHome()) {
// Home address of a virtual register. In such case we don't want to
// validate the type of the base register as it will always be patched
// to ESP|RSP.
}
else {
if (ASMJIT_UNLIKELY((vd->allowedMemBaseRegs & (1u << baseType)) == 0))
return DebugUtils::errored(kErrorInvalidAddress);
}
// Create information that will be validated only if this is an implicit
// memory operand. Basically only usable for string instructions and other
// instructions where memory operand is implicit and has 'seg:[reg]' form.
if (baseId < Operand::kVirtIdMin) {
if (ASMJIT_UNLIKELY(baseId >= 32))
return DebugUtils::errored(kErrorInvalidPhysId);
// Physical base id.
regMask = Support::bitMask(baseId);
combinedRegMask |= regMask;
}
else {
// Virtual base id - fill the whole mask for implicit mem validation.
// The register is not assigned yet, so we cannot predict the phys id.
if (!(validationFlags & InstAPI::kValidationFlagVirtRegs))
return DebugUtils::errored(kErrorIllegalVirtReg);
regMask = 0xFFFFFFFFu;
}
if (!indexType && !m.offsetLo32())
memFlags |= InstDB::kMemOpBaseOnly;
}
else if (baseType == Label::kLabelTag) {
// [Label] - there is no need to validate the base as it's label.
}
else {
// Base is a 64-bit address.
int64_t offset = m.offset();
if (!Support::isInt32(offset)) {
if (mode == InstDB::kModeX86) {
// 32-bit mode: Make sure that the address is either `int32_t` or `uint32_t`.
if (!Support::isUInt32(offset))
return DebugUtils::errored(kErrorInvalidAddress64Bit);
}
else {
// 64-bit mode: Zero extension is allowed if the address has 32-bit index
// register or the address has no index register (it's still encodable).
if (indexType) {
if (!Support::isUInt32(offset))
return DebugUtils::errored(kErrorInvalidAddress64Bit);
if (indexType != Reg::kTypeGpd)
return DebugUtils::errored(kErrorInvalidAddress64BitZeroExtension);
}
else {
// We don't validate absolute 64-bit addresses without an index register
// as this also depends on the target's base address. We don't have the
// information to do it at this moment.
}
}
}
}
if (indexType) {
if (ASMJIT_UNLIKELY((vd->allowedMemIndexRegs & (1u << indexType)) == 0))
return DebugUtils::errored(kErrorInvalidAddress);
if (indexType == Reg::kTypeXmm) {
opFlags |= InstDB::kOpVm;
memFlags |= InstDB::kMemOpVm32x | InstDB::kMemOpVm64x;
}
else if (indexType == Reg::kTypeYmm) {
opFlags |= InstDB::kOpVm;
memFlags |= InstDB::kMemOpVm32y | InstDB::kMemOpVm64y;
}
else if (indexType == Reg::kTypeZmm) {
opFlags |= InstDB::kOpVm;
memFlags |= InstDB::kMemOpVm32z | InstDB::kMemOpVm64z;
}
else {
opFlags |= InstDB::kOpMem;
if (baseType)
memFlags |= InstDB::kMemOpMib;
}
// [RIP + {XMM|YMM|ZMM}] is not allowed.
if (baseType == Reg::kTypeRip && (opFlags & InstDB::kOpVm))
return DebugUtils::errored(kErrorInvalidAddress);
uint32_t indexId = m.indexId();
if (indexId < Operand::kVirtIdMin) {
if (ASMJIT_UNLIKELY(indexId >= 32))
return DebugUtils::errored(kErrorInvalidPhysId);
combinedRegMask |= Support::bitMask(indexId);
}
else {
if (!(validationFlags & InstAPI::kValidationFlagVirtRegs))
return DebugUtils::errored(kErrorIllegalVirtReg);
}
// Only used for implicit memory operands having 'seg:[reg]' form, so clear it.
regMask = 0;
}
else {
opFlags |= InstDB::kOpMem;
}
switch (memSize) {
case 0: memFlags |= InstDB::kMemOpAny ; break;
case 1: memFlags |= InstDB::kMemOpM8 ; break;
case 2: memFlags |= InstDB::kMemOpM16 ; break;
case 4: memFlags |= InstDB::kMemOpM32 ; break;
case 6: memFlags |= InstDB::kMemOpM48 ; break;
case 8: memFlags |= InstDB::kMemOpM64 ; break;
case 10: memFlags |= InstDB::kMemOpM80 ; break;
case 16: memFlags |= InstDB::kMemOpM128; break;
case 32: memFlags |= InstDB::kMemOpM256; break;
case 64: memFlags |= InstDB::kMemOpM512; break;
default:
return DebugUtils::errored(kErrorInvalidOperandSize);
}
break;
}
case Operand::kOpImm: {
uint64_t immValue = op.as<Imm>().valueAs<uint64_t>();
uint32_t immFlags = 0;
if (int64_t(immValue) >= 0) {
if (immValue <= 0x7u)
immFlags = InstDB::kOpI64 | InstDB::kOpU64 | InstDB::kOpI32 | InstDB::kOpU32 |
InstDB::kOpI16 | InstDB::kOpU16 | InstDB::kOpI8 | InstDB::kOpU8 |
InstDB::kOpI4 | InstDB::kOpU4 ;
else if (immValue <= 0xFu)
immFlags = InstDB::kOpI64 | InstDB::kOpU64 | InstDB::kOpI32 | InstDB::kOpU32 |
InstDB::kOpI16 | InstDB::kOpU16 | InstDB::kOpI8 | InstDB::kOpU8 |
InstDB::kOpU4 ;
else if (immValue <= 0x7Fu)
immFlags = InstDB::kOpI64 | InstDB::kOpU64 | InstDB::kOpI32 | InstDB::kOpU32 |
InstDB::kOpI16 | InstDB::kOpU16 | InstDB::kOpI8 | InstDB::kOpU8 ;
else if (immValue <= 0xFFu)
immFlags = InstDB::kOpI64 | InstDB::kOpU64 | InstDB::kOpI32 | InstDB::kOpU32 |
InstDB::kOpI16 | InstDB::kOpU16 | InstDB::kOpU8 ;
else if (immValue <= 0x7FFFu)
immFlags = InstDB::kOpI64 | InstDB::kOpU64 | InstDB::kOpI32 | InstDB::kOpU32 |
InstDB::kOpI16 | InstDB::kOpU16 ;
else if (immValue <= 0xFFFFu)
immFlags = InstDB::kOpI64 | InstDB::kOpU64 | InstDB::kOpI32 | InstDB::kOpU32 |
