Commit Graph

82 Commits

Author SHA1 Message Date
Guozhi Wei
5c5643c0c8 [TargetTransformInfo] Add a new public interface getInstructionCost
Current TargetTransformInfo can support throughput cost model and code size model, but sometimes we also need instruction latency cost model in different optimizations. Hal suggested we need a single public interface to query the different cost of an instruction. So I proposed following interface:

  enum TargetCostKind {
    TCK_RecipThroughput, ///< Reciprocal throughput.
    TCK_Latency,         ///< The latency of instruction.
    TCK_CodeSize         ///< Instruction code size.
  };

  int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const;

All clients should mainly use this function to query the cost of an instruction, parameter <kind> specifies the desired cost model.

This patch also provides a simple default implementation of getInstructionLatency.

The default getInstructionLatency provides latency numbers for only small number of instruction classes, those latency numbers are only reasonable for modern OOO processors. It can be extended in following ways:

   Add more detail into this function.
   Add getXXXLatency function and call it from here.
   Implement target specific getInstructionLatency function.

Differential Revision: https://reviews.llvm.org/D37170

llvm-svn: 312832
2017-09-08 22:29:17 +00:00
Alexey Bataev
182cf8e3c6 [SLP] Support for horizontal min/max reduction.
SLP vectorizer supports horizontal reductions for Add/FAdd binary
operations. Patch adds support for horizontal min/max reductions.
Function getReductionCost() is split to getArithmeticReductionCost() for
binary operation reductions and getMinMaxReductionCost() for min/max
reductions.
Patch fixes PR26956.

Differential revision: https://reviews.llvm.org/D27846

llvm-svn: 312791
2017-09-08 13:49:36 +00:00
Jonas Paulsson
54a000e514 [LSR / TTI / SystemZ] Eliminate TargetTransformInfo::isFoldableMemAccess()
isLegalAddressingMode() has recently gained the extra optional Instruction*
parameter, and therefore it can now do the job that previously only
isFoldableMemAccess() could do.

The SystemZ implementation of isLegalAddressingMode() has gained the
functionality of checking for offsets, which used to be done with
isFoldableMemAccess().

The isFoldableMemAccess() hook has been removed everywhere.

Review: Quentin Colombet, Ulrich Weigand
https://reviews.llvm.org/D35933

llvm-svn: 310463
2017-08-09 11:28:01 +00:00
Alexey Bataev
55309303be [Cost] Rename getReductionCost() to getArithmeticReductionCost(), NFC.
llvm-svn: 309563
2017-07-31 14:19:32 +00:00
Simon Pilgrim
f4a55e1634 Fix spelling in comments. NFCI.
llvm-svn: 308877
2017-07-24 12:44:35 +00:00
Jonas Paulsson
c38a4eb7d4 [SystemZ, LoopStrengthReduce]
This patch makes LSR generate better code for SystemZ in the cases of memory
intrinsics, Load->Store pairs or comparison of immediate with memory.

In order to achieve this, the following common code changes were made:

 * New TTI hook: LSRWithInstrQueries(), which defaults to false. Controls if
 LSR should do instruction-based addressing evaluations by calling
 isLegalAddressingMode() with the Instruction pointers.
 * In LoopStrengthReduce: handle address operands of memset, memmove and memcpy
 as address uses, and call isFoldableMemAccessOffset() for any LSRUse::Address,
 not just loads or stores.

SystemZ changes:

 * isLSRCostLess() implemented with Insns first, and without ImmCost.
 * New function supportedAddressingMode() that is a helper for TTI methods
 looking at Instructions passed via pointers.

Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D35262
https://reviews.llvm.org/D35049

llvm-svn: 308729
2017-07-21 11:59:37 +00:00
Haicheng Wu
907a054583 [TTI] Refine the cost of EXT in getUserCost()
Now, getUserCost() only checks the src and dst types of EXT to decide it is free
or not. This change first checks the types, then calls isExtFreeImpl(), and
check if EXT can form ExtLoad at last. Currently, only AArch64 has customized
implementation of isExtFreeImpl() to check if EXT can be folded into its use.

