Files
archived-llvm-mirror/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp
Serge Guelton b2fe6dcbc2 Normalize interaction with boolean attributes
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from

        if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")

to

        if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")

Introduce a getValueAsBool that normalize the check, with the following
behavior:

no attributes or attribute set to "false" => return false
attribute set to "true" => return true

Differential Revision: https://reviews.llvm.org/D99299
2021-04-17 08:17:33 +02:00

1421 lines
46 KiB
C++

//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass does misc. AMDGPU optimizations on IR before instruction
/// selection.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/IntegerDivision.h"
#define DEBUG_TYPE "amdgpu-codegenprepare"
using namespace llvm;
namespace {
static cl::opt<bool> WidenLoads(
"amdgpu-codegenprepare-widen-constant-loads",
cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
static cl::opt<bool> Widen16BitOps(
"amdgpu-codegenprepare-widen-16-bit-ops",
cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(true));
static cl::opt<bool> UseMul24Intrin(
"amdgpu-codegenprepare-mul24",
cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(true));
// Legalize 64-bit division by using the generic IR expansion.
static cl::opt<bool> ExpandDiv64InIR(
"amdgpu-codegenprepare-expand-div64",
cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
// Leave all division operations as they are. This supersedes ExpandDiv64InIR
// and is used for testing the legalizer.
static cl::opt<bool> DisableIDivExpand(
"amdgpu-codegenprepare-disable-idiv-expansion",
cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
class AMDGPUCodeGenPrepare : public FunctionPass,
public InstVisitor<AMDGPUCodeGenPrepare, bool> {
const GCNSubtarget *ST = nullptr;
AssumptionCache *AC = nullptr;
DominatorTree *DT = nullptr;
LegacyDivergenceAnalysis *DA = nullptr;
Module *Mod = nullptr;
const DataLayout *DL = nullptr;
bool HasUnsafeFPMath = false;
bool HasFP32Denormals = false;
/// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
/// binary operation \p V.
///
/// \returns Binary operation \p V.
/// \returns \p T's base element bit width.
unsigned getBaseElementBitWidth(const Type *T) const;
/// \returns Equivalent 32 bit integer type for given type \p T. For example,
/// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
/// is returned.
Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
/// \returns True if binary operation \p I is a signed binary operation, false
/// otherwise.
bool isSigned(const BinaryOperator &I) const;
/// \returns True if the condition of 'select' operation \p I comes from a
/// signed 'icmp' operation, false otherwise.
bool isSigned(const SelectInst &I) const;
/// \returns True if type \p T needs to be promoted to 32 bit integer type,
/// false otherwise.
bool needsPromotionToI32(const Type *T) const;
/// Promotes uniform binary operation \p I to equivalent 32 bit binary
/// operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
/// truncating the result of 32 bit binary operation back to \p I's original
/// type. Division operation is not promoted.
///
/// \returns True if \p I is promoted to equivalent 32 bit binary operation,
/// false otherwise.
bool promoteUniformOpToI32(BinaryOperator &I) const;
/// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
///
/// \returns True.
bool promoteUniformOpToI32(ICmpInst &I) const;
/// Promotes uniform 'select' operation \p I to 32 bit 'select'
/// operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
/// result of 32 bit 'select' operation back to \p I's original type.
///
/// \returns True.
bool promoteUniformOpToI32(SelectInst &I) const;
/// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
/// intrinsic.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by zero extending the operand to 32
/// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
/// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
/// shift amount is 32 minus \p I's base element bit width), and truncating
/// the result of the shift operation back to \p I's original type.
///
/// \returns True.
bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
bool isI24(Value *V, unsigned ScalarSize) const;
bool isU24(Value *V, unsigned ScalarSize) const;
/// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
/// SelectionDAG has an issue where an and asserting the bits are known
bool replaceMulWithMul24(BinaryOperator &I) const;
/// Perform same function as equivalently named function in DAGCombiner. Since
/// we expand some divisions here, we need to perform this before obscuring.
bool foldBinOpIntoSelect(BinaryOperator &I) const;
bool divHasSpecialOptimization(BinaryOperator &I,
Value *Num, Value *Den) const;
int getDivNumBits(BinaryOperator &I,
Value *Num, Value *Den,
unsigned AtLeast, bool Signed) const;
/// Expands 24 bit div or rem.
Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den,
bool IsDiv, bool IsSigned) const;
Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den, unsigned NumBits,
bool IsDiv, bool IsSigned) const;
/// Expands 32 bit div or rem.
Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den) const;
Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den) const;
void expandDivRem64(BinaryOperator &I) const;
/// Widen a scalar load.
///
/// \details \p Widen scalar load for uniform, small type loads from constant
// memory / to a full 32-bits and then truncate the input to allow a scalar
// load instead of a vector load.
//
/// \returns True.
bool canWidenScalarExtLoad(LoadInst &I) const;
public:
static char ID;
AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
bool visitFDiv(BinaryOperator &I);
bool visitInstruction(Instruction &I) { return false; }
bool visitBinaryOperator(BinaryOperator &I);
bool visitLoadInst(LoadInst &I);
bool visitICmpInst(ICmpInst &I);
bool visitSelectInst(SelectInst &I);
bool visitIntrinsicInst(IntrinsicInst &I);
bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<LegacyDivergenceAnalysis>();
// FIXME: Division expansion needs to preserve the dominator tree.
if (!ExpandDiv64InIR)
AU.setPreservesAll();
}
};
} // end anonymous namespace
unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
if (T->isIntegerTy())
return T->getIntegerBitWidth();
return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
}
Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
if (T->isIntegerTy())
return B.getInt32Ty();
return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
}
bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
return I.getOpcode() == Instruction::AShr ||
I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
}
bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
return isa<ICmpInst>(I.getOperand(0)) ?
cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
}
bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
if (!Widen16BitOps)
return false;
const IntegerType *IntTy = dyn_cast<IntegerType>(T);
if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
return true;
if (const VectorType *VT = dyn_cast<VectorType>(T)) {
// TODO: The set of packed operations is more limited, so may want to
// promote some anyway.
if (ST->hasVOP3PInsts())
return false;
return needsPromotionToI32(VT->getElementType());
}
return false;
}
// Return true if the op promoted to i32 should have nsw set.
static bool promotedOpIsNSW(const Instruction &I) {
switch (I.getOpcode()) {
case Instruction::Shl:
case Instruction::Add:
case Instruction::Sub:
return true;
case Instruction::Mul:
return I.hasNoUnsignedWrap();
default:
return false;
}
}
// Return true if the op promoted to i32 should have nuw set.
static bool promotedOpIsNUW(const Instruction &I) {
switch (I.getOpcode()) {
case Instruction::Shl:
case Instruction::Add:
case Instruction::Mul:
return true;
case Instruction::Sub:
return I.hasNoUnsignedWrap();
default:
return false;
}
}
bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
Type *Ty = I.getType();
const DataLayout &DL = Mod->getDataLayout();
int TySize = DL.getTypeSizeInBits(Ty);
Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I);
}
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
if (I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::UDiv ||
I.getOpcode() == Instruction::SRem ||
I.getOpcode() == Instruction::URem)
return false;
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
if (promotedOpIsNSW(cast<Instruction>(I)))
Inst->setHasNoSignedWrap();
if (promotedOpIsNUW(cast<Instruction>(I)))
Inst->setHasNoUnsignedWrap();
if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
Inst->setIsExact(ExactOp->isExact());
}
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *NewICmp = nullptr;
if (I.isSigned()) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
I.replaceAllUsesWith(NewICmp);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp1 = nullptr;
Value *ExtOp2 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
} else {
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
}
ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
IntrinsicInst &I) const {
assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
"I must be bitreverse intrinsic");
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Function *I32 =
Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
Value *LShrOp =
Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
Value *TruncRes =
Builder.CreateTrunc(LShrOp, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
unsigned ScalarSize) const {
KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
return ScalarSize - Known.countMinLeadingZeros();
}
unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
unsigned ScalarSize) const {
// In order for this to be a signed 24-bit value, bit 23, must
// be a sign bit.
return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
}
bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
return ScalarSize >= 24 && // Types less than 24-bit should be treated
// as unsigned 24-bit values.