InstDB::kOpU16 ;
else if (immValue <= 0x7FFFFFFFu)
immFlags = InstDB::kOpI64 | InstDB::kOpU64 | InstDB::kOpI32 | InstDB::kOpU32;
else if (immValue <= 0xFFFFFFFFu)
immFlags = InstDB::kOpI64 | InstDB::kOpU64 | InstDB::kOpU32;
else if (immValue <= 0x7FFFFFFFFFFFFFFFu)
immFlags = InstDB::kOpI64 | InstDB::kOpU64;
else
immFlags = InstDB::kOpU64;
}
else {
immValue = Support::neg(immValue);
if (immValue <= 0x8u)
immFlags = InstDB::kOpI64 | InstDB::kOpI32 | InstDB::kOpI16 | InstDB::kOpI8 | InstDB::kOpI4;
else if (immValue <= 0x80u)
immFlags = InstDB::kOpI64 | InstDB::kOpI32 | InstDB::kOpI16 | InstDB::kOpI8;
else if (immValue <= 0x8000u)
immFlags = InstDB::kOpI64 | InstDB::kOpI32 | InstDB::kOpI16;
else if (immValue <= 0x80000000u)
immFlags = InstDB::kOpI64 | InstDB::kOpI32;
else
immFlags = InstDB::kOpI64;
}
opFlags |= immFlags;
break;
}
case Operand::kOpLabel: {
opFlags |= InstDB::kOpRel8 | InstDB::kOpRel32;
break;
}
default:
return DebugUtils::errored(kErrorInvalidState);
}
InstDB::OpSignature& oSigDst = oSigTranslated[i];
oSigDst.opFlags = opFlags;
oSigDst.memFlags = uint16_t(memFlags);
oSigDst.regMask = uint8_t(regMask & 0xFFu);
combinedOpFlags |= opFlags;
}
// Decrease the number of operands of those that are none. This is important
// as Assembler and Compiler may just pass more operands padded with none
// (which means that no operand is given at that index). However, validate
// that there are no gaps (like [reg, none, reg] or [none, reg]).
if (i < opCount) {
while (--opCount > i)
if (ASMJIT_UNLIKELY(!operands[opCount].isNone()))
return DebugUtils::errored(kErrorInvalidInstruction);
}
// Validate X86 and X64 specific cases.
if (mode == InstDB::kModeX86) {
// Illegal use of 64-bit register in 32-bit mode.
if (ASMJIT_UNLIKELY((combinedOpFlags & InstDB::kOpGpq) != 0))
return DebugUtils::errored(kErrorInvalidUseOfGpq);
}
else {
// Illegal use of a high 8-bit register with REX prefix.
bool hasREX = inst.hasOption(Inst::kOptionRex) ||
((combinedRegMask & 0xFFFFFF00u) != 0);
if (ASMJIT_UNLIKELY(hasREX && (combinedOpFlags & InstDB::kOpGpbHi) != 0))
return DebugUtils::errored(kErrorInvalidUseOfGpbHi);
}
// --------------------------------------------------------------------------
// [Validate Instruction Signature by Comparing Against All `iSig` Rows]
// --------------------------------------------------------------------------
const InstDB::InstSignature* iSig = InstDB::_instSignatureTable + commonInfo._iSignatureIndex;
const InstDB::InstSignature* iEnd = iSig + commonInfo._iSignatureCount;
if (iSig != iEnd) {
const InstDB::OpSignature* opSignatureTable = InstDB::_opSignatureTable;
// If set it means that we matched a signature where only immediate value
// was out of bounds. We can return a more descriptive error if we know this.
bool globalImmOutOfRange = false;
do {
// Check if the architecture is compatible.
if ((iSig->modes & mode) == 0)
continue;
// Compare the operands table with reference operands.
uint32_t j = 0;
uint32_t iSigCount = iSig->opCount;
bool localImmOutOfRange = false;
if (iSigCount == opCount) {
for (j = 0; j < opCount; j++)
if (!x86CheckOSig(oSigTranslated[j], opSignatureTable[iSig->operands[j]], localImmOutOfRange))
break;
}
else if (iSigCount - iSig->implicit == opCount) {
uint32_t r = 0;
for (j = 0; j < opCount && r < iSigCount; j++, r++) {
const InstDB::OpSignature* oChk = oSigTranslated + j;
const InstDB::OpSignature* oRef;
Next:
oRef = opSignatureTable + iSig->operands[r];
// Skip implicit.
if ((oRef->opFlags & InstDB::kOpImplicit) != 0) {
if (++r >= iSigCount)
break;
else
goto Next;
}
if (!x86CheckOSig(*oChk, *oRef, localImmOutOfRange))
break;
}
}
if (j == opCount) {
if (!localImmOutOfRange) {
// Match, must clear possible `globalImmOutOfRange`.
globalImmOutOfRange = false;
break;
}
globalImmOutOfRange = localImmOutOfRange;
}
} while (++iSig != iEnd);
if (iSig == iEnd) {
if (globalImmOutOfRange)
return DebugUtils::errored(kErrorInvalidImmediate);
else
return DebugUtils::errored(kErrorInvalidInstruction);
}
}
// --------------------------------------------------------------------------
// [Validate AVX512 Options]
// --------------------------------------------------------------------------
const RegOnly& extraReg = inst.extraReg();
const uint32_t kAvx512Options = Inst::kOptionZMask |
Inst::kOptionER |
Inst::kOptionSAE ;
if (options & kAvx512Options) {
if (commonInfo.hasFlag(InstDB::kFlagEvex)) {
// Validate AVX-512 {z}.
if ((options & Inst::kOptionZMask)) {
if (ASMJIT_UNLIKELY((options & Inst::kOptionZMask) != 0 && !commonInfo.hasAvx512Z()))
return DebugUtils::errored(kErrorInvalidKZeroUse);
}
// Validate AVX-512 {sae} and {er}.
if (options & (Inst::kOptionSAE | Inst::kOptionER)) {
// Rounding control is impossible if the instruction is not reg-to-reg.
if (ASMJIT_UNLIKELY(memOp))
return DebugUtils::errored(kErrorInvalidEROrSAE);
// Check if {sae} or {er} is supported by the instruction.
