Files
archived-llvm-mirror/include/llvm/ExecutionEngine/RuntimeDyld.h
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

289 lines
12 KiB
C++

//===- RuntimeDyld.h - Run-time dynamic linker for MC-JIT -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Interface for the runtime dynamic linker facilities of the MC-JIT.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
#define LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Error.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <memory>
#include <string>
#include <system_error>
namespace llvm {
namespace object {
template <typename T> class OwningBinary;
} // end namespace object
/// Base class for errors originating in RuntimeDyld, e.g. missing relocation
/// support.
class RuntimeDyldError : public ErrorInfo<RuntimeDyldError> {
public:
static char ID;
RuntimeDyldError(std::string ErrMsg) : ErrMsg(std::move(ErrMsg)) {}
void log(raw_ostream &OS) const override;
const std::string &getErrorMessage() const { return ErrMsg; }
std::error_code convertToErrorCode() const override;
private:
std::string ErrMsg;
};
class RuntimeDyldCheckerImpl;
class RuntimeDyldImpl;
class RuntimeDyld {
friend class RuntimeDyldCheckerImpl;
protected:
// Change the address associated with a section when resolving relocations.
// Any relocations already associated with the symbol will be re-resolved.
void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
public:
/// Information about the loaded object.
class LoadedObjectInfo : public llvm::LoadedObjectInfo {
friend class RuntimeDyldImpl;
public:
using ObjSectionToIDMap = std::map<object::SectionRef, unsigned>;
LoadedObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
: RTDyld(RTDyld), ObjSecToIDMap(std::move(ObjSecToIDMap)) {}
virtual object::OwningBinary<object::ObjectFile>
getObjectForDebug(const object::ObjectFile &Obj) const = 0;
uint64_t
getSectionLoadAddress(const object::SectionRef &Sec) const override;
protected:
virtual void anchor();
RuntimeDyldImpl &RTDyld;
ObjSectionToIDMap ObjSecToIDMap;
};
/// Memory Management.
class MemoryManager {
friend class RuntimeDyld;
public:
MemoryManager() = default;
virtual ~MemoryManager() = default;
/// Allocate a memory block of (at least) the given size suitable for
/// executable code. The SectionID is a unique identifier assigned by the
/// RuntimeDyld instance, and optionally recorded by the memory manager to
/// access a loaded section.
virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName) = 0;
/// Allocate a memory block of (at least) the given size suitable for data.
/// The SectionID is a unique identifier assigned by the JIT engine, and
/// optionally recorded by the memory manager to access a loaded section.
virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName,
bool IsReadOnly) = 0;
/// Inform the memory manager about the total amount of memory required to
/// allocate all sections to be loaded:
/// \p CodeSize - the total size of all code sections
/// \p DataSizeRO - the total size of all read-only data sections
/// \p DataSizeRW - the total size of all read-write data sections
///
/// Note that by default the callback is disabled. To enable it
/// redefine the method needsToReserveAllocationSpace to return true.
virtual void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign,
uintptr_t RODataSize,
uint32_t RODataAlign,
uintptr_t RWDataSize,
uint32_t RWDataAlign) {}
/// Override to return true to enable the reserveAllocationSpace callback.
virtual bool needsToReserveAllocationSpace() { return false; }
/// Register the EH frames with the runtime so that c++ exceptions work.
///
/// \p Addr parameter provides the local address of the EH frame section
/// data, while \p LoadAddr provides the address of the data in the target
/// address space. If the section has not been remapped (which will usually
/// be the case for local execution) these two values will be the same.
virtual void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
size_t Size) = 0;
virtual void deregisterEHFrames() = 0;
/// This method is called when object loading is complete and section page
/// permissions can be applied. It is up to the memory manager implementation
/// to decide whether or not to act on this method. The memory manager will
/// typically allocate all sections as read-write and then apply specific
/// permissions when this method is called. Code sections cannot be executed
/// until this function has been called. In addition, any cache coherency
/// operations needed to reliably use the memory are also performed.
///
/// Returns true if an error occurred, false otherwise.
virtual bool finalizeMemory(std::string *ErrMsg = nullptr) = 0;
/// This method is called after an object has been loaded into memory but
/// before relocations are applied to the loaded sections.
///
/// Memory managers which are preparing code for execution in an external
/// address space can use this call to remap the section addresses for the
/// newly loaded object.
///
/// For clients that do not need access to an ExecutionEngine instance this
/// method should be preferred to its cousin
/// MCJITMemoryManager::notifyObjectLoaded as this method is compatible with
/// ORC JIT stacks.
virtual void notifyObjectLoaded(RuntimeDyld &RTDyld,
const object::ObjectFile &Obj) {}
private:
virtual void anchor();
bool FinalizationLocked = false;
};
/// Construct a RuntimeDyld instance.