Differential Revision: https://reviews.llvm.org/D34458

llvm-svn: 308076
2017-07-15 02:12:16 +00:00
Craig Topper
86739c18e2 [IR] Make use of Type::isPtrOrPtrVectorTy/isIntOrIntVectorTy/isFPOrFPVectorTy to shorten code. NFC
llvm-svn: 307491
2017-07-09 07:04:00 +00:00
Geoff Berry
9c1c467f23 [LoopUnroll] Pass SCEV to getUnrollingPreferences hook. NFCI.
Reviewers: sanjoy, anna, reames, apilipenko, igor-laevsky, mkuper

Subscribers: jholewinski, arsenm, mzolotukhin, nemanjai, nhaehnle, javed.absar, mcrosier, llvm-commits

Differential Revision: https://reviews.llvm.org/D34531

llvm-svn: 306554
2017-06-28 15:53:17 +00:00
Alexander Timofeev
ca60194f1e DivergencyAnalysis patch for review
llvm-svn: 305494
2017-06-15 19:33:10 +00:00
Daniel Neilson
1fd6840870 Const correctness for TTI::getRegisterBitWidth
Summary: The method TargetTransformInfo::getRegisterBitWidth() is declared const, but the type erasing implementation classes (TargetTransformInfo::Concept & TargetTransformInfo::Model) that were introduced by Chandler in https://reviews.llvm.org/D7293 do not have the method declared const. This is an NFC to tidy up the const consistency between TTI and its implementation.

Reviewers: chandlerc, rnk, reames

Reviewed By: reames

Subscribers: reames, jfb, arsenm, dschuff, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, llvm-commits

Differential Revision: https://reviews.llvm.org/D33903

llvm-svn: 305189
2017-06-12 14:22:21 +00:00
Alexey Bataev
9ac515b1be [SLP] More comments fix, NFC.
Fixed spelling errors on function description.

llvm-svn: 304985
2017-06-08 16:41:35 +00:00
Alexey Bataev
98dd9a3fc5 [SLP] Comment fix, NFC.
Added a description of getReductionCost() function.

llvm-svn: 304938
2017-06-07 20:27:41 +00:00
Chandler Carruth
eb66b33867 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00
Evgeny Stupachenko
5e8ec36407 Fix PR23384 (part 2 of 3) NFC
Summary:
The patch moves LSR cost comparison to target part.