if (options & Inst::kOptionER) {
// NOTE: if both {sae} and {er} are set, we don't care, as {sae} is implied.
if (ASMJIT_UNLIKELY(!commonInfo.hasAvx512ER()))
return DebugUtils::errored(kErrorInvalidEROrSAE);
}
else {
if (ASMJIT_UNLIKELY(!commonInfo.hasAvx512SAE()))
return DebugUtils::errored(kErrorInvalidEROrSAE);
}
// {sae} and {er} are defined for either scalar ops or vector ops that
// require LL to be 10 (512-bit vector operations). We don't need any
// more bits in the instruction database to be able to validate this, as
// each AVX512 instruction that has broadcast is vector instruction (in
// this case we require zmm registers), otherwise it's a scalar instruction,
// which is valid.
if (commonInfo.hasAvx512B()) {
// Supports broadcast, thus we require LL to be '10', which means there
// have to be ZMM registers used. We don't calculate LL here, but we know
// that it would be '10' if there is at least one ZMM register used.
// There is no {er}/{sae}-enabled instruction with less than two operands.
ASMJIT_ASSERT(opCount >= 2);
if (ASMJIT_UNLIKELY(!x86IsZmmOrM512(operands[0]) && !x86IsZmmOrM512(operands[1])))
return DebugUtils::errored(kErrorInvalidEROrSAE);
}
}
}
else {
// Not AVX512 instruction - maybe OpExtra is xCX register used by REP/REPNE
// prefix. Otherwise the instruction is invalid.
if ((options & kAvx512Options) || (options & kRepAny) == 0)
return DebugUtils::errored(kErrorInvalidInstruction);
}
}
// --------------------------------------------------------------------------
// [Validate {Extra} Register]
// --------------------------------------------------------------------------
if (extraReg.isReg()) {
if (options & kRepAny) {
// Validate REP|REPNE {cx|ecx|rcx}.
if (ASMJIT_UNLIKELY(iFlags & InstDB::kFlagRepIgnored))
return DebugUtils::errored(kErrorInvalidExtraReg);
if (extraReg.isPhysReg()) {
if (ASMJIT_UNLIKELY(extraReg.id() != Gp::kIdCx))
return DebugUtils::errored(kErrorInvalidExtraReg);
}
// The type of the {...} register must match the type of the base register
// of memory operand. So if the memory operand uses 32-bit register the
// count register must also be 32-bit, etc...
if (ASMJIT_UNLIKELY(!memOp || extraReg.type() != memOp->baseType()))
return DebugUtils::errored(kErrorInvalidExtraReg);
}
else if (commonInfo.hasFlag(InstDB::kFlagEvex)) {
// Validate AVX-512 {k}.
if (ASMJIT_UNLIKELY(extraReg.type() != Reg::kTypeKReg))
return DebugUtils::errored(kErrorInvalidExtraReg);
if (ASMJIT_UNLIKELY(extraReg.id() == 0 || !commonInfo.hasAvx512K()))
return DebugUtils::errored(kErrorInvalidKMaskUse);
}
else {
return DebugUtils::errored(kErrorInvalidExtraReg);
}
}
return kErrorOk;
}
#endif // !ASMJIT_NO_VALIDATION
// ============================================================================
// [asmjit::x86::InstInternal - QueryRWInfo]
// ============================================================================
#ifndef ASMJIT_NO_INTROSPECTION
static const uint64_t rwRegGroupByteMask[Reg::kGroupCount] = {
0x00000000000000FFu, // GP.
0xFFFFFFFFFFFFFFFFu, // XMM|YMM|ZMM.
0x00000000000000FFu, // MM.
0x00000000000000FFu, // KReg.
0x0000000000000003u, // SReg.
0x00000000000000FFu, // CReg.
0x00000000000000FFu, // DReg.
0x00000000000003FFu, // St().
0x000000000000FFFFu, // BND.
0x00000000000000FFu // RIP.
};
static ASMJIT_INLINE void rwZeroExtendGp(OpRWInfo& opRwInfo, const Gp& reg, uint32_t nativeGpSize) noexcept {
ASMJIT_ASSERT(BaseReg::isGp(reg.as<Operand>()));
if (reg.size() + 4 == nativeGpSize) {
opRwInfo.addOpFlags(OpRWInfo::kZExt);
opRwInfo.setExtendByteMask(~opRwInfo.writeByteMask() & 0xFFu);
}
}
static ASMJIT_INLINE void rwZeroExtendAvxVec(OpRWInfo& opRwInfo, const Vec& reg) noexcept {
DebugUtils::unused(reg);
uint64_t msk = ~Support::fillTrailingBits(opRwInfo.writeByteMask());
if (msk) {
opRwInfo.addOpFlags(OpRWInfo::kZExt);
opRwInfo.setExtendByteMask(msk);
}
}
static ASMJIT_INLINE void rwZeroExtendNonVec(OpRWInfo& opRwInfo, const Reg& reg) noexcept {
uint64_t msk = ~Support::fillTrailingBits(opRwInfo.writeByteMask()) & rwRegGroupByteMask[reg.group()];
if (msk) {
opRwInfo.addOpFlags(OpRWInfo::kZExt);
opRwInfo.setExtendByteMask(msk);
}
}
static ASMJIT_INLINE Error rwHandleAVX512(const BaseInst& inst, InstRWInfo* out) noexcept {
if (inst.hasExtraReg() && inst.extraReg().type() == Reg::kTypeKReg && out->opCount() > 0) {
// AVX-512 instruction that uses a destination with {k} register (zeroing vs masking).
out->_extraReg.addOpFlags(OpRWInfo::kRead);
out->_extraReg.setReadByteMask(0xFF);
if (!inst.hasOption(Inst::kOptionZMask)) {
out->_operands[0].addOpFlags(OpRWInfo::kRead);
out->_operands[0]._readByteMask |= out->_operands[0]._writeByteMask;
}
}
return kErrorOk;
}
Error InstInternal::queryRWInfo(uint32_t arch, const BaseInst& inst, const Operand_* operands, size_t opCount, InstRWInfo* out) noexcept {
using namespace Status;
// Only called when `arch` matches X86 family.
