This patch simplifies VPSlotTracker by using the recursive traversal
iterator to traverse all blocks in a VPlan in reverse post-order when
numbering VPValues in a plan.
This depends on a fix to RPOT (D100169). It also extends the traversal
unit tests to check RPOT.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D100176
When iterating over const blocks, the base type in the lambdas needs
to use const VPBlockBase *, otherwise it cannot be used with input
iterators over const VPBlockBase.
Also adjust the type of the input iterator range to const &, as it
does not take ownership of the input range.
This patch adds a blocksOnly helpers which take an iterator range
over VPBlockBase * or const VPBlockBase * and returns an interator
range that only include BlockTy blocks. The accesses are casted to
BlockTy.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D101093
This patch adds a new iterator to traverse through VPRegionBlocks and a
GraphTraits specialization using the iterator to traverse through
VPRegionBlocks.
Because there is already a GraphTraits specialization for VPBlockBase *
and co, a new VPBlockRecursiveTraversalWrapper helper is introduced.
This allows us to provide a new GraphTraits specialization for that
type. Users can use the new recursive traversal by using this wrapper.
The graph trait visits both the entry block of a region, as well as all
its successors. Exit blocks of a region implicitly have their parent
region's successors. This ensures all blocks in a region are visited
before any blocks in a successor region when doing a reverse post-order
traversal of the graph.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D100175
We can skip check for undefs trying to find perfect/shuffled tree
entries matching, they can be ignored completely improving the final
cost/vectorization results.
Differential Revision: https://reviews.llvm.org/D101061
This commit fixes a bug where the loop vectoriser fails to predicate
loads/stores when interleaving for targets that support masked
loads and stores.
Code such as:
1 void foo(int *restrict data1, int *restrict data2)
2 {
3 int counter = 1024;
4 while (counter--)
5 if (data1[counter] > data2[counter])
6 data1[counter] = data2[counter];
7 }
... could previously be transformed in such a way that the predicated
store implied by:
if (data1[counter] > data2[counter])
data1[counter] = data2[counter];
... was lost, resulting in miscompiles.
This bug was causing some tests in llvm-test-suite to fail when built
for SVE.
Differential Revision: https://reviews.llvm.org/D99569
1. No need to call `areAllUsersVectorized` as later the cost is
calculated only if the instruction has one use and gets vectorized.
2. Need to calculate the cost of the dead extractelement more precisely,
taking the vector type of the vector operand, not the resulting
vector type.
Part of D57059.
Differential Revision: https://reviews.llvm.org/D99980
In quite a few cases in LoopVectorize.cpp we call createStepForVF
with a step value of 0, which leads to unnecessary generation of
llvm.vscale intrinsic calls. I've optimised IRBuilder::CreateVScale
and createStepForVF to return 0 when attempting to multiply
vscale by 0.
Differential Revision: https://reviews.llvm.org/D100763
SLP supports perfect diamond matching for the vectorized tree entries
but do not support it for gathered entries and does not support
non-perfect (shuffled) matching with 1 or 2 tree entries. Patch adds
support for this matching to improve cost of the vectorized tree.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D100495
SLP supports perfect diamond matching for the vectorized tree entries
but do not support it for gathered entries and does not support
non-perfect (shuffled) matching with 1 or 2 tree entries. Patch adds
support for this matching to improve cost of the vectorized tree.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D100495
SLP supports perfect diamond matching for the vectorized tree entries
but do not support it for gathered entries and does not support
non-perfect (shuffled) matching with 1 or 2 tree entries. Patch adds
support for this matching to improve cost of the vectorized tree.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D100495
Rather than maintaining two separate values, a `float` for the per-lane
cost and a Width for the VF, maintain a single VectorizationFactor which
comprises the two and also removes the need for converting an integer value
to float.
This simplifies the query when asking if one VF is more profitable than
another when we want to extend this for scalable vectors (which may
require additional options to determine if e.g. a scalable VF of the
some cost, is more profitable than a fixed VF of the same cost).