Reviewers: qcolombet

Differential Revision: http://reviews.llvm.org/D30561

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 304750
2017-06-05 23:37:00 +00:00
Jun Bum Lim
93f61e6588 [InlineCost] Improve the cost heuristic for Switch
Summary:
The motivation example is like below which has 13 cases but only 2 distinct targets

```
lor.lhs.false2:                                   ; preds = %if.then
  switch i32 %Status, label %if.then27 [
    i32 -7012, label %if.end35
    i32 -10008, label %if.end35
    i32 -10016, label %if.end35
    i32 15000, label %if.end35
    i32 14013, label %if.end35
    i32 10114, label %if.end35
    i32 10107, label %if.end35
    i32 10105, label %if.end35
    i32 10013, label %if.end35
    i32 10011, label %if.end35
    i32 7008, label %if.end35
    i32 7007, label %if.end35
    i32 5002, label %if.end35
  ]
```
which is compiled into a balanced binary tree like this on AArch64 (similar on X86)

```
.LBB853_9:                              // %lor.lhs.false2
        mov     w8, #10012
        cmp             w19, w8
        b.gt    .LBB853_14
// BB#10:                               // %lor.lhs.false2
        mov     w8, #5001
        cmp             w19, w8
        b.gt    .LBB853_18
// BB#11:                               // %lor.lhs.false2
        mov     w8, #-10016
        cmp             w19, w8
        b.eq    .LBB853_23
// BB#12:                               // %lor.lhs.false2
        mov     w8, #-10008
        cmp             w19, w8
        b.eq    .LBB853_23
// BB#13:                               // %lor.lhs.false2
        mov     w8, #-7012
        cmp             w19, w8
        b.eq    .LBB853_23
        b       .LBB853_3
.LBB853_14:                             // %lor.lhs.false2
        mov     w8, #14012
        cmp             w19, w8
        b.gt    .LBB853_21
// BB#15:                               // %lor.lhs.false2
        mov     w8, #-10105
        add             w8, w19, w8
        cmp             w8, #9          // =9
        b.hi    .LBB853_17
// BB#16:                               // %lor.lhs.false2
        orr     w9, wzr, #0x1
        lsl     w8, w9, w8
        mov     w9, #517
        and             w8, w8, w9
        cbnz    w8, .LBB853_23
.LBB853_17:                             // %lor.lhs.false2
        mov     w8, #10013
        cmp             w19, w8
        b.eq    .LBB853_23
        b       .LBB853_3
.LBB853_18:                             // %lor.lhs.false2
        mov     w8, #-7007
        add             w8, w19, w8
        cmp             w8, #2          // =2
        b.lo    .LBB853_23
// BB#19:                               // %lor.lhs.false2
        mov     w8, #5002
        cmp             w19, w8
        b.eq    .LBB853_23
// BB#20:                               // %lor.lhs.false2
        mov     w8, #10011
        cmp             w19, w8
        b.eq    .LBB853_23
        b       .LBB853_3
.LBB853_21:                             // %lor.lhs.false2
        mov     w8, #14013
        cmp             w19, w8
        b.eq    .LBB853_23
// BB#22:                               // %lor.lhs.false2
        mov     w8, #15000
        cmp             w19, w8
        b.ne    .LBB853_3
```
However, the inline cost model estimates the cost to be linear with the number
of distinct targets and the cost of the above switch is just 2 InstrCosts.
The function containing this switch is then inlined about 900 times.

This change use the general way of switch lowering for the inline heuristic. It
etimate the number of case clusters with the suitability check for a jump table
or bit test. Considering the binary search tree built for the clusters, this
change modifies the model to be linear with the size of the balanced binary
tree. The model is off by default for now :
  -inline-generic-switch-cost=false

This change was originally proposed by Haicheng in D29870.

Reviewers: hans, bmakam, chandlerc, eraman, haicheng, mcrosier

Reviewed By: hans

Subscribers: joerg, aemerson, llvm-commits, rengolin

Differential Revision: https://reviews.llvm.org/D31085

llvm-svn: 301649
2017-04-28 16:04:03 +00:00
Jonas Paulsson
90b172efa0 [SystemZ] TargetTransformInfo cost functions implemented.
getArithmeticInstrCost(), getShuffleCost(), getCastInstrCost(),
getCmpSelInstrCost(), getVectorInstrCost(), getMemoryOpCost(),
getInterleavedMemoryOpCost() implemented.

Interleaved access vectorization enabled.

BasicTTIImpl::getCastInstrCost() improved to check for legal extending loads,
in which case the cost of the z/sext instruction becomes 0.

Review: Ulrich Weigand, Renato Golin.
https://reviews.llvm.org/D29631

llvm-svn: 300052
2017-04-12 11:49:08 +00:00
Jonas Paulsson
2ad0eeeb69 [BasicTTIImpl] Bugfix in getIntrinsicInstrCost()
Don't call getScalarizationOverhead(RetTy, true, false) if RetTy is void type.

Review: Hal Finkel
https://reviews.llvm.org/D31024

llvm-svn: 297954
2017-03-16 14:05:34 +00:00
Jonas Paulsson
42e7a2d74b [TargetTransformInfo] getIntrinsicInstrCost() scalarization estimation improved
getIntrinsicInstrCost() used to only compute scalarization cost based on types.
This patch improves this so that the actual arguments are checked when they are
available, in order to handle only unique non-constant operands.

Tests updates:

Analysis/CostModel/X86/arith-fp.ll
Transforms/LoopVectorize/AArch64/interleaved_cost.ll
Transforms/LoopVectorize/ARM/interleaved_cost.ll

The improvement in getOperandsScalarizationOverhead() to differentiate on
constants made it necessary to update the interleaved_cost.ll tests even
though they do not relate to intrinsics.

