Commit Graph

72 Commits

Author SHA1 Message Date
Alina Sbirlea
bf65988660 Refactor collectChildrenInLoop to LoopUtils [NFC]
Summary: Move to LoopUtils method that collects all children of a node inside a loop.

Reviewers: majnemer, sanjoy

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D37870

llvm-svn: 313322
2017-09-15 00:04:16 +00:00
Alina Sbirlea
56413b9615 Make promoteLoopAccessesToScalars independent of AliasSet [NFC]
Summary:
The current promoteLoopAccessesToScalars method receives an AliasSet, but
the information used is in fact a list of Value*, known to must alias.
Create the list ahead of time to make this method independent of the AliasSet class.

While there is no functionality change, this adds overhead for creating
a set of Value*, when promotion would normally exit earlier.
This is meant to be as a first refactoring step in order to start replacing
AliasSetTracker with MemorySSA.
And while the end goal is to redesign LICM, the first few steps will focus on
adding MemorySSA as an alternative to the AliasSetTracker using most of the
existing functionality.

Reviewers: mkuper, danielcdh, dberlin

Subscribers: sanjoy, chandlerc, gberry, davide, llvm-commits

Differential Revision: https://reviews.llvm.org/D35439

llvm-svn: 313075
2017-09-12 21:18:44 +00:00
Dinar Temirbulatov
956df253a6 [LoopUtils] Add an extra parameter OpValue to propagateIRFlags function,
If OpValue is non-null, we only consider operations similar to OpValue
when intersecting.

Differential Revision: https://reviews.llvm.org/D35292

llvm-svn: 308428
2017-07-19 10:02:07 +00:00
Ayal Zaks
68a67b24b0 [LV] Sink casts to unravel first order recurrence
Check if a single cast is preventing handling a first-order-recurrence Phi,
because the scheduling constraints it imposes on the first-order-recurrence
shuffle are infeasible; but they can be made feasible by moving the cast
downwards. Record such casts and move them when vectorizing the loop.

Differential Revision: https://reviews.llvm.org/D33058

llvm-svn: 306884
2017-06-30 21:05:06 +00:00
Chandler Carruth
72cda64d90 [LoopSimplify] Re-instate r306081 with a bug fix w.r.t. indirectbr.
This was reverted in r306252, but I already had the bug fixed and was
just trying to form a test case.

The original commit factored the logic for forming dedicated exits
inside of LoopSimplify into a helper that could be used elsewhere and
with an approach that required fewer intermediate data structures. See
that commit for full details including the change to the statistic, etc.

The code looked fine to me and my reviewers, but in fact didn't handle
indirectbr correctly -- it left the 'InLoopPredecessors' vector dirty.

If you have code that looks *just* right, you can end up leaking these
predecessors into a subsequent rewrite, and crash deep down when trying
to update PHI nodes for predecessors that don't exist.

I've added an assert that makes the bug much more obvious, and then
changed the code to reliably clear the vector so we don't get this bug
again in some other form as the code changes.

I've also added a test case that *does* manage to catch this while also
giving some nice positive coverage in the face of indirectbr.

The real code that found this came out of what I think is CPython's
interpreter loop, but any code with really "creative" interpreter loops
mixing indirectbr and other exit paths could manage to tickle the bug.
I was hard to reduce the original test case because in addition to
having a particular pattern of IR, the whole thing depends on the order
of the predecessors which is in turn depends on use list order. The test
case added here was designed so that in multiple different predecessor
orderings it should always end up going down the same path and tripping
the same bug. I hope. At least, it tripped it for me without
manipulating the use list order which is better than anything bugpoint
could do...

llvm-svn: 306257
2017-06-25 22:45:31 +00:00
Daniel Jasper
ed17b2768a Revert "[LoopSimplify] Factor the logic to form dedicated exits into a utility."
This leads to a segfault. Chandler already has a test case and should be
able to recommit with a fix soon.

llvm-svn: 306252
2017-06-25 17:58:25 +00:00
Chandler Carruth
1d2606400e [LoopSimplify] Factor the logic to form dedicated exits into a utility.
I want to use the same logic as LoopSimplify to form dedicated exits in
another pass (SimpleLoopUnswitch) so I wanted to factor it out here.