ASMJIT_ASSERT(Environment::isFamilyX86(arch));
// Get the instruction data.
uint32_t instId = inst.id();
if (ASMJIT_UNLIKELY(!Inst::isDefinedId(instId)))
return DebugUtils::errored(kErrorInvalidInstruction);
// Read/Write flags.
const InstDB::CommonInfoTableB& tabB = InstDB::_commonInfoTableB[InstDB::_instInfoTable[instId]._commonInfoIndexB];
const InstDB::RWFlagsInfoTable& rwFlags = InstDB::_rwFlagsInfoTable[tabB._rwFlagsIndex];
// There are two data tables, one for `opCount == 2` and the second for
// `opCount != 2`. There are two reasons for that:
// - There are instructions that share the same name that have both 2
// or 3 operands, which have different RW information / semantics.
// - There must be 2 tables otherwise the lookup index won't fit into
// 8 bits (there is more than 256 records of combined rwInfo A and B).
const InstDB::RWInfo& instRwInfo = opCount == 2 ? InstDB::rwInfoA[InstDB::rwInfoIndexA[instId]]
: InstDB::rwInfoB[InstDB::rwInfoIndexB[instId]];
const InstDB::RWInfoRm& instRmInfo = InstDB::rwInfoRm[instRwInfo.rmInfo];
out->_instFlags = 0;
out->_opCount = uint8_t(opCount);
out->_rmFeature = instRmInfo.rmFeature;
out->_extraReg.reset();
out->_readFlags = rwFlags.readFlags;
out->_writeFlags = rwFlags.writeFlags;
uint32_t nativeGpSize = Environment::registerSizeFromArch(arch);
constexpr uint32_t R = OpRWInfo::kRead;
constexpr uint32_t W = OpRWInfo::kWrite;
constexpr uint32_t X = OpRWInfo::kRW;
constexpr uint32_t RegM = OpRWInfo::kRegMem;
constexpr uint32_t RegPhys = OpRWInfo::kRegPhysId;
constexpr uint32_t MibRead = OpRWInfo::kMemBaseRead | OpRWInfo::kMemIndexRead;
if (instRwInfo.category == InstDB::RWInfo::kCategoryGeneric) {
uint32_t i;
uint32_t rmOpsMask = 0;
uint32_t rmMaxSize = 0;
for (i = 0; i < opCount; i++) {
OpRWInfo& op = out->_operands[i];
const Operand_& srcOp = operands[i];
const InstDB::RWInfoOp& rwOpData = InstDB::rwInfoOp[instRwInfo.opInfoIndex[i]];
if (!srcOp.isRegOrMem()) {
op.reset();
continue;
}
op._opFlags = rwOpData.flags & ~(OpRWInfo::kZExt);
op._physId = rwOpData.physId;
op._rmSize = 0;
op._resetReserved();
uint64_t rByteMask = rwOpData.rByteMask;
uint64_t wByteMask = rwOpData.wByteMask;
if (op.isRead() && !rByteMask) rByteMask = Support::lsbMask<uint64_t>(srcOp.size());
if (op.isWrite() && !wByteMask) wByteMask = Support::lsbMask<uint64_t>(srcOp.size());
op._readByteMask = rByteMask;
op._writeByteMask = wByteMask;
op._extendByteMask = 0;
if (srcOp.isReg()) {
// Zero extension.
if (op.isWrite()) {
if (srcOp.as<Reg>().isGp()) {
// GP registers on X64 are special:
// - 8-bit and 16-bit writes aren't zero extended.
// - 32-bit writes ARE zero extended.
rwZeroExtendGp(op, srcOp.as<Gp>(), nativeGpSize);
}
else if (rwOpData.flags & OpRWInfo::kZExt) {
// Otherwise follow ZExt.
rwZeroExtendNonVec(op, srcOp.as<Gp>());
}
}
// Aggregate values required to calculate valid Reg/M info.
rmMaxSize = Support::max(rmMaxSize, srcOp.size());
rmOpsMask |= Support::bitMask<uint32_t>(i);
}
else {
const x86::Mem& memOp = srcOp.as<x86::Mem>();
// The RW flags of BASE+INDEX are either provided by the data, which means
// that the instruction is border-case, or they are deduced from the operand.
if (memOp.hasBaseReg() && !(op.opFlags() & OpRWInfo::kMemBaseRW))
op.addOpFlags(OpRWInfo::kMemBaseRead);
if (memOp.hasIndexReg() && !(op.opFlags() & OpRWInfo::kMemIndexRW))
op.addOpFlags(OpRWInfo::kMemIndexRead);
}
}
rmOpsMask &= instRmInfo.rmOpsMask;
if (rmOpsMask) {
Support::BitWordIterator<uint32_t> it(rmOpsMask);
do {
i = it.next();
OpRWInfo& op = out->_operands[i];
op.addOpFlags(RegM);
switch (instRmInfo.category) {
case InstDB::RWInfoRm::kCategoryFixed:
op.setRmSize(instRmInfo.fixedSize);
break;
case InstDB::RWInfoRm::kCategoryConsistent:
op.setRmSize(operands[i].size());
break;
case InstDB::RWInfoRm::kCategoryHalf:
op.setRmSize(rmMaxSize / 2u);
break;
case InstDB::RWInfoRm::kCategoryQuarter:
op.setRmSize(rmMaxSize / 4u);
break;
case InstDB::RWInfoRm::kCategoryEighth:
op.setRmSize(rmMaxSize / 8u);
break;
}
} while (it.hasNext());
}
return rwHandleAVX512(inst, out);
}
switch (instRwInfo.category) {
case InstDB::RWInfo::kCategoryMov: {
// Special case for 'mov' instruction. Here there are some variants that
// we have to handle as 'mov' can be used to move between GP, segment,
// control and debug registers. Moving between GP registers also allow to
// use memory operand.