Review: Hal Finkel
https://reviews.llvm.org/D29540

llvm-svn: 297705
2017-03-14 06:35:36 +00:00
Matt Arsenault
dd128e79e5 NVPTX: Refactor NVPTXInferAddressSpaces to check TTI
Add a new TTI hook for getting the generic address space value.

llvm-svn: 293563
2017-01-30 23:02:12 +00:00
Jonas Paulsson
1dc6fdc89f [TargetTransformInfo] Refactor and improve getScalarizationOverhead()
Refactoring to remove duplications of this method.

New method getOperandsScalarizationOverhead() that looks at the present unique
operands and add extract costs for them. Old behaviour was to just add extract
costs for one operand of the type always, which still happens in
getArithmeticInstrCost() if no operands are provided by the caller.

This is a good start of improving on this, but there are more places
that can be improved by using getOperandsScalarizationOverhead().

Review: Hal Finkel
https://reviews.llvm.org/D29017

llvm-svn: 293155
2017-01-26 07:03:25 +00:00
Mohammed Agabaria
df301aa885 [X86] updating TTI costs for arithmetic instructions on X86\SLM arch.
updated instructions:
pmulld, pmullw, pmulhw, mulsd, mulps, mulpd, divss, divps, divsd, divpd, addpd and subpd.

special optimization case which replaces pmulld with pmullw\pmulhw\pshuf seq. 
In case if the real operands bitwidth <= 16.

Differential Revision: https://reviews.llvm.org/D28104 

llvm-svn: 291657
2017-01-11 08:23:37 +00:00
Mohammed Agabaria
caef091029 Currently isLikelyComplexAddressComputation tries to figure out if the given stride seems to be 'complex' and need some extra cost for address computation handling.
This code seems to be target dependent which may not be the same for all targets.
Passed the decision whether the given stride is complex or not to the target by sending stride information via SCEV to getAddressComputationCost instead of 'IsComplex'.

Specifically at X86 targets we dont see any significant address computation cost in case of the strided access in general.

Differential Revision: https://reviews.llvm.org/D27518

llvm-svn: 291106
2017-01-05 14:03:41 +00:00
Elena Demikhovsky
ac6dc0e1f0 AVX-512 Loop Vectorizer: Cost calculation for interleave load/store patterns.
X86 target does not provide any target specific cost calculation for interleave patterns.It uses the common target-independent calculation, which gives very high numbers. As a result, the scalar version is chosen in many cases. The situation on AVX-512 is even worse, since we have 3-src shuffles that significantly reduce the cost.

In this patch I calculate the cost on AVX-512. It will allow to compare interleave pattern with gather/scatter and choose a better solution (PR31426).

* Shiffle-broadcast cost will be changed in Simon's upcoming patch.

Differential Revision: https://reviews.llvm.org/D28118

llvm-svn: 290810
2017-01-02 10:37:52 +00:00
Alexey Bataev
7135b5ad24 [SLP] Fixed cost model for horizontal reduction.
Currently when cost of scalar operations is evaluated the vector type is
used for scalar operations. Patch fixes this issue and fixes evaluation
of the vector operations cost.
Several test showed that vector cost model is too optimistic. It
allowed vectorization of 8 or less add/fadd operations, though scalar
code is faster. Actually, only for 16 or more operations vector code
provides better performance.

Differential Revision: https://reviews.llvm.org/D26277

llvm-svn: 288398
2016-12-01 18:42:42 +00:00
Evgeny Stupachenko
61643c59a4 Minor unroll pass refacoring.
Summary:
Unrolled Loop Size calculations moved to a function.
Constant representing number of optimized instructions
 when "back edge" becomes "fall through" replaced with
 variable.
Some comments added.

Reviewers: mzolotukhin

Differential Revision: http://reviews.llvm.org/D21719

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 286389
2016-11-09 19:56:39 +00:00
Benjamin Kramer
c2de5980d3 Do a sweep over move ctors and remove those that are identical to the default.
All of these existed because MSVC 2013 was unable to synthesize default
move ctors. We recently dropped support for it so all that error-prone
boilerplate can go.

