Summary:
Part of the adjustCopiesBackFrom method wasn't correctly dealing with SubRange
intervals when updating.
2 changes. The first to ensure that bogus SubRange Segments aren't propagated when
encountering Segments of the form [1234r, 1234d:0) when preparing to merge value
numbers. These can be removed in this case.
The second forces a shrinkToUses call if SubRanges end on the copy index
(instead of just the parent register).
V2: Addressed review comments, plus MIR test instead of ll test
Subscribers: MatzeB, qcolombet, nhaehnle
Differential Revision: https://reviews.llvm.org/D40308
Change-Id: I1d2b2b4beea802fce11da01edf71feb2064aab05
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337273 91177308-0d34-0410-b5e6-96231b3b80d8
Memory legalizer, waitcnt, and shrink passes can perturb the instructions,
which means that the post-RA hazard recognizer pass should run after them.
Otherwise, one of those passes may invalidate the work done by the hazard
recognizer. Note that this has adverse side-effect that any consecutive
S_NOP 0's, emitted by the hazard recognizer, will not be shrunk into a
single S_NOP <N>. This should be addressed in a follow-on patch.
Differential Revision: https://reviews.llvm.org/D49288
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337154 91177308-0d34-0410-b5e6-96231b3b80d8
This is almost the same as an existing IR canonicalization in instcombine,
so I'm assuming this is a good early generic DAG combine too.
The motivation comes from reduced bit-hacking for select-of-constants in IR
after rL331486. We want to restore that functionality in the DAG as noted in
the commit comments for that change and the llvm-dev discussion here:
http://lists.llvm.org/pipermail/llvm-dev/2018-July/124433.html
The PPC and AArch tests show that those targets are already doing something
similar. x86 will be neutral in the minimal case and generally better when
this pattern is extended with other ops as shown in the signbit-shift.ll tests.
Note the asymmetry: we don't include the (extend (ifneg X)) transform because
it already exists in SimplifySelectCC(), and that is verified in the later
unchanged tests in the signbit-shift.ll files. Without the 'not' op, the
general transform to use a shift is always a win because that's a single
instruction.
Alive proofs:
https://rise4fun.com/Alive/ysli
Name: if pos, get -1
%c = icmp sgt i16 %x, -1
%r = sext i1 %c to i16
=>
%n = xor i16 %x, -1
%r = ashr i16 %n, 15
Name: if pos, get 1
%c = icmp sgt i16 %x, -1
%r = zext i1 %c to i16
=>
%n = xor i16 %x, -1
%r = lshr i16 %n, 15
Differential Revision: https://reviews.llvm.org/D48970
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337130 91177308-0d34-0410-b5e6-96231b3b80d8
This was improved with rL337127, but I missed the failure in this test.
I'm not sure what the expected result will be, so I've generalized it
and added a FIXME comment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337128 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r337021.
WARNING: MemorySanitizer: use-of-uninitialized-value
#0 0x1415cd65 in void write_signed<long>(llvm::raw_ostream&, long, unsigned long, llvm::IntegerStyle) /code/llvm-project/llvm/lib/Support/NativeFormatting.cpp:95:7
#1 0x1415c900 in llvm::write_integer(llvm::raw_ostream&, long, unsigned long, llvm::IntegerStyle) /code/llvm-project/llvm/lib/Support/NativeFormatting.cpp:121:3
#2 0x1472357f in llvm::raw_ostream::operator<<(long) /code/llvm-project/llvm/lib/Support/raw_ostream.cpp:117:3
#3 0x13bb9d4 in llvm::raw_ostream::operator<<(int) /code/llvm-project/llvm/include/llvm/Support/raw_ostream.h:210:18
#4 0x3c2bc18 in void printField<unsigned int, &(amd_kernel_code_s::amd_kernel_code_version_major)>(llvm::StringRef, amd_kernel_code_s const&, llvm::raw_ostream&) /code/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDKernelCodeTUtils.cpp:78:23
#5 0x3c250ba in llvm::printAmdKernelCodeField(amd_kernel_code_s const&, int, llvm::raw_ostream&) /code/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDKernelCodeTUtils.cpp:104:5
#6 0x3c27ca3 in llvm::dumpAmdKernelCode(amd_kernel_code_s const*, llvm::raw_ostream&, char const*) /code/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDKernelCodeTUtils.cpp:113:5
#7 0x3a46e6c in llvm::AMDGPUTargetAsmStreamer::EmitAMDKernelCodeT(amd_kernel_code_s const&) /code/llvm-project/llvm/lib/Target/AMDGPU/MCTargetDesc/AMDGPUTargetStreamer.cpp:161:3
#8 0xd371e4 in llvm::AMDGPUAsmPrinter::EmitFunctionBodyStart() /code/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp:204:26
[...]