I also noticed that there is a pretty significantly more efficient way
to implement this than the way the code in LoopSimplify worked. We don't
need to actually retain the set of unique exit blocks, we can just
rewrite them as we find them and use only a set to deduplicate.

This did require changing one part of LoopSimplify to not re-use the
unique set of exits, but it only used it to check that there was
a single unique exit. That part of the code is about to walk the exiting
blocks anyways, so it seemed better to rewrite it to use those exiting
blocks to compute this property on-demand.

I also had to ditch a statistic, but it doesn't seem terribly valuable.

Differential Revision: https://reviews.llvm.org/D34049

llvm-svn: 306081
2017-06-23 04:03:04 +00:00
Amara Emerson
668fbd4cf5 Add a late IR expansion pass for the experimental reduction intrinsics.
This pass uses a new target hook to decide whether or not to expand a particular
intrinsic to the shuffevector sequence.

Differential Revision: https://reviews.llvm.org/D32245

llvm-svn: 302631
2017-05-10 09:42:49 +00:00
Amara Emerson
59ff6c8c60 Introduce experimental generic intrinsics for horizontal vector reductions.
- This change allows targets to opt-in to using them instead of the log2
  shufflevector algorithm.
- The SLP and Loop vectorizers have the common code to do shuffle reductions
  factored out into LoopUtils, and now have a unified interface for generating
  reductions regardless of the preference of the target. LoopUtils now uses TTI
  to determine what kind of reductions the target wants to handle.
- For CodeGen, basic legalization support is added.

Differential Revision: https://reviews.llvm.org/D30086

llvm-svn: 302514
2017-05-09 10:43:25 +00:00
Evgeniy Stepanov
1f0bf5ac49 Revert "Compute safety information in a much finer granularity."
Use-after-free in llvm::isGuaranteedToExecute.

llvm-svn: 301214
2017-04-24 18:25:07 +00:00
Xin Tong
3093d25a9a Compute safety information in a much finer granularity.
Summary:
Instead of keeping a variable indicating whether there are early exits
in the loop.  We keep all the early exits. This improves LICM's ability to
move instructions out of the loop based on is-guaranteed-to-execute.

I am going to update compilation time as well soon.

Reviewers: hfinkel, sanjoy, efriedma, mkuper

Reviewed By: hfinkel

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D32433

llvm-svn: 301196
2017-04-24 17:12:22 +00:00
Eugene Zelenko
52e8fec8e7 [Transforms/Utils] Fix some Clang-tidy modernize and Include What You Use warnings; other minor fixes (NFC).
llvm-svn: 291983
2017-01-14 00:32:38 +00:00
Adam Nemet
8eb8ca7ca4 [LICM] Report failing to hoist a load with an invariant address
These are interesting because lack of precision in alias information
could be standing in the way of this optimization.

An example is the case in the test suite that I showed in the DevMeeting
talk:

http://lab.llvm.org:8080/artifacts/opt-view_test-suite/build/MultiSource/Benchmarks/FreeBench/distray/CMakeFiles/distray.dir/html/_org_test-suite_MultiSource_Benchmarks_FreeBench_distray_distray.c.html#L236

canSinkOrHoistInst is also used from LoopSink, which does not use
opt-remarks so we need to take ORE as an optional argument.

Differential Revision: https://reviews.llvm.org/D27939

llvm-svn: 291648
2017-01-11 04:39:45 +00:00
Adam Nemet
437d147df2 Fix typo in comment
llvm-svn: 291647
2017-01-11 04:39:41 +00:00
Adam Nemet
7d55194036 [LICM] Report successful hoist/sink/promotion
Differential Revision: https://reviews.llvm.org/D27938

llvm-svn: 291646
2017-01-11 04:39:35 +00:00
Daniel Jasper
162ffcacd6 Revert @llvm.assume with operator bundles (r289755-r289757)
This creates non-linear behavior in the inliner (see more details in
r289755's commit thread).

llvm-svn: 290086
2016-12-19 08:22:17 +00:00
Hal Finkel
f224db75d2 Remove the AssumptionCache
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...