if (opCount == 2) {
if (operands[0].isReg() && operands[1].isReg()) {
const Reg& o0 = operands[0].as<Reg>();
const Reg& o1 = operands[1].as<Reg>();
if (o0.isGp() && o1.isGp()) {
out->_operands[0].reset(W | RegM, operands[0].size());
out->_operands[1].reset(R | RegM, operands[1].size());
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
return kErrorOk;
}
if (o0.isGp() && o1.isSReg()) {
out->_operands[0].reset(W | RegM, nativeGpSize);
out->_operands[0].setRmSize(2);
out->_operands[1].reset(R, 2);
return kErrorOk;
}
if (o0.isSReg() && o1.isGp()) {
out->_operands[0].reset(W, 2);
out->_operands[1].reset(R | RegM, 2);
out->_operands[1].setRmSize(2);
return kErrorOk;
}
if (o0.isGp() && (o1.isCReg() || o1.isDReg())) {
out->_operands[0].reset(W, nativeGpSize);
out->_operands[1].reset(R, nativeGpSize);
out->_writeFlags = kOF | kSF | kZF | kAF | kPF | kCF;
return kErrorOk;
}
if ((o0.isCReg() || o0.isDReg()) && o1.isGp()) {
out->_operands[0].reset(W, nativeGpSize);
out->_operands[1].reset(R, nativeGpSize);
out->_writeFlags = kOF | kSF | kZF | kAF | kPF | kCF;
return kErrorOk;
}
}
if (operands[0].isReg() && operands[1].isMem()) {
const Reg& o0 = operands[0].as<Reg>();
const Mem& o1 = operands[1].as<Mem>();
if (o0.isGp()) {
if (!o1.isOffset64Bit())
out->_operands[0].reset(W, o0.size());
else
out->_operands[0].reset(W | RegPhys, o0.size(), Gp::kIdAx);
out->_operands[1].reset(R | MibRead, o0.size());
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
return kErrorOk;
}
if (o0.isSReg()) {
out->_operands[0].reset(W, 2);
out->_operands[1].reset(R, 2);
return kErrorOk;
}
}
if (operands[0].isMem() && operands[1].isReg()) {
const Mem& o0 = operands[0].as<Mem>();
const Reg& o1 = operands[1].as<Reg>();
if (o1.isGp()) {
out->_operands[0].reset(W | MibRead, o1.size());
if (!o0.isOffset64Bit())
out->_operands[1].reset(R, o1.size());
else
out->_operands[1].reset(R | RegPhys, o1.size(), Gp::kIdAx);
return kErrorOk;
}
if (o1.isSReg()) {
out->_operands[0].reset(W | MibRead, 2);
out->_operands[1].reset(R, 2);
return kErrorOk;
}
}
if (Reg::isGp(operands[0]) && operands[1].isImm()) {
const Reg& o0 = operands[0].as<Reg>();
out->_operands[0].reset(W | RegM, o0.size());
out->_operands[1].reset();
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
return kErrorOk;
}
if (operands[0].isMem() && operands[1].isImm()) {
const Reg& o0 = operands[0].as<Reg>();
out->_operands[0].reset(W | MibRead, o0.size());
out->_operands[1].reset();
return kErrorOk;
}
}
break;
}
case InstDB::RWInfo::kCategoryMovabs: {
if (opCount == 2) {
if (Reg::isGp(operands[0]) && operands[1].isMem()) {
const Reg& o0 = operands[0].as<Reg>();
out->_operands[0].reset(W | RegPhys, o0.size(), Gp::kIdAx);
out->_operands[1].reset(R | MibRead, o0.size());
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
return kErrorOk;
}
if (operands[0].isMem() && Reg::isGp(operands[1])) {
const Reg& o1 = operands[1].as<Reg>();
out->_operands[0].reset(W | MibRead, o1.size());
out->_operands[1].reset(R | RegPhys, o1.size(), Gp::kIdAx);
return kErrorOk;
}
if (Reg::isGp(operands[0]) && operands[1].isImm()) {
const Reg& o0 = operands[0].as<Reg>();
out->_operands[0].reset(W, o0.size());
out->_operands[1].reset();
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
return kErrorOk;
}
}
break;
}
case InstDB::RWInfo::kCategoryImul: {
// Special case for 'imul' instruction.
//
// There are 3 variants in general:
//
// 1. Standard multiplication: 'A = A * B'.
// 2. Multiplication with imm: 'A = B * C'.
// 3. Extended multiplication: 'A:B = B * C'.
if (opCount == 2) {
if (operands[0].isReg() && operands[1].isImm()) {
out->_operands[0].reset(X, operands[0].size());
out->_operands[1].reset();
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
return kErrorOk;
}
if (Reg::isGpw(operands[0]) && operands[1].size() == 1) {
// imul ax, r8/m8 <- AX = AL * r8/m8
out->_operands[0].reset(X | RegPhys, 2, Gp::kIdAx);
out->_operands[0].setReadByteMask(Support::lsbMask<uint64_t>(1));
out->_operands[1].reset(R | RegM, 1);
}
else {
// imul r?, r?/m?
out->_operands[0].reset(X, operands[0].size());
out->_operands[1].reset(R | RegM, operands[0].size());
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
}
if (operands[1].isMem())
out->_operands[1].addOpFlags(MibRead);
return kErrorOk;
}
if (opCount == 3) {
if (operands[2].isImm()) {
out->_operands[0].reset(W, operands[0].size());
out->_operands[1].reset(R | RegM, operands[1].size());
out->_operands[2].reset();
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
if (operands[1].isMem())
out->_operands[1].addOpFlags(MibRead);
return kErrorOk;
}
else {
out->_operands[0].reset(W | RegPhys, operands[0].size(), Gp::kIdDx);
out->_operands[1].reset(X | RegPhys, operands[1].size(), Gp::kIdAx);
out->_operands[2].reset(R | RegM, operands[2].size());
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
rwZeroExtendGp(out->_operands[1], operands[1].as<Gp>(), nativeGpSize);
if (operands[2].isMem())
out->_operands[2].addOpFlags(MibRead);
return kErrorOk;
}
}
break;
}
case InstDB::RWInfo::kCategoryMovh64: {
// Special case for 'movhpd|movhps' instructions. Note that this is only
// required for legacy (non-AVX) variants as AVX instructions use either
// 2 or 3 operands that are in `kCategoryGeneric` category.
if (opCount == 2) {
if (BaseReg::isVec(operands[0]) && operands[1].isMem()) {
out->_operands[0].reset(W, 8);
out->_operands[0].setWriteByteMask(Support::lsbMask<uint64_t>(8) << 8);
out->_operands[1].reset(R | MibRead, 8);
return kErrorOk;
}
if (operands[0].isMem() && BaseReg::isVec(operands[1])) {
out->_operands[0].reset(W | MibRead, 8);
out->_operands[1].reset(R, 8);
out->_operands[1].setReadByteMask(Support::lsbMask<uint64_t>(8) << 8);
return kErrorOk;
}
}
break;
}
case InstDB::RWInfo::kCategoryPunpcklxx: {
// Special case for 'punpcklbw|punpckldq|punpcklwd' instructions.
