This adds folds for comparing uadd.sat/usub.sat with zero:
* uadd.sat(a, b) == 0 => a == 0 && b == 0 => (a | b) == 0
* usub.sat(a, b) == 0 => a <= b
And inverted forms for !=.
Differential Revision: https://reviews.llvm.org/D69224
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@375374 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This problem consists of several parts:
* Basic sign bit extraction - `trunc? (?shr %x, (bitwidth(x)-1))`.
This is trivial, and easy to do, we have a fold for it.
* Shift amount reassociation - if we have two identical shifts,
and we can simplify-add their shift amounts together,
then we likely can just perform them as a single shift.
But this is finicky, has one-use restrictions,
and shift opcodes must be identical.
But there is a super-pattern where both of these work together.
to produce sign bit test from two shifts + comparison.
We do indeed already handle this in most cases.
But since we get that fold transitively, it has one-use restrictions.
And what's worse, in this case the right-shifts aren't required to be
identical, and we can't handle that transitively:
If the total shift amount is bitwidth-1, only a sign bit will remain
in the output value. But if we look at this from the perspective of
two shifts, we can't fold - we can't possibly know what bit pattern
we'd produce via two shifts, it will be *some* kind of a mask
produced from original sign bit, but we just can't tell it's shape:
https://rise4fun.com/Alive/cM0https://rise4fun.com/Alive/9IN
But it will *only* contain sign bit and zeros.
So from the perspective of sign bit test, we're good:
https://rise4fun.com/Alive/FRzhttps://rise4fun.com/Alive/qBU
Superb!
So the simplest solution is to extend `reassociateShiftAmtsOfTwoSameDirectionShifts()` to also have a
sudo-analysis mode that will ignore extra-uses, and will only check
whether a) those are two right shifts and b) they end up with bitwidth(x)-1
shift amount and return either the original value that we sign-checking,
or null.
This does not have any functionality change for
the existing `reassociateShiftAmtsOfTwoSameDirectionShifts()`.
All that being said, as disscussed in the review, this yet again
increases usage of instsimplify in instcombine as utility.
Some day that may need to be reevaluated.
https://bugs.llvm.org/show_bug.cgi?id=43595
Reviewers: spatel, efriedma, vsk
Reviewed By: spatel
Subscribers: xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68930
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@375371 91177308-0d34-0410-b5e6-96231b3b80d8
True, no test coverage is being added here. But those non-canonical
predicates that are already handled here already have no test coverage
as far as i can tell. I tried to add tests for them, but all the patterns
already get handled elsewhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@373962 91177308-0d34-0410-b5e6-96231b3b80d8
We do indeed already get it right in some cases, but only transitively,
with one-use restrictions. Since we only need to produce a single
comparison, it makes sense to match the pattern directly:
https://rise4fun.com/Alive/kPg
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@373802 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Removing an assumption (assert) that the CmpInst already has been
simplified in getFlippedStrictnessPredicateAndConstant. Solution is
to simply bail out instead of hitting the assertion. Instead we
assume that any profitable rewrite will happen in the next iteration
of InstCombine.
The reason why we can't assume that the CmpInst already has been
simplified is that the worklist does not guarantee such an ordering.
Solves https://bugs.llvm.org/show_bug.cgi?id=43376
Reviewers: spatel, lebedev.ri
Reviewed By: lebedev.ri
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68022
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372972 91177308-0d34-0410-b5e6-96231b3b80d8
https://rise4fun.com/Alive/KtL
This also shows that the fold added in D67412 / r372257
was too specific, and the new fold allows those test cases
to be handled more generically, therefore i delete now-dead code.
This is yet again motivated by
D67122 "[UBSan][clang][compiler-rt] Applying non-zero offset to nullptr is undefined behaviour"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372912 91177308-0d34-0410-b5e6-96231b3b80d8
Related folds were added in:
rL125734
...the code comment about register pressure is discussed in
more detail in:
https://bugs.llvm.org/show_bug.cgi?id=2698
But 10 years later, perf testing bzip2 with this change now
shows a slight (0.2% average) improvement on Haswell although
that's probably within test noise.
Given that this is IR canonicalization, we shouldn't be worried
about register pressure though; the backend should be able to
adjust for that as needed.