llvm-svn: 289756
2016-12-15 03:02:15 +00:00
Simon Pilgrim
e116136251 Fix spelling mistakes in Transforms comments. NFC.
Identified by Pedro Giffuni in PR27636.

llvm-svn: 287488
2016-11-20 13:19:49 +00:00
Dehao Chen
63de4725df Use profile info to adjust loop unroll threshold.
Summary:
For flat loop, even if it is hot, it is not a good idea to unroll in runtime, thus we set a lower partial unroll threshold.
For hot loop, we set a higher unroll threshold and allows expensive tripcount computation to allow more aggressive unrolling.

Reviewers: davidxl, mzolotukhin

Subscribers: sanjoy, mehdi_amini, llvm-commits

Differential Revision: https://reviews.llvm.org/D26527

llvm-svn: 287186
2016-11-17 01:17:02 +00:00
Dehao Chen
ecb41605f5 Add Loop Sink pass to reverse the LICM based of basic block frequency.
Summary: LICM may hoist instructions to preheader speculatively. Before code generation, we need to sink down the hoisted instructions inside to loop if it's beneficial. This pass is a reverse of LICM: looking at instructions in preheader and sinks the instruction to basic blocks inside the loop body if basic block frequency is smaller than the preheader frequency.

Reviewers: hfinkel, davidxl, chandlerc

Subscribers: anna, modocache, mgorny, beanz, reames, dberlin, chandlerc, mcrosier, junbuml, sanjoy, mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D22778

llvm-svn: 285308
2016-10-27 16:30:08 +00:00
Dehao Chen
cde63257b5 revert r280429 and r280425:
r280425 | dehao | 2016-09-01 16:15:50 -0700 (Thu, 01 Sep 2016) | 9 lines

Refactor LICM pass in preparation for LoopSink pass.

Summary: LoopSink pass uses some common function in LICM. This patch refactor the LICM code to make it usable by LoopSink pass (https://reviews.llvm.org/D22778).

r280429 | dehao | 2016-09-01 16:31:25 -0700 (Thu, 01 Sep 2016) | 9 lines

Refactor LICM to expose canSinkOrHoistInst to LoopSink pass.

Summary: LoopSink pass shares the same canSinkOrHoistInst functionality with LICM pass. This patch exposes this function in preparation of https://reviews.llvm.org/D22778
llvm-svn: 280453
2016-09-02 01:59:27 +00:00
Dehao Chen
199099787a Refactor LICM to expose canSinkOrHoistInst to LoopSink pass.
Summary: LoopSink pass shares the same canSinkOrHoistInst functionality with LICM pass. This patch exposes this function in preparation of https://reviews.llvm.org/D22778

Reviewers: chandlerc, davidxl, danielcdh

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D24171

llvm-svn: 280429
2016-09-01 23:31:25 +00:00
Elena Demikhovsky
6936839d54 [Loop Vectorizer] Handling loops FP induction variables.
Allowed loop vectorization with secondary FP IVs. Like this:
float *A;
float x = init;
for (int i=0; i < N; ++i) {
  A[i] = x;
  x -= fp_inc;
}

The auto-vectorization is possible when the induction binary operator is "fast" or the function has "unsafe" attribute.

Differential Revision: https://reviews.llvm.org/D21330

llvm-svn: 276554
2016-07-24 07:24:54 +00:00
Michael Zolotukhin
52e234528e Make processInstruction from LCSSA.cpp externally available.
Summary:
When a pass tries to keep LCSSA form it's often convenient to be able to update
LCSSA for a set of instructions rather than for the entire loop. This patch makes the
processInstruction from LCSSA externally available under a name
formLCSSAForInstruction.

Reviewers: chandlerc, sanjoy, hfinkel

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D22378

llvm-svn: 275613
2016-07-15 21:08:41 +00:00
Davide Italiano
c77e3fdff4 [PM] Port LoopSimplify to the new pass manager.
While here move simplifyLoop() function to the new header, as
suggested by Chandler in the review.

