------------------------------------------------------------------------
r279125 | mssimpso | 2016-08-18 12:50:32 -0700 (Thu, 18 Aug 2016) | 14 lines
[SLP] Initialize VectorizedValue when gathering
We abort building vectorizable trees in some cases (e.g., if the maximum
recursion depth is reached, if the region size is too large, etc.). If this
happens for a reduction, we can be left with a root entry that needs to be
gathered. For these cases, we need make sure we actually set VectorizedValue to
the resulting vector.
This patch ensures we properly set VectorizedValue, and it also ensures the
insertelement sequence generated for the gathers is inserted at the correct
location.
Reference: https://llvm.org/bugs/show_bug.cgi?id=28330
Differential Revison: https://reviews.llvm.org/D23410
------------------------------------------------------------------------
------------------------------------------------------------------------
r278343 | mssimpso | 2016-08-11 08:28:45 -0700 (Thu, 11 Aug 2016) | 1 line
[SLP] Make RecursionMaxDepth a command line option (NFC)
------------------------------------------------------------------------
git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/release_39@279174 91177308-0d34-0410-b5e6-96231b3b80d8
------------------------------------------------------------------------
r278573 | timshen | 2016-08-12 15:47:13 -0700 (Fri, 12 Aug 2016) | 8 lines
[LoopVectorize] Detect loops in the innermost loop before creating InnerLoopVectorizer
InnerLoopVectorizer shouldn't handle a loop with cycles inside the loop
body, even if that cycle isn't a natural loop.
Fixes PR28541.
Differential Revision: https://reviews.llvm.org/D22952
------------------------------------------------------------------------
------------------------------------------------------------------------
r277399 | timshen | 2016-08-01 15:32:20 -0700 (Mon, 01 Aug 2016) | 9 lines
[ADT] NFC: Generalize GraphTraits requirement of "NodeType *" in interfaces to "NodeRef", and migrate SCCIterator.h to use NodeRef
Summary: By generalize the interface, users are able to inject more flexible Node token into the algorithm, for example, a pair of vector<Node>* and index integer. Currently I only migrated SCCIterator to use NodeRef, but more is coming. It's a NFC.
Reviewers: dblaikie, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22937
------------------------------------------------------------------------
------------------------------------------------------------------------
r278157 | timshen | 2016-08-09 13:23:13 -0700 (Tue, 09 Aug 2016) | 7 lines
[ADT] Change iterator_adaptor_base's default template arguments to forward more underlying typedefs
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23217
------------------------------------------------------------------------
------------------------------------------------------------------------
r278569 | timshen | 2016-08-12 15:03:28 -0700 (Fri, 12 Aug 2016) | 3 lines
[ADT] Add filter_iterator for filtering elements
Differential Revision: https://reviews.llvm.org/D22951
------------------------------------------------------------------------
git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/release_39@278674 91177308-0d34-0410-b5e6-96231b3b80d8
This patch swaps A and B in the interleaved access analysis and clarifies
related comments. The algorithm is more intuitive if we let access A precede
access B in program order rather than the reverse. This change was requested in
the review of D19984.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275567 91177308-0d34-0410-b5e6-96231b3b80d8
We now collect all accesses with a constant stride, not just the ones with a
stride greater than one. This change was requested in the review of D19984.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275473 91177308-0d34-0410-b5e6-96231b3b80d8
This patch prevents increases in the number of instructions, pre-instcombine,
due to induction variable scalarization. An increase in instructions can lead
to an increase in the compile-time required to simplify the induction
variables. We now maintain a new map for scalarized induction variables to
prevent us from converting between the scalar and vector forms.
This patch should resolve compile-time regressions seen after r274627.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275419 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
LSV used to abort vectorizing a chain for interleaved load/store accesses that alias.
Allow a valid prefix of the chain to be vectorized, mark just the prefix and retry vectorizing the remaining chain.
Reviewers: llvm-commits, jlebar, arsenm
Subscribers: mzolotukhin
Differential Revision: http://reviews.llvm.org/D22119
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275317 91177308-0d34-0410-b5e6-96231b3b80d8
The LCSSA pass itself will not generate several redundant PHI nodes in a single
exit block. However, such redundant PHI nodes don't violate LCSSA form, and may
be introduced by passes that preserve LCSSA, and/or preserved by the LCSSA pass
itself. So, assuming a single PHI node per exit block is not safe.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275217 91177308-0d34-0410-b5e6-96231b3b80d8
Use range-based for loops instead of doing everything manually.
Use auto when appropriate.
No functional change is intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275205 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Aiming to correct the ordering of loads/stores. This patch changes the
insert point for loads to the position of the first load.
It updates the ordering method for loads to insert before, rather than after.
Before this patch the following sequence:
"load a[1], store a[1], store a[0], load a[2]"
Would incorrectly vectorize to "store a[0,1], load a[1,2]".
The correctness check was assuming the insertion point for loads is at
the position of the first load, when in practice it was at the last
load. An alternative fix would have been to invert the correctness check.
The current fix changes insert position but also requires reordering of
instructions before the vectorized load.
Updated testcases to reflect the changes.