numBitsSigned(V, ScalarSize) < 24;
}
bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
return numBitsUnsigned(V, ScalarSize) <= 24;
}
static void extractValues(IRBuilder<> &Builder,
SmallVectorImpl<Value *> &Values, Value *V) {
auto *VT = dyn_cast<FixedVectorType>(V->getType());
if (!VT) {
Values.push_back(V);
return;
}
for (int I = 0, E = VT->getNumElements(); I != E; ++I)
Values.push_back(Builder.CreateExtractElement(V, I));
}
static Value *insertValues(IRBuilder<> &Builder,
Type *Ty,
SmallVectorImpl<Value *> &Values) {
if (Values.size() == 1)
return Values[0];
Value *NewVal = UndefValue::get(Ty);
for (int I = 0, E = Values.size(); I != E; ++I)
NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
return NewVal;
}
bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
if (I.getOpcode() != Instruction::Mul)
return false;
Type *Ty = I.getType();
unsigned Size = Ty->getScalarSizeInBits();
if (Size <= 16 && ST->has16BitInsts())
return false;
// Prefer scalar if this could be s_mul_i32
if (DA->isUniform(&I))
return false;
Value *LHS = I.getOperand(0);
Value *RHS = I.getOperand(1);
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
// TODO: Should this try to match mulhi24?
if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
IntrID = Intrinsic::amdgcn_mul_u24;
} else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
IntrID = Intrinsic::amdgcn_mul_i24;
} else
return false;
SmallVector<Value *, 4> LHSVals;
SmallVector<Value *, 4> RHSVals;
SmallVector<Value *, 4> ResultVals;
extractValues(Builder, LHSVals, LHS);
extractValues(Builder, RHSVals, RHS);
IntegerType *I32Ty = Builder.getInt32Ty();
FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
for (int I = 0, E = LHSVals.size(); I != E; ++I) {
Value *LHS, *RHS;
if (IntrID == Intrinsic::amdgcn_mul_u24) {
LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
} else {
LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
}
Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
if (IntrID == Intrinsic::amdgcn_mul_u24) {
ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
LHSVals[I]->getType()));
} else {
ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
LHSVals[I]->getType()));
}
}
Value *NewVal = insertValues(Builder, Ty, ResultVals);
NewVal->takeName(&I);
I.replaceAllUsesWith(NewVal);
I.eraseFromParent();
return true;
}
// Find a select instruction, which may have been casted. This is mostly to deal
// with cases where i16 selects were promoted here to i32.
static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
Cast = nullptr;
if (SelectInst *Sel = dyn_cast<SelectInst>(V))
return Sel;
if ((Cast = dyn_cast<CastInst>(V))) {
if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
return Sel;
}
return nullptr;
}
bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
// Don't do this unless the old select is going away. We want to eliminate the
// binary operator, not replace a binop with a select.
int SelOpNo = 0;
CastInst *CastOp;
// TODO: Should probably try to handle some cases with multiple
// users. Duplicating the select may be profitable for division.
SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
if (!Sel || !Sel->hasOneUse()) {
SelOpNo = 1;
Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
}
if (!Sel || !Sel->hasOneUse())
return false;
Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
if (!CBO || !CT || !CF)
return false;
if (CastOp) {
if (!CastOp->hasOneUse())
return false;
CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
}
// TODO: Handle special 0/-1 cases DAG combine does, although we only really
// need to handle divisions here.
Constant *FoldedT = SelOpNo ?
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
if (isa<ConstantExpr>(FoldedT))
return false;
Constant *FoldedF = SelOpNo ?
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
if (isa<ConstantExpr>(FoldedF))
return false;
IRBuilder<> Builder(&BO);
Builder.SetCurrentDebugLocation(BO.getDebugLoc());
if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
Builder.setFastMathFlags(FPOp->getFastMathFlags());
Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
FoldedT, FoldedF);
NewSelect->takeName(&BO);
BO.replaceAllUsesWith(NewSelect);
BO.eraseFromParent();
if (CastOp)
CastOp->eraseFromParent();
Sel->eraseFromParent();
return true;
}
// Optimize fdiv with rcp:
//
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
// allowed with unsafe-fp-math or afn.
//
// a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp,
bool RcpIsAccurate, IRBuilder<> &Builder,
Module *Mod) {
if (!AllowInaccurateRcp && !RcpIsAccurate)
return nullptr;
Type *Ty = Den->getType();
if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
if (AllowInaccurateRcp || RcpIsAccurate) {
if (CLHS->isExactlyValue(1.0)) {
Function *Decl = Intrinsic::getDeclaration(
Mod, Intrinsic::amdgcn_rcp, Ty);
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
// the CI documentation has a worst case error of 1 ulp.
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
// use it as long as we aren't trying to use denormals.
//
// v_rcp_f16 and v_rsq_f16 DO support denormals.
// NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
// insert rsq intrinsic here.
// 1.0 / x -> rcp(x)
return Builder.CreateCall(Decl, { Den });
}
// Same as for 1.0, but expand the sign out of the constant.
if (CLHS->isExactlyValue(-1.0)) {
Function *Decl = Intrinsic::getDeclaration(
Mod, Intrinsic::amdgcn_rcp, Ty);
// -1.0 / x -> rcp (fneg x)
Value *FNeg = Builder.CreateFNeg(Den);
return Builder.CreateCall(Decl, { FNeg });
}
}
}
if (AllowInaccurateRcp) {
Function *Decl = Intrinsic::getDeclaration(
Mod, Intrinsic::amdgcn_rcp, Ty);
// Turn into multiply by the reciprocal.
// x / y -> x * (1.0 / y)
Value *Recip = Builder.CreateCall(Decl, { Den });
return Builder.CreateFMul(Num, Recip);
}
return nullptr;
}
// optimize with fdiv.fast:
//
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
//
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
//
// NOTE: optimizeWithRcp should be tried first because rcp is the preference.
static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy,
bool HasDenormals, IRBuilder<> &Builder,
Module *Mod) {
// fdiv.fast can achieve 2.5 ULP accuracy.
if (ReqdAccuracy < 2.5f)
return nullptr;
// Only have fdiv.fast for f32.
Type *Ty = Den->getType();
if (!Ty->isFloatTy())
return nullptr;
bool NumIsOne = false;
if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
NumIsOne = true;
}
// fdiv does not support denormals. But 1.0/x is always fine to use it.
if (HasDenormals && !NumIsOne)
return nullptr;
Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
return Builder.CreateCall(Decl, { Num, Den });
}
// Optimizations is performed based on fpmath, fast math flags as well as
// denormals to optimize fdiv with either rcp or fdiv.fast.
//
// With rcp:
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
// allowed with unsafe-fp-math or afn.
//
// a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
//
// With fdiv.fast:
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
//
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
//
// NOTE: rcp is the preference in cases that both are legal.
bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
Type *Ty = FDiv.getType()->getScalarType();
// The f64 rcp/rsq approximations are pretty inaccurate. We can do an
// expansion around them in codegen.
if (Ty->isDoubleTy())
return false;
// No intrinsic for fdiv16 if target does not support f16.
if (Ty->isHalfTy() && !ST->has16BitInsts())
return false;
const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
const float ReqdAccuracy = FPOp->getFPAccuracy();
// Inaccurate rcp is allowed with unsafe-fp-math or afn.
FastMathFlags FMF = FPOp->getFastMathFlags();
const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc();
// rcp_f16 is accurate for !fpmath >= 1.0ulp.
// rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
// rcp_f64 is never accurate.
const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) ||
(Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f);
IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
Builder.setFastMathFlags(FMF);
Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
Value *Num = FDiv.getOperand(0);
Value *Den = FDiv.getOperand(1);
Value *NewFDiv = nullptr;
if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) {
NewFDiv = UndefValue::get(VT);
// FIXME: Doesn't do the right thing for cases where the vector is partially
// constant. This works when the scalarizer pass is run first.
for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
Value *NumEltI = Builder.CreateExtractElement(Num, I);
Value *DenEltI = Builder.CreateExtractElement(Den, I);
// Try rcp first.
Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp,
RcpIsAccurate, Builder, Mod);
if (!NewElt) // Try fdiv.fast.
NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy,
HasFP32Denormals, Builder, Mod);
if (!NewElt) // Keep the original.
NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
}
} else { // Scalar FDiv.
// Try rcp first.
NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate,
Builder, Mod);
if (!NewFDiv) { // Try fdiv.fast.
NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals,
Builder, Mod);
}
}
if (NewFDiv) {
FDiv.replaceAllUsesWith(NewFDiv);
NewFDiv->takeName(&FDiv);
FDiv.eraseFromParent();
}
return !!NewFDiv;
}
static bool hasUnsafeFPMath(const Function &F) {
Attribute Attr = F.getFnAttribute("unsafe-fp-math");
return Attr.getValueAsBool();
}
static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
Value *LHS, Value *RHS) {
Type *I32Ty = Builder.getInt32Ty();
Type *I64Ty = Builder.getInt64Ty();
Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
Hi = Builder.CreateTrunc(Hi, I32Ty);
return std::make_pair(Lo, Hi);
}
static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
return getMul64(Builder, LHS, RHS).second;
}
/// Figure out how many bits are really needed for this ddivision. \p AtLeast is
/// an optimization hint to bypass the second ComputeNumSignBits call if we the
/// first one is insufficient. Returns -1 on failure.