Uninitialized value was created by an allocation of 'KernelCode' in the stack frame of function '_ZN4llvm16AMDGPUAsmPrinter21EmitFunctionBodyStartEv'
#0 0xd36650 in llvm::AMDGPUAsmPrinter::EmitFunctionBodyStart() /code/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp:192
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337079 91177308-0d34-0410-b5e6-96231b3b80d8
This was completely broken if there was ever a struct argument, as
this information is thrown away during the argument analysis.
The offsets as passed in to LowerFormalArguments are not useful,
as they partially depend on the legalized result register type,
and they don't consider the alignment in the first place.
Ignore the Ins array, and instead figure out from the raw IR type
what we need to do. This seems to fix the padding computation
if the DAG lowering is forced (and stops breaking arguments
following padded arguments if the arguments were only partially
lowered in the IR)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337021 91177308-0d34-0410-b5e6-96231b3b80d8
This is marginally helpful for removing redundant extensions, and the
code is easier to read, so it seems like an all-around win. In the new
test i8-phi-ext.ll, we used to emit an AssertSext i8; now we emit an
AssertZext i2, which allows the extension of the return value to be
eliminated.
Differential Revision: https://reviews.llvm.org/D49004
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336868 91177308-0d34-0410-b5e6-96231b3b80d8
See https://reviews.llvm.org/D47106 for details.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D47171
This commit drops that patch's changes to:
llvm/test/CodeGen/NVPTX/f16x2-instructions.ll
llvm/test/CodeGen/NVPTX/param-load-store.ll
For some reason, the dos line endings there prevent me from commiting
via the monorepo. A follow-up commit (not via the monorepo) will
finish the patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336843 91177308-0d34-0410-b5e6-96231b3b80d8
These won't work for the forseeable future. These aren't allowed
from OpenCL, but IPO optimizations can make them appear.
Also directly set the attributes on functions, regardless
of the linkage rather than cloning functions like before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336587 91177308-0d34-0410-b5e6-96231b3b80d8
Avoid using allocateKernArg / AssignFn. We do not want any
of the type splitting properties of normal calling convention
lowering.
For now at least this exists alongside the IR argument lowering
pass. This is necessary to handle struct padding correctly while
some arguments are still skipped by the IR argument lowering
pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336373 91177308-0d34-0410-b5e6-96231b3b80d8
Wait states are not properly being inserted after buffer_store for v_interp instructions.
Add VALU to V_INTERP instructions so that the GCNHazardRecognizer can
check and insert the appropriate wait states when needed.
Differential Revision: https://reviews.llvm.org/D48772
Change-Id: Id540c9b074fc69b5c1de6b182276aa089c74aa64
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336339 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We could split sizes that are not power of two into smaller sized
G_IMPLICIT_DEF instructions, but this ends up generating
G_MERGE_VALUES instructions which we then have to handle in the instruction
selector. Since G_IMPLICIT_DEF is really a no-op it's easier just to
keep everything that can fit into a register legal.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, rovka, kristof.beyls, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48777
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336041 91177308-0d34-0410-b5e6-96231b3b80d8
This was introducing unnecessary padding after the explicit
arguments, depending on the alignment of the total struct type.
Also has the side effect of avoiding creating an extra GEP for
the offset from the base kernel argument to the explicit kernel
argument offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335999 91177308-0d34-0410-b5e6-96231b3b80d8
This allows hoisting of a common code, for instance if denominator
is loop invariant. Current change is expansion only, adding licm to
the target pass list going to be a separate patch. Given this patch
changes to codegen are minor as the expansion is similar to that on
DAG. DAG expansion still must remain for R600.
Differential Revision: https://reviews.llvm.org/D48586
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335868 91177308-0d34-0410-b5e6-96231b3b80d8
In principle nothing should stop these from working, but
work is necessary to create an ABI for dealing with the stack
related registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335829 91177308-0d34-0410-b5e6-96231b3b80d8
Just fix the crash for now by not doing the optimization since
figuring out how to properly convert the bits for an arbitrary
struct is a pain.
Also fix a crash when there is only an empty struct argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335827 91177308-0d34-0410-b5e6-96231b3b80d8
If a source of rcp instruction is a result of any conversion from
an integer convert it into rcp_iflag instruction. No FP exception
can ever happen except division by zero if a single precision rcp
argument is a representation of an integral number.