if (opCount == 2) {
if (Reg::isXmm(operands[0])) {
out->_operands[0].reset(X, 16);
out->_operands[0].setReadByteMask(0x0F0Fu);
out->_operands[0].setWriteByteMask(0xFFFFu);
out->_operands[1].reset(R, 16);
out->_operands[1].setWriteByteMask(0x0F0Fu);
if (Reg::isXmm(operands[1])) {
return kErrorOk;
}
if (operands[1].isMem()) {
out->_operands[1].addOpFlags(MibRead);
return kErrorOk;
}
}
if (Reg::isMm(operands[0])) {
out->_operands[0].reset(X, 8);
out->_operands[0].setReadByteMask(0x0Fu);
out->_operands[0].setWriteByteMask(0xFFu);
out->_operands[1].reset(R, 4);
out->_operands[1].setReadByteMask(0x0Fu);
if (Reg::isMm(operands[1])) {
return kErrorOk;
}
if (operands[1].isMem()) {
out->_operands[1].addOpFlags(MibRead);
return kErrorOk;
}
}
}
break;
}
case InstDB::RWInfo::kCategoryVmaskmov: {
// Special case for 'vmaskmovpd|vmaskmovps|vpmaskmovd|vpmaskmovq' instructions.
if (opCount == 3) {
if (BaseReg::isVec(operands[0]) && BaseReg::isVec(operands[1]) && operands[2].isMem()) {
out->_operands[0].reset(W, operands[0].size());
out->_operands[1].reset(R, operands[1].size());
out->_operands[2].reset(R | MibRead, operands[1].size());
rwZeroExtendAvxVec(out->_operands[0], operands[0].as<Vec>());
return kErrorOk;
}
if (operands[0].isMem() && BaseReg::isVec(operands[1]) && BaseReg::isVec(operands[2])) {
out->_operands[0].reset(X | MibRead, operands[1].size());
out->_operands[1].reset(R, operands[1].size());
out->_operands[2].reset(R, operands[2].size());
return kErrorOk;
}
}
break;
}
case InstDB::RWInfo::kCategoryVmovddup: {
// Special case for 'vmovddup' instruction. This instruction has an
// interesting semantic as 128-bit XMM version only uses 64-bit memory
// operand (m64), however, 256/512-bit versions use 256/512-bit memory
// operand, respectively.
if (opCount == 2) {
if (BaseReg::isVec(operands[0]) && BaseReg::isVec(operands[1])) {
uint32_t o0Size = operands[0].size();
uint32_t o1Size = o0Size == 16 ? 8 : o0Size;
out->_operands[0].reset(W, o0Size);
out->_operands[1].reset(R | RegM, o1Size);
out->_operands[1]._readByteMask &= 0x00FF00FF00FF00FFu;
rwZeroExtendAvxVec(out->_operands[0], operands[0].as<Vec>());
return rwHandleAVX512(inst, out);
}
if (BaseReg::isVec(operands[0]) && operands[1].isMem()) {
uint32_t o0Size = operands[0].size();
uint32_t o1Size = o0Size == 16 ? 8 : o0Size;
out->_operands[0].reset(W, o0Size);
out->_operands[1].reset(R | MibRead, o1Size);
rwZeroExtendAvxVec(out->_operands[0], operands[0].as<Vec>());
return rwHandleAVX512(inst, out);
}
}
break;
}
case InstDB::RWInfo::kCategoryVmovmskpd:
case InstDB::RWInfo::kCategoryVmovmskps: {
// Special case for 'vmovmskpd|vmovmskps' instructions.
if (opCount == 2) {
if (BaseReg::isGp(operands[0]) && BaseReg::isVec(operands[1])) {
out->_operands[0].reset(W, 1);
out->_operands[0].setExtendByteMask(Support::lsbMask<uint32_t>(nativeGpSize - 1) << 1);
out->_operands[1].reset(R, operands[1].size());
return kErrorOk;
}
}
break;
}
case InstDB::RWInfo::kCategoryVmov1_2:
case InstDB::RWInfo::kCategoryVmov1_4:
case InstDB::RWInfo::kCategoryVmov1_8: {
// Special case for instructions where the destination is 1:N (narrowing).
//
// Vmov1_2:
// vcvtpd2dq|vcvttpd2dq
// vcvtpd2udq|vcvttpd2udq
// vcvtpd2ps|vcvtps2ph
// vcvtqq2ps|vcvtuqq2ps
// vpmovwb|vpmovswb|vpmovuswb
// vpmovdw|vpmovsdw|vpmovusdw
// vpmovqd|vpmovsqd|vpmovusqd
//
// Vmov1_4:
// vpmovdb|vpmovsdb|vpmovusdb
// vpmovqw|vpmovsqw|vpmovusqw
//
// Vmov1_8:
// pmovmskb|vpmovmskb
// vpmovqb|vpmovsqb|vpmovusqb
uint32_t shift = instRwInfo.category - InstDB::RWInfo::kCategoryVmov1_2 + 1;
if (opCount >= 2) {
if (opCount >= 3) {
if (opCount > 3)
return DebugUtils::errored(kErrorInvalidInstruction);
out->_operands[2].reset();
}
if (operands[0].isReg() && operands[1].isReg()) {
uint32_t size1 = operands[1].size();
uint32_t size0 = size1 >> shift;
out->_operands[0].reset(W, size0);
out->_operands[1].reset(R, size1);
if (instRmInfo.rmOpsMask & 0x1) {
out->_operands[0].addOpFlags(RegM);
out->_operands[0].setRmSize(size0);
}
if (instRmInfo.rmOpsMask & 0x2) {
out->_operands[1].addOpFlags(RegM);
out->_operands[1].setRmSize(size1);
}
// Handle 'pmovmskb|vpmovmskb'.
if (BaseReg::isGp(operands[0]))
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
if (BaseReg::isVec(operands[0]))
rwZeroExtendAvxVec(out->_operands[0], operands[0].as<Vec>());
return rwHandleAVX512(inst, out);
}
if (operands[0].isReg() && operands[1].isMem()) {
uint32_t size1 = operands[1].size() ? operands[1].size() : uint32_t(16);
uint32_t size0 = size1 >> shift;
out->_operands[0].reset(W, size0);
out->_operands[1].reset(R | MibRead, size1);
return kErrorOk;
}
if (operands[0].isMem() && operands[1].isReg()) {
uint32_t size1 = operands[1].size();
uint32_t size0 = size1 >> shift;
out->_operands[0].reset(W | MibRead, size0);
out->_operands[1].reset(R, size1);
return rwHandleAVX512(inst, out);
}
}
break;
}
case InstDB::RWInfo::kCategoryVmov2_1:
case InstDB::RWInfo::kCategoryVmov4_1:
case InstDB::RWInfo::kCategoryVmov8_1: {
// Special case for instructions where the destination is N:1 (widening).