int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I,
Value *Num, Value *Den,
unsigned AtLeast, bool IsSigned) const {
const DataLayout &DL = Mod->getDataLayout();
unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
if (LHSSignBits < AtLeast)
return -1;
unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
if (RHSSignBits < AtLeast)
return -1;
unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
if (IsSigned)
++DivBits;
return DivBits;
}
// The fractional part of a float is enough to accurately represent up to
// a 24-bit signed integer.
Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
BinaryOperator &I,
Value *Num, Value *Den,
bool IsDiv, bool IsSigned) const {
int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
if (DivBits == -1)
return nullptr;
return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
}
Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder,
BinaryOperator &I,
Value *Num, Value *Den,
unsigned DivBits,
bool IsDiv, bool IsSigned) const {
Type *I32Ty = Builder.getInt32Ty();
Num = Builder.CreateTrunc(Num, I32Ty);
Den = Builder.CreateTrunc(Den, I32Ty);
Type *F32Ty = Builder.getFloatTy();
ConstantInt *One = Builder.getInt32(1);
Value *JQ = One;
if (IsSigned) {
// char|short jq = ia ^ ib;
JQ = Builder.CreateXor(Num, Den);
// jq = jq >> (bitsize - 2)
JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
// jq = jq | 0x1
JQ = Builder.CreateOr(JQ, One);
}
// int ia = (int)LHS;
Value *IA = Num;
// int ib, (int)RHS;
Value *IB = Den;
// float fa = (float)ia;
Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
: Builder.CreateUIToFP(IA, F32Ty);
// float fb = (float)ib;
Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
: Builder.CreateUIToFP(IB,F32Ty);
Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
Builder.getFloatTy());
Value *RCP = Builder.CreateCall(RcpDecl, { FB });
Value *FQM = Builder.CreateFMul(FA, RCP);
// fq = trunc(fqm);
CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
FQ->copyFastMathFlags(Builder.getFastMathFlags());
// float fqneg = -fq;
Value *FQNeg = Builder.CreateFNeg(FQ);
// float fr = mad(fqneg, fb, fa);
auto FMAD = !ST->hasMadMacF32Insts()
? Intrinsic::fma
: (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
Value *FR = Builder.CreateIntrinsic(FMAD,
{FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
// int iq = (int)fq;
Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
: Builder.CreateFPToUI(FQ, I32Ty);
// fr = fabs(fr);
FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
// fb = fabs(fb);
FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
// int cv = fr >= fb;
Value *CV = Builder.CreateFCmpOGE(FR, FB);
// jq = (cv ? jq : 0);
JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
// dst = iq + jq;
Value *Div = Builder.CreateAdd(IQ, JQ);
Value *Res = Div;
if (!IsDiv) {
// Rem needs compensation, it's easier to recompute it
Value *Rem = Builder.CreateMul(Div, Den);
Res = Builder.CreateSub(Num, Rem);
}
if (DivBits != 0 && DivBits < 32) {
// Extend in register from the number of bits this divide really is.
if (IsSigned) {
int InRegBits = 32 - DivBits;
Res = Builder.CreateShl(Res, InRegBits);
Res = Builder.CreateAShr(Res, InRegBits);
} else {
ConstantInt *TruncMask
= Builder.getInt32((UINT64_C(1) << DivBits) - 1);
Res = Builder.CreateAnd(Res, TruncMask);
}
}
return Res;
}
// Try to recognize special cases the DAG will emit special, better expansions
// than the general expansion we do here.
// TODO: It would be better to just directly handle those optimizations here.
bool AMDGPUCodeGenPrepare::divHasSpecialOptimization(
BinaryOperator &I, Value *Num, Value *Den) const {
if (Constant *C = dyn_cast<Constant>(Den)) {
// Arbitrary constants get a better expansion as long as a wider mulhi is
// legal.
if (C->getType()->getScalarSizeInBits() <= 32)
return true;
// TODO: Sdiv check for not exact for some reason.
// If there's no wider mulhi, there's only a better expansion for powers of
// two.