RuntimeDyld(MemoryManager &MemMgr, JITSymbolResolver &Resolver);
RuntimeDyld(const RuntimeDyld &) = delete;
RuntimeDyld &operator=(const RuntimeDyld &) = delete;
~RuntimeDyld();
/// Add the referenced object file to the list of objects to be loaded and
/// relocated.
std::unique_ptr<LoadedObjectInfo> loadObject(const object::ObjectFile &O);
/// Get the address of our local copy of the symbol. This may or may not
/// be the address used for relocation (clients can copy the data around
/// and resolve relocatons based on where they put it).
void *getSymbolLocalAddress(StringRef Name) const;
/// Get the target address and flags for the named symbol.
/// This address is the one used for relocation.
JITEvaluatedSymbol getSymbol(StringRef Name) const;
/// Returns a copy of the symbol table. This can be used by on-finalized
/// callbacks to extract the symbol table before throwing away the
/// RuntimeDyld instance. Because the map keys (StringRefs) are backed by
/// strings inside the RuntimeDyld instance, the map should be processed
/// before the RuntimeDyld instance is discarded.
std::map<StringRef, JITEvaluatedSymbol> getSymbolTable() const;
/// Resolve the relocations for all symbols we currently know about.
void resolveRelocations();
/// Map a section to its target address space value.
/// Map the address of a JIT section as returned from the memory manager
/// to the address in the target process as the running code will see it.
/// This is the address which will be used for relocation resolution.
void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
/// Register any EH frame sections that have been loaded but not previously
/// registered with the memory manager. Note, RuntimeDyld is responsible
/// for identifying the EH frame and calling the memory manager with the
/// EH frame section data. However, the memory manager itself will handle
/// the actual target-specific EH frame registration.
void registerEHFrames();
void deregisterEHFrames();
bool hasError();
StringRef getErrorString();
/// By default, only sections that are "required for execution" are passed to
/// the RTDyldMemoryManager, and other sections are discarded. Passing 'true'
/// to this method will cause RuntimeDyld to pass all sections to its
/// memory manager regardless of whether they are "required to execute" in the
/// usual sense. This is useful for inspecting metadata sections that may not
/// contain relocations, E.g. Debug info, stackmaps.
///
/// Must be called before the first object file is loaded.
void setProcessAllSections(bool ProcessAllSections) {
assert(!Dyld && "setProcessAllSections must be called before loadObject.");
this->ProcessAllSections = ProcessAllSections;
}
/// Perform all actions needed to make the code owned by this RuntimeDyld
/// instance executable:
///
/// 1) Apply relocations.
/// 2) Register EH frames.
/// 3) Update memory permissions*.
///
/// * Finalization is potentially recursive**, and the 3rd step will only be
/// applied by the outermost call to finalize. This allows different
/// RuntimeDyld instances to share a memory manager without the innermost
/// finalization locking the memory and causing relocation fixup errors in
/// outer instances.
///
/// ** Recursive finalization occurs when one RuntimeDyld instances needs the
/// address of a symbol owned by some other instance in order to apply
/// relocations.
///
void finalizeWithMemoryManagerLocking();
private:
friend void
jitLinkForORC(object::ObjectFile &Obj,
std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
bool ProcessAllSections,
std::function<Error(std::unique_ptr<LoadedObjectInfo>,
std::map<StringRef, JITEvaluatedSymbol>)>
OnLoaded,
std::function<void(Error)> OnEmitted);
// RuntimeDyldImpl is the actual class. RuntimeDyld is just the public
// interface.
std::unique_ptr<RuntimeDyldImpl> Dyld;
MemoryManager &MemMgr;
JITSymbolResolver &Resolver;
bool ProcessAllSections;
RuntimeDyldCheckerImpl *Checker;
};
// Asynchronous JIT link for ORC.
//
// Warning: This API is experimental and probably should not be used by anyone
// but ORC's RTDyldObjectLinkingLayer2. Internally it constructs a RuntimeDyld
// instance and uses continuation passing to perform the fix-up and finalize
// steps asynchronously.
void jitLinkForORC(object::ObjectFile &Obj,
std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
RuntimeDyld::MemoryManager &MemMgr,
JITSymbolResolver &Resolver, bool ProcessAllSections,
std::function<Error(std::unique_ptr<LoadedObjectInfo>,
std::map<StringRef, JITEvaluatedSymbol>)>
OnLoaded,
std::function<void(Error)> OnEmitted);
} // end namespace llvm
#endif // LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H