Reviewers: tstellarAMD, llvm-commits, jlebar, arsenm
Subscribers: mzolotukhin
Differential Revision: http://reviews.llvm.org/D22071
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275117 91177308-0d34-0410-b5e6-96231b3b80d8
We currently always vectorize induction variables. However, if an induction
variable is only used for counting loop iterations or computing addresses with
getelementptr instructions, we don't need to do this. Vectorizing these trivial
induction variables can create vector code that is difficult to simplify later
on. This is especially true when the unroll factor is greater than one, and we
create vector arithmetic when computing step vectors. With this patch, we check
if an induction variable is only used for counting iterations or computing
addresses, and if so, scalarize the arithmetic when computing step vectors
instead. This allows for greater simplification.
This patch addresses the suboptimal pointer arithmetic sequence seen in
PR27881.
Reference: https://llvm.org/bugs/show_bug.cgi?id=27881
Differential Revision: http://reviews.llvm.org/D21620
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274627 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
GetBoundryInstruction returns the last instruction as the instruction which follows or end(). Otherwise the last instruction in the boundry set is not being tested by isVectorizable().
Partially solve reordering of instructions. More extensive solution to follow.
Reviewers: tstellarAMD, llvm-commits, jlebar
Subscribers: escha, arsenm, mzolotukhin
Differential Revision: http://reviews.llvm.org/D21934
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274389 91177308-0d34-0410-b5e6-96231b3b80d8
If OpB has an ADD NSW/NUW, we can use that to prove that adding 1
to OpA won't wrap if OpA + 1 == OpB.
Patch by Fiona Glaser
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274324 91177308-0d34-0410-b5e6-96231b3b80d8
If no alignment was set on the load/stores, it would vectorize
to the new type even though this increases the default alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274323 91177308-0d34-0410-b5e6-96231b3b80d8
This needs to use inttoptr/ptrtoint if combining an int and pointer
load. If a pointer is used always do an integer load.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274321 91177308-0d34-0410-b5e6-96231b3b80d8
integer.
Fixes issues on some architectures where we use arithmetic ops to build
vectors, which can cause bad things to happen for loads/stores of mixed
types.
Patch by Fiona Glaser
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274307 91177308-0d34-0410-b5e6-96231b3b80d8
This will be re-used by the LoadStoreVectorizer.
Fix handling of range metadata and testcase by Justin Lebar.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274281 91177308-0d34-0410-b5e6-96231b3b80d8
Except the seed uniform instructions (conditional branch and consecutive ptr
instructions), dependencies to be added into uniform set should only be used
by existing uniform instructions or intructions outside of current loop.
Differential Revision: http://reviews.llvm.org/D21755
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274262 91177308-0d34-0410-b5e6-96231b3b80d8
For the new hotness attribute, the API will take the pass rather than
the pass name so we can no longer play the trick of AlwaysPrint being a
special pass name. This adds a getter to help the transition.
There is also a corresponding clang patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274100 91177308-0d34-0410-b5e6-96231b3b80d8
It did not handle correctly cases without GEP.
The following loop wasn't vectorized:
for (int i=0; i<len; i++)
*to++ = *from++;
I use getPtrStride() to find Stride for memory access and return 0 is the Stride is not 1 or -1.
Re-commit rL273257 - revision: http://reviews.llvm.org/D20789
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273864 91177308-0d34-0410-b5e6-96231b3b80d8
The interleaved access analysis currently assumes that the inserted run-time
pointer aliasing checks ensure the absence of dependences that would prevent
its instruction reordering. However, this is not the case.
Issues can arise from how code generation is performed for interleaved groups.
For a load group, all loads in the group are essentially moved to the location
of the first load in program order, and for a store group, all stores in the
group are moved to the location of the last store. For groups having members
involved in a dependence relation with any other instruction in the loop, this
reordering can violate the dependence.
This patch teaches the interleaved access analysis how to avoid breaking such
dependences, and should fix PR27626.
An assumption of the original analysis was that the accesses had been collected
in "program order". The analysis was then simplified by visiting the accesses
bottom-up. However, this ordering was never guaranteed for anything other than
single basic block loops. Thus, this patch also enforces the desired ordering.
Reference: https://llvm.org/bugs/show_bug.cgi?id=27626
Differential Revision: http://reviews.llvm.org/D19984
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273687 91177308-0d34-0410-b5e6-96231b3b80d8
It did not handle correctly cases without GEP.
The following loop wasn't vectorized:
for (int i=0; i<len; i++)
*to++ = *from++;
I use getPtrStride() to find Stride for memory access and return 0 is the Stride is not 1 or -1.
Differential revision: http://reviews.llvm.org/D20789
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273257 91177308-0d34-0410-b5e6-96231b3b80d8
This is a functional change for LLE and LDist. The other clients (LV,
LVerLICM) already had this explicitly enabled.
The temporary boolean parameter to LAA is removed that allowed turning
off speculation of symbolic strides. This makes LAA's caching interface
LAA::getInfo only take the loop as the parameter. This makes the
interface more friendly to the new Pass Manager.
The flag -enable-mem-access-versioning is moved from LV to a LAA which
now allows turning off speculation globally.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273064 91177308-0d34-0410-b5e6-96231b3b80d8