The patch isn't entirely NFC because it also fixes an issue in
selectEpilogueVectorizationFactor, where the cost passed to ProfitableVFs
no longer truncates the floating-point cost from `float` to `unsigned` to
then perform the calculation on the truncated cost. It now does
a cost comparison with the correct precision.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D100121
SLP supports perfect diamond matching for the vectorized tree entries
but do not support it for gathered entries and does not support
non-perfect (shuffled) matching with 1 or 2 tree entries. Patch adds
support for this matching to improve cost of the vectorized tree.
Differential Revision: https://reviews.llvm.org/D100495
Add an initial version of a helper to determine whether a recipe may
have side-effects.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D100259
There were a few places in widenPHIInstruction where calculations of
offsets were failing to take the runtime calculation of VF into
account for scalable vectors. I've fixed those cases in this patch
as well as adding an assert that we should not be scalarising for
scalable vectors.
Tests are added here:
Transforms/LoopVectorize/AArch64/sve-widen-phi.ll
Differential Revision: https://reviews.llvm.org/D99254
There are a few places in LoopVectorize.cpp where we have been too
cautious in adding VF.isScalable() asserts and it can be confusing.
It also makes it more difficult to see the genuine places where
work needs doing to improve scalable vectorization support.
This patch changes getMemInstScalarizationCost to return an
invalid cost instead of firing an assert for scalable vectors. Also,
vectorizeInterleaveGroup had multiple asserts all for the same
thing. I have removed all but one assert near the start of the
function, and added a new assert that we aren't dealing with masks
for scalable vectors.
Differential Revision: https://reviews.llvm.org/D99727
Only attempt to propagateIRFlags if we have both SelectInst - afaict we shouldn't have matched a min/max reduction without both SelectInst, but static analyzer doesn't know that.
Main reason is preparation to transform AliasResult to class that contains
offset for PartialAlias case.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D98027
Instead of passing the start value and the defined value to
widenPHIInstruction, pass the VPWidenPHIRecipe directly, which can be
used to get both (and more in future patches).
D99674 stopped the folding of certain select operations into and/or, due
to incorrect folding in the presence of poison. D97360 added some costs
to attempt to account for the change, but only worked at the getUserCost
level, not the getCmpSelInstrCost that the vectorizer will use directly.
This adds similar logic into the vectorizer to handle these logical
and/or selects, treating them like and/or directly.
This fixes 60% performance regressions from code like the attached test
case.
Differential Revision: https://reviews.llvm.org/D99884
No need to lookup through and/or try to vectorize operands of the
CmpInst instructions during attempts to find/vectorize min/max
reductions. Compiler implements postanalysis of the CmpInsts so we can
skip extra attempts in tryToVectorizeHorReductionOrInstOperands and save
compile time.
Differential Revision: https://reviews.llvm.org/D99950
Add the subclass, update a few places which check for the intrinsic to use idiomatic dyn_cast, and update the public interface of AssumptionCache to use the new class. A follow up change will do the same for the newer assumption query/bundle mechanisms.
Previously we could only vectorize FP reductions if fast math was enabled, as this allows us to
reorder FP operations. However, it may still be beneficial to vectorize the loop by moving
the reduction inside the vectorized loop and making sure that the scalar reduction value
be an input to the horizontal reduction, e.g:
%phi = phi float [ 0.0, %entry ], [ %reduction, %vector_body ]
%load = load <8 x float>
%reduction = call float @llvm.vector.reduce.fadd.v8f32(float %phi, <8 x float> %load)
This patch adds a new flag (IsOrdered) to RecurrenceDescriptor and makes use of the changes added
by D75069 as much as possible, which already teaches the vectorizer about in-loop reductions.
For now in-order reduction support is off by default and controlled with the `-enable-strict-reductions` flag.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D98435
Changes getRecurrenceIdentity to always return a neutral value of -0.0 for FAdd.
Reviewed By: dmgreen, spatel
Differential Revision: https://reviews.llvm.org/D98963
For VPWidenPHIRecipes that model all incoming values as VPValue
operands, print those operands instead of printing the original PHI.
D99294 updates recipes of reduction PHIs to use the VPValue for the
incoming value from the loop backedge, making use of this new printing.
During vectorization better to postpone the vectorization of the CmpInst
instructions till the end of the basic block. Otherwise we may vectorize
it too early and may miss some vectorization patterns, like reductions.