Differential Revision:  http://reviews.llvm.org/D21404

llvm-svn: 274959
2016-07-09 03:03:01 +00:00
Evgeniy Stepanov
212faec920 Move isGuaranteedToExecute out of LICM.
Also rename LICMSafetyInfo to LoopSafetyInfo.
Both will be used in LoopUnswitch in a separate change.

llvm-svn: 272420
2016-06-10 20:03:17 +00:00
Elena Demikhovsky
7866776645 [LoopVectorize] Handling induction variable with non-constant step.
Allow vectorization when the step is a loop-invariant variable.
This is the loop example that is getting vectorized after the patch:

 int int_inc;
 int bar(int init, int *restrict A, int N) {

  int x = init;
  for (int i=0;i<N;i++){
    A[i] = x;
    x += int_inc;
  }
  return x;
 }

"x" is an induction variable with *loop-invariant* step.
But it is not a primary induction. Primary induction variable with non-constant step is not handled yet.

Differential Revision: http://reviews.llvm.org/D19258

llvm-svn: 269023
2016-05-10 07:33:35 +00:00
Silviu Baranga
725ddde257 Attempt to fix the modules builder by declaring SCEV in LoopUtils.h
llvm-svn: 268720
2016-05-06 09:37:14 +00:00
Silviu Baranga
62976245a8 [LV] Identify more induction PHIs by coercing expressions to AddRecExprs
Summary:
Some PHIs can have expressions that are not AddRecExprs due to the presence
of sext/zext instructions. In order to prevent the Loop Vectorizer from
bailing out when encountering these PHIs, we now coerce the SCEV
expressions to AddRecExprs using SCEV predicates (when possible).

We only do this when the alternative would be to not vectorize.

Reviewers: mzolotukhin, anemet

Subscribers: mssimpso, sanjoy, mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D17153

llvm-svn: 268633
2016-05-05 15:20:39 +00:00
Dehao Chen
07daedc517 clang-format some files in preparation of coming patch reviews.
llvm-svn: 268583
2016-05-05 00:54:54 +00:00
Adam Nemet
726ae3b57c [LoopUtils] Extend findStringMetadataForLoop to return the value for metadata
E.g. for:

  !1 = {"llvm.distribute", i32 1}

it now returns the MDOperand for 1.

I will use this in LoopDistribution to check the value of the metadata.

Note that the change is backward-compatible with its current use in
LoopVersioningLICM.  An Optional implicitly converts to a bool depending
whether it contains a value or not.

llvm-svn: 267190
2016-04-22 19:10:05 +00:00
Adam Nemet
8ecdc6176c [LoopUtils] Fix typo in comment
llvm-svn: 267016
2016-04-21 17:33:22 +00:00
Adam Nemet
a30010a337 [LoopUtils] Rename {check->find}StringMetadata{Into->For}Loop. NFC
"Into" was misleading.  I am also planning to use this helper to look
for loop metadata and return the argument, so find seems like a better
name.

llvm-svn: 267013
2016-04-21 17:33:12 +00:00
Philip Reames
492b57c038 [LICM] Store promotion when memory is thread local
This patch teaches LICM's implementation of store promotion to exploit the fact that the memory location being accessed might be provable thread local. The fact it's thread local weakens the requirements for where we can insert stores since no other thread can observe the write. This allows us perform store promotion even in cases where the store is not guaranteed to execute in the loop.

Two key assumption worth drawing out is that this assumes a) no-capture is strong enough to imply no-escape, and b) standard allocation functions like malloc, calloc, and operator new return values which can be assumed not to have previously escaped.

In future work, it would be nice to generalize this so that it works without directly seeing the allocation site. I believe that the nocapture return attribute should be suitable for this purpose, but haven't investigated carefully. It's also likely that we could support unescaped allocas with similar reasoning, but since SROA and Mem2Reg should destroy those, they're less interesting than they first might seem.

Differential Revision: http://reviews.llvm.org/D16783

llvm-svn: 263072
2016-03-09 22:59:30 +00:00
Matthew Simpson
2ebb736740 [LV] Vectorize first-order recurrences
This patch enables the vectorization of first-order recurrences. A first-order
recurrence is a non-reduction recurrence relation in which the value of the
recurrence in the current loop iteration equals a value defined in the previous
iteration. The load PRE of the GVN pass often creates these recurrences by
hoisting loads from within loops.