//
// Vmov2_1:
// vcvtdq2pd|vcvtudq2pd
// vcvtps2pd|vcvtph2ps
// vcvtps2qq|vcvtps2uqq
// vcvttps2qq|vcvttps2uqq
// vpmovsxbw|vpmovzxbw
// vpmovsxwd|vpmovzxwd
// vpmovsxdq|vpmovzxdq
//
// Vmov4_1:
// vpmovsxbd|vpmovzxbd
// vpmovsxwq|vpmovzxwq
//
// Vmov8_1:
// vpmovsxbq|vpmovzxbq
uint32_t shift = instRwInfo.category - InstDB::RWInfo::kCategoryVmov2_1 + 1;
if (opCount >= 2) {
if (opCount >= 3) {
if (opCount > 3)
return DebugUtils::errored(kErrorInvalidInstruction);
out->_operands[2].reset();
}
uint32_t size0 = operands[0].size();
uint32_t size1 = size0 >> shift;
out->_operands[0].reset(W, size0);
out->_operands[1].reset(R, size1);
if (operands[0].isReg() && operands[1].isReg()) {
if (instRmInfo.rmOpsMask & 0x1) {
out->_operands[0].addOpFlags(RegM);
out->_operands[0].setRmSize(size0);
}
if (instRmInfo.rmOpsMask & 0x2) {
out->_operands[1].addOpFlags(RegM);
out->_operands[1].setRmSize(size1);
}
return rwHandleAVX512(inst, out);
}
if (operands[0].isReg() && operands[1].isMem()) {
out->_operands[1].addOpFlags(MibRead);
return rwHandleAVX512(inst, out);
}
}
break;
}
}
return DebugUtils::errored(kErrorInvalidInstruction);
}
#endif // !ASMJIT_NO_INTROSPECTION
// ============================================================================
// [asmjit::x86::InstInternal - QueryFeatures]
// ============================================================================
#ifndef ASMJIT_NO_INTROSPECTION
struct RegAnalysis {
uint32_t regTypeMask;
uint32_t highVecUsed;
inline bool hasRegType(uint32_t regType) const noexcept {
return Support::bitTest(regTypeMask, regType);
}
};
static RegAnalysis InstInternal_regAnalysis(const Operand_* operands, size_t opCount) noexcept {
uint32_t mask = 0;
uint32_t highVecUsed = 0;
for (uint32_t i = 0; i < opCount; i++) {
const Operand_& op = operands[i];
if (op.isReg()) {
const BaseReg& reg = op.as<BaseReg>();
mask |= Support::bitMask(reg.type());
if (reg.isVec())
highVecUsed |= uint32_t(reg.id() >= 16 && reg.id() < 32);
}
else if (op.isMem()) {
const BaseMem& mem = op.as<BaseMem>();
if (mem.hasBaseReg()) mask |= Support::bitMask(mem.baseType());
if (mem.hasIndexReg()) {
mask |= Support::bitMask(mem.indexType());
highVecUsed |= uint32_t(mem.indexId() >= 16 && mem.indexId() < 32);
}
}
}
return RegAnalysis { mask, highVecUsed };
}
static ASMJIT_INLINE uint32_t InstInternal_usesAvx512(uint32_t instOptions, const RegOnly& extraReg, const RegAnalysis& regAnalysis) noexcept {
uint32_t hasEvex = instOptions & (Inst::kOptionEvex | Inst::_kOptionAvx512Mask);
uint32_t hasKMask = extraReg.type() == Reg::kTypeKReg;
uint32_t hasKOrZmm = regAnalysis.regTypeMask & Support::bitMask(Reg::kTypeZmm, Reg::kTypeKReg);
return hasEvex | hasKMask | hasKOrZmm;
}
Error InstInternal::queryFeatures(uint32_t arch, const BaseInst& inst, const Operand_* operands, size_t opCount, BaseFeatures* out) noexcept {
// Only called when `arch` matches X86 family.
DebugUtils::unused(arch);
ASMJIT_ASSERT(Environment::isFamilyX86(arch));
// Get the instruction data.
uint32_t instId = inst.id();
uint32_t options = inst.options();
if (ASMJIT_UNLIKELY(!Inst::isDefinedId(instId)))
return DebugUtils::errored(kErrorInvalidInstruction);
const InstDB::InstInfo& instInfo = InstDB::infoById(instId);
const InstDB::CommonInfoTableB& tableB = InstDB::_commonInfoTableB[instInfo._commonInfoIndexB];
const uint8_t* fData = tableB.featuresBegin();
const uint8_t* fEnd = tableB.featuresEnd();
// Copy all features to `out`.
out->reset();
do {
uint32_t feature = fData[0];
if (!feature)
break;
out->add(feature);
} while (++fData != fEnd);
// Since AsmJit aggregates instructions that share the same name we have to
// deal with some special cases and also with MMX/SSE and AVX/AVX2 overlaps.
if (fData != tableB.featuresBegin()) {
RegAnalysis regAnalysis = InstInternal_regAnalysis(operands, opCount);
// Handle MMX vs SSE overlap.
if (out->has(Features::kMMX) || out->has(Features::kMMX2)) {
// Only instructions defined by SSE and SSE2 overlap. Instructions
// introduced by newer instruction sets like SSE3+ don't state MMX as
// they require SSE3+.
if (out->has(Features::kSSE) || out->has(Features::kSSE2)) {
if (!regAnalysis.hasRegType(Reg::kTypeXmm)) {
// The instruction doesn't use XMM register(s), thus it's MMX/MMX2 only.