// TODO: Should really know for each vector element.
if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
return true;
return false;
}
if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
if (BinOpDen->getOpcode() == Instruction::Shl &&
isa<Constant>(BinOpDen->getOperand(0)) &&
isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
0, AC, &I, DT)) {
return true;
}
}
return false;
}
static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
// Check whether the sign can be determined statically.
KnownBits Known = computeKnownBits(V, *DL);
if (Known.isNegative())
return Constant::getAllOnesValue(V->getType());
if (Known.isNonNegative())
return Constant::getNullValue(V->getType());
return Builder.CreateAShr(V, Builder.getInt32(31));
}
Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
BinaryOperator &I, Value *X,
Value *Y) const {
Instruction::BinaryOps Opc = I.getOpcode();
assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
Opc == Instruction::SRem || Opc == Instruction::SDiv);
FastMathFlags FMF;
FMF.setFast();
Builder.setFastMathFlags(FMF);
if (divHasSpecialOptimization(I, X, Y))
return nullptr; // Keep it for later optimization.
bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
Type *Ty = X->getType();
Type *I32Ty = Builder.getInt32Ty();
Type *F32Ty = Builder.getFloatTy();
if (Ty->getScalarSizeInBits() < 32) {
if (IsSigned) {
X = Builder.CreateSExt(X, I32Ty);
Y = Builder.CreateSExt(Y, I32Ty);
} else {
X = Builder.CreateZExt(X, I32Ty);
Y = Builder.CreateZExt(Y, I32Ty);
}
}
if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
Builder.CreateZExtOrTrunc(Res, Ty);
}
ConstantInt *Zero = Builder.getInt32(0);
ConstantInt *One = Builder.getInt32(1);
Value *Sign = nullptr;
if (IsSigned) {
Value *SignX = getSign32(X, Builder, DL);
Value *SignY = getSign32(Y, Builder, DL);
// Remainder sign is the same as LHS
Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
X = Builder.CreateAdd(X, SignX);
Y = Builder.CreateAdd(Y, SignY);
X = Builder.CreateXor(X, SignX);
Y = Builder.CreateXor(Y, SignY);
}
// The algorithm here is based on ideas from "Software Integer Division", Tom
// Rodeheffer, August 2008.
//
// unsigned udiv(unsigned x, unsigned y) {
// // Initial estimate of inv(y). The constant is less than 2^32 to ensure
// // that this is a lower bound on inv(y), even if some of the calculations
// // round up.
// unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
//
// // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
// // Empirically this is guaranteed to give a "two-y" lower bound on
// // inv(y).
// z += umulh(z, -y * z);
//
// // Quotient/remainder estimate.
// unsigned q = umulh(x, z);
// unsigned r = x - q * y;
//
// // Two rounds of quotient/remainder refinement.
// if (r >= y) {
// ++q;
// r -= y;
// }
// if (r >= y) {
// ++q;
// r -= y;
// }
//
// return q;
// }
// Initial estimate of inv(y).
Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE));
Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
// One round of UNR.
Value *NegY = Builder.CreateSub(Zero, Y);
Value *NegYZ = Builder.CreateMul(NegY, Z);
Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
// Quotient/remainder estimate.
Value *Q = getMulHu(Builder, X, Z);
Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
// First quotient/remainder refinement.
Value *Cond = Builder.CreateICmpUGE(R, Y);
if (IsDiv)
Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
// Second quotient/remainder refinement.
Cond = Builder.CreateICmpUGE(R, Y);
Value *Res;
if (IsDiv)
Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
else
Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
if (IsSigned) {
Res = Builder.CreateXor(Res, Sign);
Res = Builder.CreateSub(Res, Sign);
}
Res = Builder.CreateTrunc(Res, Ty);
return Res;
}
Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder,
BinaryOperator &I,
Value *Num, Value *Den) const {
if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
return nullptr; // Keep it for later optimization.