Differential Revision: https://reviews.llvm.org/D48569
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335742 91177308-0d34-0410-b5e6-96231b3b80d8
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335650 91177308-0d34-0410-b5e6-96231b3b80d8
It is legal for a PHI node not to have a live value in a predecessor
as long as the end of the predecessor is jointly dominated by an undef
value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335607 91177308-0d34-0410-b5e6-96231b3b80d8
Note a normal select test is not currently possible because this
relies on input registers tracked in SIMachineFunctionInfo which
are not currently serializable in MIR, but this does work end-to-end
from the IR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335490 91177308-0d34-0410-b5e6-96231b3b80d8
I thought I fixed this in r308673, but that fix was
very broken. The assumption that any frame index can be used
in place of another was more widespread than I realized.
Even when stack slot sharing was disabled, this was still
replacing frame index uses with a different ID with a different
stack slot.
Really fix this by doing the coloring per-stack ID, so all of
the coloring logically done in a separate namespace. This is a lot
simpler than trying to figure out how to change the color if
the stack ID is different.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335488 91177308-0d34-0410-b5e6-96231b3b80d8
This should avoid relying on the pointee type
to get the alignment, particularly since pointee
types are supposed to be removed at some point.
Also fixes not getting the alignment for unsized types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335478 91177308-0d34-0410-b5e6-96231b3b80d8
Not sure why the 32/64 split is needed in the atomic_load
store hierarchies. The regular PatFrags do this, but we don't
do it for the existing handling for global.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335325 91177308-0d34-0410-b5e6-96231b3b80d8
Update AMDGPU assembler syntax behind the code-object-v3 feature:
* Replace/rename most AMDGPU assembler directives/symbols and document them.
* Provide more diagnostics (e.g. values out of range, missing values, repeated
values).
* Provide path for backwards compatibility, even with underlying descriptor
changes.
Differential Revision: https://reviews.llvm.org/D47736
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335281 91177308-0d34-0410-b5e6-96231b3b80d8
Allowed folding for "and/or" binops with non-constant operand if
arguments of select are 0/-1 values.
Normally this code with "and" opcode does not get to a DAG combiner
and simplified yet in the InstCombine. However AMDGPU produces it
during lowering and InstCombine has no chance to optimize it out.
In turn the same pattern with "or" opcode can reach DAG.
Differential Revision: https://reviews.llvm.org/D48301
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335250 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This also removes the need for atomic pseudo instructions, since
we select the correct encoding directly in SITargetLowering::lowerImage
for dimension-aware image intrinsics.
Mesa uses dimension-aware image intrinsics since
commit a9a7993441.
Change-Id: I7473d20009476a4ed6d919cae4e6dca9ff42e77a
Reviewers: arsenm, rampitec, mareko, tpr, b-sumner
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48167
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335231 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Also explicitly port over some tests in llvm.amdgcn.image.* that were
missing. Some tests are removed because they no longer apply (i.e.
explicitly testing building an address vector via insertelement).
This is in preparation for the eventual removal of the old-style
intrinsics.
Some additional notes:
- constant-address-space-32bit.ll: change some GCN-NEXT to GCN because
the instruction schedule was subtly altered
- insert_vector_elt.ll: the old test didn't actually test anything,
because %tmp1 was not used; remove the load, because it doesn't work
(Because of the amdgpu_ps calling convention? In any case, it's
orthogonal to what the test claims to be testing.)
Change-Id: Idfa99b6512ad139e755e82b8b89548ab08f0afcf
Reviewers: arsenm, rampitec
Subscribers: MatzeB, qcolombet, kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D48018
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335229 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Having TableGen patterns for image intrinsics is hitting limitations:
for D16 we already have to manually pre-lower the packing of data
values, and we will have to do the same for A16 eventually.
Since there is already some custom C++ code anyway, it is arguably easier
to just do everything in C++, now that we can use the beefed-up generic
tables backend of TableGen to provide all the required metadata and map
intrinsics to corresponding opcodes. With this approach, all image
intrinsic lowering happens in SITargetLowering::lowerImage. That code is
dense due to all the cases that it handles, but it should still be easier
to follow than what we had before, by virtue of it all being done in a
single location, and by virtue of not relying on the TableGen pattern
magic that very few people really understand.
This means that we will have MachineSDNodes with MIMG instructions
during DAG combining, but that seems alright: previously we had
intrinsic nodes instead, but those are similarly opaque to the generic
CodeGen infrastructure, and the final pattern matching just did a 1:1
translation to machine instructions anyway. If anything, the fact that
we now merge the address words into a vector before DAG combine should
be an advantage.
Change-Id: I417f26bd88f54ce9781c1668acc01f3f99774de6
Reviewers: arsenm, rampitec, rtaylor, tstellar
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48017
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335228 91177308-0d34-0410-b5e6-96231b3b80d8