out->remove(Features::kSSE);
out->remove(Features::kSSE2);
}
else {
out->remove(Features::kMMX);
out->remove(Features::kMMX2);
}
// Special case: PEXTRW instruction is MMX/SSE2 instruction. However,
// MMX/SSE version cannot access memory (only register to register
// extract) so when SSE4.1 introduced the whole family of PEXTR/PINSR
// instructions they also introduced PEXTRW with a new opcode 0x15 that
// can extract directly to memory. This instruction is, of course, not
// compatible with MMX/SSE2 and would #UD if SSE4.1 is not supported.
if (instId == Inst::kIdPextrw) {
ASMJIT_ASSERT(out->has(Features::kSSE2));
ASMJIT_ASSERT(out->has(Features::kSSE4_1));
if (opCount >= 1 && operands[0].isMem())
out->remove(Features::kSSE2);
else
out->remove(Features::kSSE4_1);
}
}
}
// Handle PCLMULQDQ vs VPCLMULQDQ.
if (out->has(Features::kVPCLMULQDQ)) {
if (regAnalysis.hasRegType(Reg::kTypeZmm) || Support::bitTest(options, Inst::kOptionEvex)) {
// AVX512_F & VPCLMULQDQ.
out->remove(Features::kAVX, Features::kPCLMULQDQ);
}
else if (regAnalysis.hasRegType(Reg::kTypeYmm)) {
out->remove(Features::kAVX512_F, Features::kAVX512_VL);
}
else {
// AVX & PCLMULQDQ.
out->remove(Features::kAVX512_F, Features::kAVX512_VL, Features::kVPCLMULQDQ);
}
}
// Handle AVX vs AVX2 overlap.
if (out->has(Features::kAVX) && out->has(Features::kAVX2)) {
bool isAVX2 = true;
// Special case: VBROADCASTSS and VBROADCASTSD were introduced in AVX, but
// only version that uses memory as a source operand. AVX2 then added support
// for register source operand.
if (instId == Inst::kIdVbroadcastss || instId == Inst::kIdVbroadcastsd) {
if (opCount > 1 && operands[1].isMem())
isAVX2 = false;
}
else {
// AVX instruction set doesn't support integer operations on YMM registers
// as these were later introcuced by AVX2. In our case we have to check if
// YMM register(s) are in use and if that is the case this is an AVX2 instruction.
if (!(regAnalysis.regTypeMask & Support::bitMask(Reg::kTypeYmm, Reg::kTypeZmm)))
isAVX2 = false;
}
if (isAVX2)
out->remove(Features::kAVX);
else
out->remove(Features::kAVX2);
}
// Handle AVX|AVX2|FMA|F16C vs AVX512 overlap.
if (out->has(Features::kAVX) || out->has(Features::kAVX2) || out->has(Features::kFMA) || out->has(Features::kF16C)) {
// Only AVX512-F|BW|DQ allow to encode AVX/AVX2/FMA/F16C instructions
if (out->has(Features::kAVX512_F) || out->has(Features::kAVX512_BW) || out->has(Features::kAVX512_DQ)) {
uint32_t usesAvx512 = InstInternal_usesAvx512(options, inst.extraReg(), regAnalysis);
uint32_t mustUseEvex = 0;
switch (instId) {
// Special case: VPSLLDQ and VPSRLDQ instructions only allow `reg, reg. imm`
// combination in AVX|AVX2 mode, then AVX-512 introduced `reg, reg/mem, imm`
// combination that uses EVEX prefix. This means that if the second operand
// is memory then this is AVX-512_BW instruction and not AVX/AVX2 instruction.
case Inst::kIdVpslldq:
case Inst::kIdVpsrldq:
mustUseEvex = opCount >= 2 && operands[1].isMem();
break;
// Special case: VPBROADCAST[B|D|Q|W] only supports r32/r64 with EVEX prefix.
case Inst::kIdVpbroadcastb:
case Inst::kIdVpbroadcastd:
case Inst::kIdVpbroadcastq:
case Inst::kIdVpbroadcastw:
mustUseEvex = opCount >= 2 && x86::Reg::isGp(operands[1]);
break;
// Special case: VPERMPD only supports YMM predicate in AVX mode, immediate
// precicate is only supported by AVX512-F and newer.
case Inst::kIdVpermpd:
mustUseEvex = opCount >= 3 && !operands[2].isImm();
break;
}
if (!(usesAvx512 | mustUseEvex | regAnalysis.highVecUsed))
out->remove(Features::kAVX512_F, Features::kAVX512_BW, Features::kAVX512_DQ, Features::kAVX512_VL);
else
out->remove(Features::kAVX, Features::kAVX2, Features::kFMA, Features::kF16C);
}
}
// Handle AVX_VNNI vs AVX512_VNNI overlap.
if (out->has(Features::kAVX512_VNNI)) {
// By default the AVX512_VNNI instruction should be used, because it was
// introduced first. However, VEX|VEX3 prefix can be used to force AVX_VNNI
// instead.
uint32_t usesAvx512 = InstInternal_usesAvx512(options, inst.extraReg(), regAnalysis);
if (!usesAvx512 && (options & (Inst::kOptionVex | Inst::kOptionVex3)) != 0)
out->remove(Features::kAVX512_VNNI, Features::kAVX512_VL);
else
out->remove(Features::kAVX_VNNI);
}
// Clear AVX512_VL if ZMM register is used.
if (regAnalysis.hasRegType(Reg::kTypeZmm))
out->remove(Features::kAVX512_VL);
}
return kErrorOk;
}
#endif // !ASMJIT_NO_INTROSPECTION
// ============================================================================
// [asmjit::x86::InstInternal - Unit]
// ============================================================================
#if defined(ASMJIT_TEST)
UNIT(x86_inst_api_text) {
// All known instructions should be matched.
INFO("Matching all X86 instructions");
for (uint32_t a = 1; a < Inst::_kIdCount; a++) {
StringTmp<128> aName;
EXPECT(InstInternal::instIdToString(0, a, aName) == kErrorOk,
"Failed to get the name of instruction #%u", a);
uint32_t b = InstInternal::stringToInstId(0, aName.data(), aName.size());
StringTmp<128> bName;
InstInternal::instIdToString(0, b, bName);
EXPECT(a == b,
"Instructions do not match \"%s\" (#%u) != \"%s\" (#%u)", aName.data(), a, bName.data(), b);
}
}
#endif
ASMJIT_END_SUB_NAMESPACE
#endif // ASMJIT_BUILD_X86