Instruction::BinaryOps Opc = I.getOpcode();
bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
if (NumDivBits == -1)
return nullptr;
Value *Narrowed = nullptr;
if (NumDivBits <= 24) {
Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
IsDiv, IsSigned);
} else if (NumDivBits <= 32) {
Narrowed = expandDivRem32(Builder, I, Num, Den);
}
if (Narrowed) {
return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
Builder.CreateZExt(Narrowed, Num->getType());
}
return nullptr;
}
void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const {
Instruction::BinaryOps Opc = I.getOpcode();
// Do the general expansion.
if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
expandDivisionUpTo64Bits(&I);
return;
}
if (Opc == Instruction::URem || Opc == Instruction::SRem) {
expandRemainderUpTo64Bits(&I);
return;
}
llvm_unreachable("not a division");
}
bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
if (foldBinOpIntoSelect(I))
return true;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
DA->isUniform(&I) && promoteUniformOpToI32(I))
return true;
if (UseMul24Intrin && replaceMulWithMul24(I))
return true;
bool Changed = false;
Instruction::BinaryOps Opc = I.getOpcode();
Type *Ty = I.getType();
Value *NewDiv = nullptr;
unsigned ScalarSize = Ty->getScalarSizeInBits();
SmallVector<BinaryOperator *, 8> Div64ToExpand;
if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
ScalarSize <= 64 &&
!DisableIDivExpand) {
Value *Num = I.getOperand(0);
Value *Den = I.getOperand(1);
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
NewDiv = UndefValue::get(VT);
for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
Value *NumEltN = Builder.CreateExtractElement(Num, N);
Value *DenEltN = Builder.CreateExtractElement(Den, N);
Value *NewElt;
if (ScalarSize <= 32) {
NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
if (!NewElt)
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
} else {
// See if this 64-bit division can be shrunk to 32/24-bits before
// producing the general expansion.
NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
if (!NewElt) {
// The general 64-bit expansion introduces control flow and doesn't
// return the new value. Just insert a scalar copy and defer
// expanding it.
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
}
}
NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
}
} else {
if (ScalarSize <= 32)
NewDiv = expandDivRem32(Builder, I, Num, Den);
else {
NewDiv = shrinkDivRem64(Builder, I, Num, Den);
if (!NewDiv)
Div64ToExpand.push_back(&I);
}
}
if (NewDiv) {
I.replaceAllUsesWith(NewDiv);
I.eraseFromParent();
Changed = true;
}
}
if (ExpandDiv64InIR) {
// TODO: We get much worse code in specially handled constant cases.
for (BinaryOperator *Div : Div64ToExpand) {
expandDivRem64(*Div);
Changed = true;
}
}
return Changed;
}
bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
if (!WidenLoads)
return false;
if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
canWidenScalarExtLoad(I)) {
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = Builder.getInt32Ty();
Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
WidenLoad->copyMetadata(I);
// If we have range metadata, we need to convert the type, and not make
// assumptions about the high bits.
if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Range->getOperand(0));
if (Lower->getValue().isNullValue()) {
WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
} else {
Metadata *LowAndHigh[] = {
ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
// Don't make assumptions about the high bits.
ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
};
WidenLoad->setMetadata(LLVMContext::MD_range,
MDNode::get(Mod->getContext(), LowAndHigh));
}
}
int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
Type *IntNTy = Builder.getIntNTy(TySize);
Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
I.replaceAllUsesWith(ValOrig);
I.eraseFromParent();
return true;
}
return false;
}
bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
DA->isUniform(&I))
Changed |= promoteUniformOpToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
DA->isUniform(&I))
Changed |= promoteUniformOpToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
switch (I.getIntrinsicID()) {
case Intrinsic::bitreverse:
return visitBitreverseIntrinsicInst(I);
default:
return false;
}
}
bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
DA->isUniform(&I))
Changed |= promoteUniformBitreverseToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
Mod = &M;
DL = &Mod->getDataLayout();
return false;
}
bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
if (!TPC)
return false;
const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
ST = &TM.getSubtarget<GCNSubtarget>(F);
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
DA = &getAnalysis<LegacyDivergenceAnalysis>();
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
HasUnsafeFPMath = hasUnsafeFPMath(F);
AMDGPU::SIModeRegisterDefaults Mode(F);
HasFP32Denormals = Mode.allFP32Denormals();
bool MadeChange = false;
Function::iterator NextBB;
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
BasicBlock *BB = &*FI;
NextBB = std::next(FI);
BasicBlock::iterator Next;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) {
Next = std::next(I);
MadeChange |= visit(*I);
if (Next != E) { // Control flow changed
BasicBlock *NextInstBB = Next->getParent();
if (NextInstBB != BB) {
BB = NextInstBB;
E = BB->end();
FE = F.end();
}
}
}
}
return MadeChange;
}
INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
"AMDGPU IR optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
false, false)
char AMDGPUCodeGenPrepare::ID = 0;
FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
return new AMDGPUCodeGenPrepare();
}