Files
archived-llvm-mirror/examples/OrcV2Examples/LLJITWithTargetProcessControl/LLJITWithTargetProcessControl.cpp
Lang Hames 757f986da8 [ORC] Add TargetProcessControl and TPCIndirectionUtils APIs.
TargetProcessControl is a new API for communicating with JIT target processes.
It supports memory allocation and access, and inspection of some process
properties, e.g. the target proces triple and page size.

Centralizing these APIs allows utilities written against TargetProcessControl
to remain independent of the communication procotol with the target process
(which may be direct memory access/allocation for in-process JITing, or may
involve some form of IPC or RPC).

An initial set of TargetProcessControl-based utilities for lazy compilation is
provided by the TPCIndirectionUtils class.

An initial implementation of TargetProcessControl for in-process JITing
is provided by the SelfTargetProcessControl class.

An example program showing how the APIs can be used is provided in
llvm/examples/OrcV2Examples/LLJITWithTargetProcessControl.
2020-07-16 15:09:13 -07:00

179 lines
6.2 KiB
C++

//===--- LLJITWithLazyReexports.cpp - LLJIT example with custom laziness --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// In this example we will use the lazy re-exports utility to lazily compile
// IR modules. We will do this in seven steps:
//
// 1. Create an LLJIT instance.
// 2. Install a transform so that we can see what is being compiled.
// 3. Create an indirect stubs manager and lazy call-through manager.
// 4. Add two modules that will be conditionally compiled, plus a main module.
// 5. Add lazy-rexports of the symbols in the conditionally compiled modules.
// 6. Dump the ExecutionSession state to see the symbol table prior to
// executing any code.
// 7. Verify that only modules containing executed code are compiled.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringMap.h"
#include "llvm/ExecutionEngine/JITLink/JITLinkMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/Orc/OrcABISupport.h"
#include "llvm/ExecutionEngine/Orc/TPCIndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/TargetProcessControl.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include "../ExampleModules.h"
#include <future>
using namespace llvm;
using namespace llvm::orc;
ExitOnError ExitOnErr;
// Example IR modules.
//
// Note that in the conditionally compiled modules, FooMod and BarMod, functions
// have been given an _body suffix. This is to ensure that their names do not
// clash with their lazy-reexports.
// For clients who do not wish to rename function bodies (e.g. because they want
// to re-use cached objects between static and JIT compiles) techniques exist to
// avoid renaming. See the lazy-reexports section of the ORCv2 design doc.
const llvm::StringRef FooMod =
R"(
define i32 @foo_body() {
entry:
ret i32 1
}
)";
const llvm::StringRef BarMod =
R"(
define i32 @bar_body() {
entry:
ret i32 2
}
)";
const llvm::StringRef MainMod =
R"(
define i32 @entry(i32 %argc) {
entry:
%and = and i32 %argc, 1
%tobool = icmp eq i32 %and, 0
br i1 %tobool, label %if.end, label %if.then
if.then: ; preds = %entry
%call = tail call i32 @foo() #2
br label %return
if.end: ; preds = %entry
%call1 = tail call i32 @bar() #2
br label %return
return: ; preds = %if.end, %if.then
%retval.0 = phi i32 [ %call, %if.then ], [ %call1, %if.end ]
ret i32 %retval.0
}
declare i32 @foo()
declare i32 @bar()
)";
static void *reenter(void *Ctx, void *TrampolineAddr) {
std::promise<void *> LandingAddressP;
auto LandingAddressF = LandingAddressP.get_future();
auto *TPCIU = static_cast<TPCIndirectionUtils *>(Ctx);
TPCIU->getLazyCallThroughManager().resolveTrampolineLandingAddress(
pointerToJITTargetAddress(TrampolineAddr),
[&](JITTargetAddress LandingAddress) {
LandingAddressP.set_value(
jitTargetAddressToPointer<void *>(LandingAddress));
});
return LandingAddressF.get();
}
cl::list<std::string> InputArgv(cl::Positional,
cl::desc("<program arguments>..."));
int main(int argc, char *argv[]) {
// Initialize LLVM.
InitLLVM X(argc, argv);
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
cl::ParseCommandLineOptions(argc, argv, "LLJITWithLazyReexports");
ExitOnErr.setBanner(std::string(argv[0]) + ": ");
// (1) Create LLJIT instance.
auto J = ExitOnErr(LLJITBuilder().create());
// (2) Install transform to print modules as they are compiled:
J->getIRTransformLayer().setTransform(
[](ThreadSafeModule TSM,
const MaterializationResponsibility &R) -> Expected<ThreadSafeModule> {
TSM.withModuleDo([](Module &M) { dbgs() << "---Compiling---\n" << M; });
return std::move(TSM); // Not a redundant move: fix build on gcc-7.5
});
// (3) Create stubs and call-through managers:
auto TPC = ExitOnErr(SelfTargetProcessControl::Create());
auto TPCIU = ExitOnErr(TPCIndirectionUtils::Create(*TPC));
ExitOnErr(TPCIU->writeResolverBlock(pointerToJITTargetAddress(&reenter),
pointerToJITTargetAddress(TPCIU.get())));
TPCIU->createLazyCallThroughManager(J->getExecutionSession(), 0);
auto ISM = TPCIU->createIndirectStubsManager();
// (4) Add modules.
ExitOnErr(J->addIRModule(ExitOnErr(parseExampleModule(FooMod, "foo-mod"))));
ExitOnErr(J->addIRModule(ExitOnErr(parseExampleModule(BarMod, "bar-mod"))));
ExitOnErr(J->addIRModule(ExitOnErr(parseExampleModule(MainMod, "main-mod"))));
// (5) Add lazy reexports.
MangleAndInterner Mangle(J->getExecutionSession(), J->getDataLayout());
SymbolAliasMap ReExports(
{{Mangle("foo"),
{Mangle("foo_body"),
JITSymbolFlags::Exported | JITSymbolFlags::Callable}},
{Mangle("bar"),
{Mangle("bar_body"),
JITSymbolFlags::Exported | JITSymbolFlags::Callable}}});
ExitOnErr(J->getMainJITDylib().define(
lazyReexports(TPCIU->getLazyCallThroughManager(), *ISM,
J->getMainJITDylib(), std::move(ReExports))));
// (6) Dump the ExecutionSession state.
dbgs() << "---Session state---\n";
J->getExecutionSession().dump(dbgs());
dbgs() << "\n";
// (7) Execute the JIT'd main function and pass the example's command line
// arguments unmodified. This should cause either ExampleMod1 or ExampleMod2
// to be compiled, and either "1" or "2" returned depending on the number of
// arguments passed.
// Look up the JIT'd function, cast it to a function pointer, then call it.
auto EntrySym = ExitOnErr(J->lookup("entry"));
auto *Entry = (int (*)(int))EntrySym.getAddress();
int Result = Entry(argc);
outs() << "---Result---\n"
<< "entry(" << argc << ") = " << Result << "\n";
return 0;
}