No functionality change intended.

llvm-svn: 284721
2016-10-20 12:20:28 +00:00
Haicheng Wu
5b13afc1d2 Reapply "[LoopUnroll] Use the upper bound of the loop trip count to fullly unroll a loop"
Reappy r284044 after revert in r284051. Krzysztof fixed the error in r284049.

The original summary:

This patch tries to fully unroll loops having break statement like this

for (int i = 0; i < 8; i++) {
    if (a[i] == value) {
        found = true;
        break;
    }
}

GCC can fully unroll such loops, but currently LLVM cannot because LLVM only
supports loops having exact constant trip counts.

The upper bound of the trip count can be obtained from calling
ScalarEvolution::getMaxBackedgeTakenCount(). Part of the patch is the
refactoring work in SCEV to prevent duplicating code.

The feature of using the upper bound is enabled under the same circumstance
when runtime unrolling is enabled since both are used to unroll loops without
knowing the exact constant trip count.

llvm-svn: 284053
2016-10-12 21:29:38 +00:00
Haicheng Wu
9079316128 Revert "[LoopUnroll] Use the upper bound of the loop trip count to fullly unroll a loop"
This reverts commit r284044.

llvm-svn: 284051
2016-10-12 21:02:22 +00:00
Haicheng Wu
3e43a84017 [LoopUnroll] Use the upper bound of the loop trip count to fullly unroll a loop
This patch tries to fully unroll loops having break statement like this

for (int i = 0; i < 8; i++) {
    if (a[i] == value) {
        found = true;
        break;
    }
}

GCC can fully unroll such loops, but currently LLVM cannot because LLVM only
supports loops having exact constant trip counts.

The upper bound of the trip count can be obtained from calling
ScalarEvolution::getMaxBackedgeTakenCount(). Part of the patch is the
refactoring work in SCEV to prevent duplicating code.

The feature of using the upper bound is enabled under the same circumstance
when runtime unrolling is enabled since both are used to unroll loops without
knowing the exact constant trip count.

Differential Revision: https://reviews.llvm.org/D24790

llvm-svn: 284044
2016-10-12 20:24:32 +00:00
Michael Zolotukhin
8f5cdd38cc [LoopUnroll] By default disable unrolling when optimizing for size.
Summary:
In clang commit r268509 we started to invoke loop-unroll pass from the
driver even under -Os. However, we happen to not initialize optsize
thresholds properly, which si fixed with this change.

r268509 led to some big compile time regressions, because we started to
unroll some loops that we didn't unroll before. With this change I hope
to recover most of the regressions. We still are slightly slower than
before, because we do some checks here and there in loop-unrolling
before we bail out, but at least the slowdown is not that huge now.

Reviewers: hfinkel, chandlerc

Subscribers: mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D23388

llvm-svn: 279585
2016-08-23 23:13:15 +00:00
Jonas Paulsson
6ae041f182 [LoopStrenghtReduce] Refactoring and addition of a new target cost function.
Refactored so that a LSRUse owns its fixups, as oppsed to letting the
LSRInstance own them. This makes it easier to rate formulas for
LSRUses, since the fixups are available directly. The Offsets vector
has been removed since it was no longer necessary.

New target hook isFoldableMemAccessOffset(), which is used during formula
rating.

For SystemZ, this is useful to express that loads and stores with
float or vector types with a big/negative offset should be avoided in
loops. Without this, LSR will generate a lot of negative offsets that
would require extra instructions for loading the address.

Updated tests:
test/CodeGen/SystemZ/loop-01.ll

Reviewed by: Quentin Colombet and Ulrich Weigand.
https://reviews.llvm.org/D19152

llvm-svn: 278927
2016-08-17 13:24:19 +00:00
Alina Sbirlea
6b31c219ab LoadStoreVectorizer: Remove TargetBaseAlign. Keep alignment for stack adjustments.
Summary:
TargetBaseAlign is no longer required since LSV checks if target allows misaligned accesses.
A constant defining a base alignment is still needed for stack accesses where alignment can be adjusted.