Reworked part of D57059
Differential Revision: https://reviews.llvm.org/D99796
This patch moves mapping of IR operands to VPValues out of
tryToCreateWidenRecipe. This allows using existing VPValue operands when
widening recipes directly, which will be introduced in future patches.
The ultimate reduction node may have multiple uses, but if the ultimate
reduction is min/max reduction and based on SelectInstruction, the
condition of this select instruction must have only single use.
Differential Revision: https://reviews.llvm.org/D99753
The motivation for this patch is to better estimate the cost of
extracelement instructions in cases were they are going to be free,
because the source vector can be used directly.
A simple example is
%v1.lane.0 = extractelement <2 x double> %v.1, i32 0
%v1.lane.1 = extractelement <2 x double> %v.1, i32 1
%a.lane.0 = fmul double %v1.lane.0, %x
%a.lane.1 = fmul double %v1.lane.1, %y
Currently we only consider the extracts free, if there are no other
users.
In this particular case, on AArch64 which can fit <2 x double> in a
vector register, the extracts should be free, independently of other
users, because the source vector of the extracts will be in a vector
register directly, so it should be free to use the vector directly.
The SLP vectorized version of noop_extracts_9_lanes is 30%-50% faster on
certain AArch64 CPUs.
It looks like this does not impact any code in
SPEC2000/SPEC2006/MultiSource both on X86 and AArch64 with -O3 -flto.
This originally regressed after D80773, so if there's a better
alternative to explore, I'd be more than happy to do that.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D99719
1. Need to cleanup InstrElementSize map for each new tree, otherwise might
use sizes from the previous run of the vectorization attempt.
2. No need to include into analysis the instructions from the different basic
blocks to save compile time.
Differential Revision: https://reviews.llvm.org/D99677
Use SetVector instead of SmallPtrSet to track values with uniform use. Doing this
can help avoid non-determinism caused by iterating over unordered containers.
This bug was found with reverse iteration turning on,
--extra-llvm-cmake-variables="-DLLVM_REVERSE_ITERATION=ON".
Failing LLVM test consecutive-ptr-uniforms.ll .
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99549
This marks FSIN and other operations to EXPAND for scalable
vectors, so that they are not assumed to be legal by the cost-model.
Depends on D97470
Reviewed By: dmgreen, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D97471
Use SetVector instead of SmallPtrSet for external definitions created for VPlan.
Doing this can help avoid non-determinism caused by iterating over unordered containers.
This bug was found with reverse iteration turning on,
--extra-llvm-cmake-variables="-DLLVM_REVERSE_ITERATION=ON".
Failing LLVM-Unit test VPRecipeTest.dump.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99544
This patch adds support for the vectorization of induction variables when
using scalable vectors, which required the following changes:
1. Removed assert from InnerLoopVectorizer::getStepVector.
2. Modified InnerLoopVectorizer::createVectorIntOrFpInductionPHI to use
a runtime determined value for VF and removed an assert.
3. Modified InnerLoopVectorizer::buildScalarSteps to work for scalable
vectors. I did this by calculating the full vector value for each Part
of the unroll factor (UF) and caching this in the VP state. This means
that we are always able to extract an arbitrary element from the vector
if necessary. In addition to this, I also permitted the caching of the
individual lane values themselves for the known minimum number of elements
in the same way we do for fixed width vectors. This is a further
optimisation that improves the code quality since it avoids unnecessary
extractelement operations when extracting the first lane.
4. Added an assert to InnerLoopVectorizer::widenPHIInstruction, since while
testing some code paths I noticed this is currently broken for scalable
vectors.
Various tests to support different cases have been added here:
Transforms/LoopVectorize/AArch64/sve-inductions.ll
Differential Revision: https://reviews.llvm.org/D98715
Re-apply 25fbe803d4db, with a small update to emit the right remark
class.
Original message:
[LV] Move runtime pointer size check to LVP::plan().
This removes the need for the remaining doesNotMeet check and instead
directly checks if there are too many runtime checks for vectorization
in the planner.
A subsequent patch will adjust the logic used to decide whether to
vectorize with runtime to consider their cost more accurately.
Reviewed By: lebedev.ri