In this patch, we add a new recurrence kind for first-order phi nodes and
attempt to vectorize them if possible. Vectorization is performed by shuffling
the values for the current and previous iterations. The vectorization cost
estimate is updated to account for the added shuffle instruction.

Contributed-by: Matthew Simpson and Chad Rosier <mcrosier@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D16197

llvm-svn: 261346
2016-02-19 17:56:08 +00:00
Chandler Carruth
b42444d804 [LPM] Factor all of the loop analysis usage updates into a common helper
routine.

We were getting this wrong in small ways and generally being very
inconsistent about it across loop passes. Instead, let's have a common
place where we do this. One minor downside is that this will require
some analyses like SCEV in more places than they are strictly needed.
However, this seems benign as these analyses are complete no-ops, and
without this consistency we can in many cases end up with the legacy
pass manager scheduling deciding to split up a loop pass pipeline in
order to run the function analysis half-way through. It is very, very
annoying to fix these without just being very pedantic across the board.

The only loop passes I've not updated here are ones that use
AU.setPreservesAll() such as IVUsers (an analysis) and the pass printer.
They seemed less relevant.

With this patch, almost all of the problems in PR24804 around loop pass
pipelines are fixed. The one remaining issue is that we run simplify-cfg
and instcombine in the middle of the loop pass pipeline. We've recently
added some loop variants of these passes that would seem substantially
cleaner to use, but this at least gets us much closer to the previous
state. Notably, the seven loop pass managers is down to three.

I've not updated the loop passes using LoopAccessAnalysis because that
analysis hasn't been fully wired into LoopSimplify/LCSSA, and it isn't
clear that those transforms want to support those forms anyways. They
all run late anyways, so this is harmless. Similarly, LSR is left alone
because it already carefully manages its forms and doesn't need to get
fused into a single loop pass manager with a bunch of other loop passes.

LoopReroll didn't use loop simplified form previously, and I've updated
the test case to match the trivially different output.

Finally, I've also factored all the pass initialization for the passes
that use this technique as well, so that should be done regularly and
reliably.

Thanks to James for the help reviewing and thinking about this stuff,
and Ben for help thinking about it as well!

Differential Revision: http://reviews.llvm.org/D17435

llvm-svn: 261316
2016-02-19 10:45:18 +00:00
Ashutosh Nema
d6dcbf971a New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.

Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.

The pass is off by default and can be enabled with command line option 
-enable-loop-versioning-licm.

Reviewers: hfinkel, anemet, chatur01, reames

Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
             llvm-commits

Differential Revision: http://reviews.llvm.org/D9151

llvm-svn: 259986
2016-02-06 07:47:48 +00:00
David Majnemer
403ae568aa [LICM] Make instruction sinking funclet-aware
We had two bugs here:
- We might try to sink into a catchswitch, causing verifier failures.
- We will succeed in sinking into a cleanuppad but we didn't update the
  funclet operand bundle.

This fixes PR26000.

llvm-svn: 256728
2016-01-04 03:37:39 +00:00
Justin Bogner
621a2ef540 LPM: Stop threading Pass * through all of the loop utility APIs. NFC
A large number of loop utility functions take a `Pass *` and reach
into it to find out which analyses to preserve. There are a number of
problems with this:

- The APIs have access to pretty well any Pass state they want, so
  it's hard to tell what they may or may not do.

- Other APIs have copied these and pass around a `Pass *` even though
  they don't even use it. Some of these just hand a nullptr to the API
  since the callers don't even have a pass available.

- Passes in the new pass manager don't work like the current ones, so
  the APIs can't be used as is there.