Previous patch (D22936) was reverted because tests were failing. This patch also fixes the cause of those failures:
- x86 failing tests either did not have the right target, or the right alignment.
- NVPTX failing tests did not have the right alignment.
- AMDGPU failing test (merge-stores) should allow vectorization with the given alignment but the target info
  considers <3xi32> a non-standard type and gives up early. This patch removes the condition and only checks
  for a maximum size allowed and relies on the next condition checking for %4 for correctness.
  This should be revisited to include 3xi32 as a MVT type (on arsenm's non-immediate todo list).

Note that checking the sizeInBits for a MVT is undefined (leads to an assertion failure),
so we need to create an EVT, hence the interface change in allowsMisaligned to include the Context.

Reviewers: arsenm, jlebar, tstellarAMD

Subscribers: jholewinski, arsenm, mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D23068

llvm-svn: 277735
2016-08-04 16:38:44 +00:00
Alina Sbirlea
7abab61a0e Add TLI.allowsMisalignedMemoryAccesses to LoadStoreVectorizer
Summary: Extend TTI to access TLI.allowsMisalignedMemoryAccesses(). Check condition when vectorizing load and store chains.
Add additional parameters: AddressSpace, Alignment, Fast.

Reviewers: llvm-commits, jlebar

Subscribers: arsenm, mzolotukhin

Differential Revision: http://reviews.llvm.org/D21935

llvm-svn: 275100
2016-07-11 20:46:17 +00:00
Jingyue Wu
b8fbccd103 [TTI] Expose TTI::getGEPCost and use it in SLSR and NaryReassociate.
NFC.

llvm-svn: 274940
2016-07-08 21:48:05 +00:00
Michael Kuperstein
d59d4568d1 [TTI] The cost model should not assume vector casts get completely scalarized
The cost model should not assume vector casts get completely scalarized, since
on targets that have vector support, the common case is a partial split up to
the legal vector size. So, when a vector cast  gets split, the resulting casts
end up legal and cheap.

Instead of pessimistically assuming scalarization, base TTI can use the costs
the concrete TTI provides for the split vector, plus a fudge factor to account
for the cost of the split itself. This fudge factor is currently 1 by default,
except on AMDGPU where inserts and extracts are considered free.

Differential Revision: http://reviews.llvm.org/D21251

llvm-svn: 274642
2016-07-06 17:30:56 +00:00
Michael Kuperstein
57fc4a3484 [X86] Add costs for SSE zext/sext to v4i64 to TTI
The costs are somewhat hand-wavy, but should be much closer to the truth
than what we get from BasicTTI.

Differential Revision: http://reviews.llvm.org/D21156

llvm-svn: 272406
2016-06-10 17:01:05 +00:00
Matthew Simpson
636c8f88f9 Reapply "[TTI] Refine default cost for interleaved load groups with gaps"
This reapplies commit r272385 with a fix. The build was failing when compiled
with gcc, but not with clang. With the fix, we now get the data layout from the
current TTI implementation, which will hopefully solve the issue.

llvm-svn: 272395
2016-06-10 14:33:30 +00:00
Matthew Simpson
9e433fdf08 Revert "[TTI] Refine default cost for interleaved load groups with gaps"
This reverts commit r272385. This commit broke the build. I'm temporarily
reverting to investigate.

llvm-svn: 272391
2016-06-10 12:41:33 +00:00
Matthew Simpson
56c57993a7 [TTI] Refine default cost for interleaved load groups with gaps
This patch refines the default cost for interleaved load groups having gaps. If
a load group has gaps, the legalized instructions corresponding to the unused
elements will be dead. Thus, we don't need to account for them in the cost
model. Instead, we only need to account for the fraction of legalized loads
that will actually be used.