This is part of solving PR43310 the theoretically right way:
https://bugs.llvm.org/show_bug.cgi?id=43310
...ie, if we don't cripple basic transforms, then we won't
need to add special-case code to detect larger patterns.
rL371940 and rL371981 are related patches in this series.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372007 91177308-0d34-0410-b5e6-96231b3b80d8
This fold and several others were added in:
rL125734 <https://reviews.llvm.org/rL125734>
...with no explanation for the one-use checks other than the code
comments about register pressure.
Given that this is IR canonicalization, we shouldn't be worried
about register pressure though; the backend should be able to
adjust for that as needed.
This is part of solving PR43310 the theoretically right way:
https://bugs.llvm.org/show_bug.cgi?id=43310
...ie, if we don't cripple basic transforms, then we won't
need to add special-case code to detect larger patterns.
rL371940 is a related patch in this series.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@371981 91177308-0d34-0410-b5e6-96231b3b80d8
This blob was written before match() existed, so it
could probably be reduced significantly.
But I suspect it isn't well tested, so tests would have
to be added to reduce risk from logic changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@371978 91177308-0d34-0410-b5e6-96231b3b80d8
This fold and several others were added in:
rL125734
...with no explanation for the one-use checks other than the code
comments about register pressure.
Given that this is IR canonicalization, we shouldn't be worried
about register pressure though; the backend should be able to
adjust for that as needed.
There are similar checks as noted with the TODO comments. I'm
hoping to remove those restrictions too, but if any of these
does cause a regression, it should be easier to correct by making
small, individual commits.
This is part of solving PR43310 the theoretically right way:
https://bugs.llvm.org/show_bug.cgi?id=43310
...ie, if we don't cripple basic transforms, then we won't
need to add special-case code to detect larger patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@371940 91177308-0d34-0410-b5e6-96231b3b80d8
A follow-up for r329011.
This may be changed to produce @llvm.sub.with.overflow in a later patch,
but for now just make things more consistent overall.
A few observations stem from this:
* There does not seem to be a similar one-instruction fold for uadd-overflow
* I'm not sure we'll want to canonicalize `B u> A` as `usub.with.overflow`,
so since the `icmp` here no longer refers to `sub`,
reconstructing `usub.with.overflow` will be problematic,
and will likely require standalone pass (similar to DivRemPairs).
https://rise4fun.com/Alive/Zqs
Name: (A - B) u> A --> B u> A
%t0 = sub i8 %A, %B
%r = icmp ugt i8 %t0, %A
=>
%r = icmp ugt i8 %B, %A
Name: (A - B) u<= A --> B u<= A
%t0 = sub i8 %A, %B
%r = icmp ule i8 %t0, %A
=>
%r = icmp ule i8 %B, %A
Name: C u< (C - D) --> C u< D
%t0 = sub i8 %C, %D
%r = icmp ult i8 %C, %t0
=>
%r = icmp ult i8 %C, %D
Name: C u>= (C - D) --> C u>= D
%t0 = sub i8 %C, %D
%r = icmp uge i8 %C, %t0
=>
%r = icmp uge i8 %C, %D
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@371101 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Finally, the fold i was looking forward to :)
The legality check is muddy, i doubt i've groked the full generalization,
but it handles all the cases i care about, and can come up with:
https://rise4fun.com/Alive/26j
I.e. we can perform the fold if **any** of the following is true:
* The shift amount is either zero or one less than widest bitwidth
* Either of the values being shifted has at most lowest bit set
* The value that is being shifted by `shl` (which is not truncated) should have no less leading zeros than the total shift amount;
* The value that is being shifted by `lshr` (which **is** truncated) should have no less leading zeros than the widest bit width minus total shift amount minus one
I strongly suspect there is some better generalization, but i'm not aware of it as of right now.
For now i also avoided using actual `computeKnownBits()`, but restricted it to constants.
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66383
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@370324 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
`matchThreeWayIntCompare()` looks for
```
select i1 (a == b),
i32 Equal,
i32 (select i1 (a < b), i32 Less, i32 Greater)
```
but both of these selects/compares can be in it's commuted form,
so out of 8 variants, only the two most basic ones is handled.
This fixes regression being introduced in D66232.
Reviewers: spatel, nikic, efriedma, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66607
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369841 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If we have e.g.:
```
%t = icmp ult i32 %x, 65536
%r = select i1 %t, i32 %y, i32 65535
```
the constants `65535` and `65536` are suspiciously close.