Instead, we should explicitly thread the analysis results that we
actually care about through these APIs. This is both simpler and more
reusable.

llvm-svn: 255669
2015-12-15 19:40:57 +00:00
Justin Bogner
c058f3a850 LoopUtils: Remove defaults for arguments that are always specified. NFC
llvm-svn: 255620
2015-12-15 05:52:13 +00:00
Silviu Baranga
ba0669cbca Revert r255115 until we figure out how to fix the bot failures.
llvm-svn: 255117
2015-12-09 15:25:28 +00:00
Silviu Baranga
f6006f41f7 [LV][LAA] Add a layer over SCEV to apply run-time checked knowledge on SCEV expressions
Summary:
This change creates a layer over ScalarEvolution for LAA and LV, and centralizes the
usage of SCEV predicates. The SCEVPredicatedLayer takes the statically deduced knowledge
by ScalarEvolution and applies the knowledge from the SCEV predicates. The end goal is
that both LAA and LV should use this interface everywhere.

This also solves a problem involving the result of SCEV expression rewritting when
the predicate changes. Suppose we have the expression (sext {a,+,b}) and two predicates
  P1: {a,+,b} has nsw
  P2: b = 1.

Applying P1 and then P2 gives us {a,+,1}, while applying P2 and the P1 gives us
sext({a,+,1}) (the AddRec expression was changed by P2 so P1 no longer applies).
The SCEVPredicatedLayer maintains the order of transformations by feeding back
the results of previous transformations into new transformations, and therefore
avoiding this issue.

The SCEVPredicatedLayer maintains a cache to remember the results of previous
SCEV rewritting results. This also has the benefit of reducing the overall number
of expression rewrites.

Reviewers: mzolotukhin, anemet

Subscribers: jmolloy, sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D14296

llvm-svn: 255115
2015-12-09 15:03:52 +00:00
Chandler Carruth
d7003090ac [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Matthew Simpson
48189dfea1 Remove white space (test commit)
llvm-svn: 246329
2015-08-28 20:38:33 +00:00
James Molloy
8cc59e0bcd [LoopUtils] Move a private constructor nearer the other private members
This was part of Adam Nemet's review feedback that I forgot to implement.

llvm-svn: 246301
2015-08-28 14:40:29 +00:00
Chad Rosier
6e3e56c088 [LoopVectorize] Add Support for Small Size Reductions.
Unlike scalar operations, we can perform vector operations on element types that
are smaller than the native integer types. We type-promote scalar operations if
they are smaller than a native type (e.g., i8 arithmetic is promoted to i32
arithmetic on Arm targets). This patch detects and removes type-promotions
within the reduction detection framework, enabling the vectorization of small
size reductions.

In the legality phase, we look through the ANDs and extensions that InstCombine
creates during promotion, keeping track of the smaller type. In the
profitability phase, we use the smaller type and ignore the ANDs and extensions
in the cost model. Finally, in the code generation phase, we truncate the result
of the reduction to allow InstCombine to rewrite the entire expression in the
smaller type.

This fixes PR21369.
http://reviews.llvm.org/D12202

Patch by Matt Simpson <mssimpso@codeaurora.org>!

llvm-svn: 246149
2015-08-27 14:12:17 +00:00
James Molloy
d7310f7b46 [LoopVectorize] Extract InductionInfo into a helper class...
... and move it into LoopUtils where it can be used by other passes, just like ReductionDescriptor. The API is very similar to ReductionDescriptor - that is, not very nice at all. Sorting these both out will come in a followup.

NFC

llvm-svn: 246145
2015-08-27 09:53:00 +00:00
Ashutosh Nema
d2b31a8acc Exposed findDefsUsedOutsideOfLoop as a loop utility function
Exposed findDefsUsedOutsideOfLoop as a loop utility function by moving 
it from LoopDistribute to LoopUtils.

Reviewed By: anemet

llvm-svn: 245416
2015-08-19 05:40:42 +00:00
Tyler Nowicki
6edbef9016 Late evaluation of the fast-math vectorization requirement.
This patch moves the verification of fast-math to just before vectorization is done. This way we can tell clang to append the command line options would that allow floating-point commutativity. Specifically those are enableing fast-math or specifying a loop hint. 

llvm-svn: 244489
2015-08-10 19:51:46 +00:00
Benjamin Kramer
69a3fdb314 Fix some comment typos.
llvm-svn: 244402
2015-08-08 18:27:36 +00:00