Differential Revision: http://reviews.llvm.org/D20873

llvm-svn: 272385
2016-06-10 11:27:51 +00:00
Matthew Simpson
995eceaf0c [TTI] Add hook for vector extract with extension
This change adds a new hook for estimating the cost of vector extracts followed
by zero- and sign-extensions. The motivating example for this change is the
SMOV and UMOV instructions on AArch64. These instructions move data from vector
to general purpose registers while performing the corresponding extension
(sign-extend for SMOV and zero-extend for UMOV) at the same time. For these
operations, TargetTransformInfo can assume the extensions are free and only
report the cost of the vector extract. The SLP vectorizer has been updated to
make use of the new hook.

Differential Revision: http://reviews.llvm.org/D18523

llvm-svn: 267725
2016-04-27 15:20:21 +00:00
Justin Lebar
5824577459 [TTI] Add getInliningThresholdMultiplier.
Summary:
InlineCost's threshold is multiplied by this value.  This lets us adjust
the inlining threshold up or down on a per-target basis.  For example,
we might want to increase the threshold on targets where calls are
unusually expensive.

Reviewers: chandlerc

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D18560

llvm-svn: 266405
2016-04-15 01:38:48 +00:00
David Majnemer
d2ed420815 [CodeGen] Teach LLVM how to lower @llvm.{min,max}num to {MIN,MAX}NAN
The behavior of {MIN,MAX}NAN differs from that of {MIN,MAX}NUM when only
one of the inputs is NaN: -NUM will return the non-NaN argument while
-NAN would return NaN.

It is desirable to lower to @llvm.{min,max}num to -NAN if they don't
have a native instruction for -NUM.  Notably, ARMv7 NEON's vmin has the
-NAN semantics.

N.B.  Of course, it is only safe to do this if the intrinsic call is
marked nnan.

llvm-svn: 266279
2016-04-14 07:13:24 +00:00
Benjamin Kramer
40fc84b1be [TTI] Let the cost model estimate ctpop costs based on legality
PPC has a vector popcount, this lets the vectorizer use the correct cost
for it. Tweak X86 test to use an intrinsic that's actually scalarized (we
have a somewhat efficient lowering for vector popcount using SSE, the
cost model finds that now).

llvm-svn: 265005
2016-03-31 10:42:40 +00:00
Matt Arsenault
1c86c8a2a7 TTI: Report 0 cost for free addrspacecasts
llvm-svn: 264369
2016-03-25 00:26:29 +00:00
Matt Arsenault
ab1f6bea74 TTI: Use 0 for cost of fabs if free
Ideally this would also happen for fneg, but that
isn't a distinct operation in the IR.

llvm-svn: 264368
2016-03-25 00:26:22 +00:00
Sanjay Patel
555f8f6937 fix typo; NFC
llvm-svn: 262961
2016-03-08 21:41:13 +00:00
Matt Arsenault
afff6cfef0 TTI: Fix not using overload of getIntrinsicInstrCost
This was always calling the generic version, so the target
custom implementation was never called.

llvm-svn: 262585
2016-03-03 05:43:49 +00:00
Elena Demikhovsky
3ed0b3c7f1 Implemented cost model for masked gather and scatter operations
The cost is calculated for all X86 targets. When gather/scatter instruction
is not supported we calculate the cost of scalar sequence.

Differential revision: http://reviews.llvm.org/D15677

llvm-svn: 256519
2015-12-28 20:10:59 +00:00
Cong Hou
cc25d3b7d5 Don't punish vectorized arithmetic instruction whose type will be split to multiple registers
Currently in LLVM's cost model, a vectorized arithmetic instruction will have
high cost if its type is split into multiple registers. However, this
punishment is too heavy and unnecessary. The overhead of the split should not
be on arithmetic instructions but instructions that implement the split. Note
that during vectorization we have calculated the register pressure, and we
only choose proper interleaving factor (and also vectorization factor) so
that we don't use more registers than the maximum number.

Here is a very simple example: if a vadd has the cost 1, and if we double VF
so that we need two registers to perform it, then its cost will become 4 with
the current implementation, which will prevent us to use larger VF.


Differential revision: http://reviews.llvm.org/D15159

llvm-svn: 254671
2015-12-04 00:36:58 +00:00