We could perform a transformation to deduplicate them:
```
Name: ult
%t = icmp ult i32 %x, 65536
%r = select i1 %t, i32 %y, i32 65535
=>
%t.inv = icmp ugt i32 %x, 65535
%r = select i1 %t.inv, i32 65535, i32 %y
```
https://rise4fun.com/Alive/avb
While this may seem esoteric, this should certainly be good for vectors
(less constant pool usage) and for opt-for-size - need to have only one constant.
But the real fun part here is that it allows further transformation,
in particular it finishes cleaning up the `clamp` folding,
see e.g. `canonicalize-clamp-with-select-of-constant-threshold-pattern.ll`.
We start with e.g.
```
%dont_need_to_clamp_positive = icmp sle i32 %X, 32767
%dont_need_to_clamp_negative = icmp sge i32 %X, -32768
%clamp_limit = select i1 %dont_need_to_clamp_positive, i32 -32768, i32 32767
%dont_need_to_clamp = and i1 %dont_need_to_clamp_positive, %dont_need_to_clamp_negative
%R = select i1 %dont_need_to_clamp, i32 %X, i32 %clamp_limit
```
without this patch we currently produce
```
%1 = icmp slt i32 %X, 32768
%2 = icmp sgt i32 %X, -32768
%3 = select i1 %2, i32 %X, i32 -32768
%R = select i1 %1, i32 %3, i32 32767
```
which isn't really a `clamp` - both comparisons are performed on the original value,
this patch changes it into
```
%1.inv = icmp sgt i32 %X, 32767
%2 = icmp sgt i32 %X, -32768
%3 = select i1 %2, i32 %X, i32 -32768
%R = select i1 %1.inv, i32 32767, i32 %3
```
and then the magic happens! Some further transform finishes polishing it and we finally get:
```
%t1 = icmp sgt i32 %X, -32768
%t2 = select i1 %t1, i32 %X, i32 -32768
%t3 = icmp slt i32 %t2, 32767
%R = select i1 %t3, i32 %t2, i32 32767
```
which is beautiful and just what we want.
Proofs for `getFlippedStrictnessPredicateAndConstant()` for de-canonicalization:
https://rise4fun.com/Alive/THl
Proofs for the fold itself: https://rise4fun.com/Alive/THl
Reviewers: spatel, dmgreen, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66232
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369840 91177308-0d34-0410-b5e6-96231b3b80d8
Started implementing the vector case and realized the scalar case hadn't handled the GEP producing a different type than the base correctly. It's entertaining seeing what slips through review when we're focused on the 'hard' parts. :(
Also adding an extra vector test as it happened to be in workspace and wasn't worth separating.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369795 91177308-0d34-0410-b5e6-96231b3b80d8
This generalizes the isGEPKnownNonNull rule from ValueTracking to apply when we do not know if the base is non-null, and thus need to replace one condition with another.
The core notion is that since an inbounds GEP can only form null if the base pointer is null and the offset is zero. However, if the offset is non-zero, the the "inbounds" marker makes the result poison. Thus, we're free to ignore the case where the offset is non-zero. Similarly, there's no case under which a non-null base can result in a null result without generating poison.
Differential Revision: https://reviews.llvm.org/D66608
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369789 91177308-0d34-0410-b5e6-96231b3b80d8
An intermediate extend is used to widen the narrow operand to the width of
the other (wider) operand. At that point, we have the same logic as the
existing transform that was restricted to folds of equal width zext/sext.
This mostly solves PR42700:
https://bugs.llvm.org/show_bug.cgi?id=42700
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369519 91177308-0d34-0410-b5e6-96231b3b80d8
We were creating 2 instructions and relying on a subsequent fold
to invert a not(icmp). Create the final icmp directly instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369411 91177308-0d34-0410-b5e6-96231b3b80d8
1. Update function name and stale code comments.
2. Use variable names that are less ambiguous.
3. Move operand checks into the function as early exits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369390 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is continuation of D63829 / https://bugs.llvm.org/show_bug.cgi?id=42399
I thought naive pattern would solve my issue, but nope, it involved truncation,
thus more folds needed.. This isn't really the fold i'm interested in,
i need trunc-of-lshr, but i'we decided to start with `shl` because it's simpler.
In this case, no extra legality checks are needed:
https://rise4fun.com/Alive/CAb
We should be careful about not increasing instruction count,
since we need to produce `zext` because `and` is done in wider type.
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66057
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369117 91177308-0d34-0410-b5e6-96231b3b80d8
I'd like to use it elsewhere, hopefully without reinventing the wheel.
No functional change intended so far.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@368820 91177308-0d34-0410-b5e6-96231b3b80d8
If one of the values being shifted is a constant, since the new shift
amount is known-constant, the new shift will end up being constant-folded
so, we don't need that one-use restriction then.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@368519 91177308-0d34-0410-b5e6-96231b3b80d8
That one-use restriction is not needed for correctness - we have already
ensured that one of the shifts will go away, so we know we won't increase
the instruction count. So there is no need for that restriction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@368518 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I have stumbled into this by accident while preparing to extend backend `x s% C ==/!= 0` handling.
While we did happen to handle this fold in most of the cases,
the folding is indirect - we fold `x u% y` to `x & (y-1)` (iff `y` is power-of-two),
or first turn `x s% -y` to `x u% y`; that does handle most of the cases.
But we can't turn `x s% INT_MIN` to `x u% -INT_MIN`,
and thus we end up being stuck with `(x s% INT_MIN) == 0`.
There is no such restriction for the more general fold:
https://rise4fun.com/Alive/IIeS
To be noted, the fold does not enforce that `y` is a constant,
so it may indeed increase instruction count.
This is consistent with what `x u% y`->`x & (y-1)` already does.
I think it makes sense, it's at most one (simple) extra instruction,
while `rem`ainder is really much more un-simple (and likely **very** costly).
Reviewers: spatel, RKSimon, nikic, xbolva00, craig.topper
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65046
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@367322 91177308-0d34-0410-b5e6-96231b3b80d8
Extends the transform from:
rL364341
...to include another (more common?) pattern that tests whether a
value is a power-of-2 (including or excluding zero).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@364856 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Given pattern:
`icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0`
we should move shifts to the same hand of 'and', i.e. rewrite as
`icmp eq/ne (and (x shift (Q+K)), y), 0` iff `(Q+K) u< bitwidth(x)`
It might be tempting to not restrict this to situations where we know
we'd fold two shifts together, but i'm not sure what rules should there be
to avoid endless combine loops.
We pick the same shift that was originally used to shift the variable we picked to shift:
https://rise4fun.com/Alive/6x1v
Should fix [[ https://bugs.llvm.org/show_bug.cgi?id=42399 | PR42399]].
Reviewers: spatel, nikic, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63829
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@364791 91177308-0d34-0410-b5e6-96231b3b80d8
This follows up the transform from rL363956 to use the ctpop intrinsic when checking for power-of-2-or-zero.
This is matching the isPowerOf2() patterns used in PR42314:
https://bugs.llvm.org/show_bug.cgi?id=42314
But there's at least 1 instcombine follow-up needed to match the alternate form:
(v & (v - 1)) == 0;
We should have all of the backend expansions handled with:
rL364319
(x86-specific changes still needed for optimal code based on subtarget)
And the larger patterns to exclude zero as a power-of-2 are joining with this change after:
rL364153 ( D63660 )
rL364246
Differential Revision: https://reviews.llvm.org/D63777
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@364341 91177308-0d34-0410-b5e6-96231b3b80d8
The form that compares against 0 is better because:
1. It removes a use of the input value.
2. It's the more standard form for this pattern: https://graphics.stanford.edu/~seander/bithacks.html#DetermineIfPowerOf2
3. It results in equal or better codegen (tested with x86, AArch64, ARM, PowerPC, MIPS).
This is a root cause for PR42314, but probably doesn't completely answer the codegen request:
https://bugs.llvm.org/show_bug.cgi?id=42314
Alive proof:
https://rise4fun.com/Alive/9kG
Name: is power-of-2
%neg = sub i32 0, %x
%a = and i32 %neg, %x
%r = icmp eq i32 %a, %x
=>
%dec = add i32 %x, -1
%a2 = and i32 %dec, %x
%r = icmp eq i32 %a2, 0
Name: is not power-of-2
%neg = sub i32 0, %x
%a = and i32 %neg, %x
%r = icmp ne i32 %a, %x
=>
%dec = add i32 %x, -1
%a2 = and i32 %dec, %x
%r = icmp ne i32 %a2, 0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@363956 91177308-0d34-0410-b5e6-96231b3b80d8