As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317488 91177308-0d34-0410-b5e6-96231b3b80d8
The optimisation remarks for loop unrolling with an unrolled remainder looks something like:
test.c:7:18: remark: completely unrolled loop with 3 iterations [-Rpass=loop-unroll]
C[i] += A[i*N+j];
^
test.c:6:9: remark: unrolled loop by a factor of 4 with run-time trip count [-Rpass=loop-unroll]
for(int j = 0; j < N; j++)
^
This removes the first of the two messages.
Differential revision: https://reviews.llvm.org/D38725
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316986 91177308-0d34-0410-b5e6-96231b3b80d8
This is no-functional-change-intended.
This is repackaging the functionality of D30333 (defer switch-to-lookup-tables) and
D35411 (defer folding unconditional branches) with pass parameters rather than a named
"latesimplifycfg" pass. Now that we have individual options to control the functionality,
we could decouple when these fire (but that's an independent patch if desired).
The next planned step would be to add another option bit to disable the sinking transform
mentioned in D38566. This should also make it clear that the new pass manager needs to
be updated to limit simplifycfg in the same way as the old pass manager.
Differential Revision: https://reviews.llvm.org/D38631
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316835 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed in D39011:
https://reviews.llvm.org/D39011
...replacing constants with a variable is inverting the transform done
by other IR passes, so we definitely don't want to do this early.
In fact, it's questionable whether this transform belongs in SimplifyCFG
at all. I'll look at moving this to codegen as a follow-up step.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316298 91177308-0d34-0410-b5e6-96231b3b80d8
MergeFunctions uses (through FunctionComparator) a map of GlobalValues
to identifiers because it needs to compare functions and globals
do not have an inherent total order. Thus, FunctionComparator
(through GlobalNumberState) has a ValueMap<GlobalValue *>.
r315852 added a RAUW on globals that may have been previously
encountered by the FunctionComparator, which would replace
a GlobalValue * key with a ConstantExpr *, which is illegal.
This commit adjusts that code path to remove the function being
replaced from the ValueMap as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316145 91177308-0d34-0410-b5e6-96231b3b80d8
It is possible for two modules to define the same set of external
symbols without causing a duplicate symbol error at link time,
as long as each of the symbols is a comdat member. So we cannot
use them as part of a unique id for the module.
Differential Revision: https://reviews.llvm.org/D38602
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315026 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up to https://reviews.llvm.org/D38138.
I fixed the capitalization of some functions because we're changing those
lines anyway and that helped verify that we weren't accidentally dropping
any options by using default param values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@314930 91177308-0d34-0410-b5e6-96231b3b80d8
Causes a segfault on a builtbot (and in our internal bootstrapping of
Clang). See Eli's response on the commit thread.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@314589 91177308-0d34-0410-b5e6-96231b3b80d8
JumpThreading now preserves dominance and lazy value information across the
entire pass. The pass manager is also informed of this preservation with
the goal of DT and LVI being recalculated fewer times overall during
compilation.
This change prepares JumpThreading for enhanced opportunities; particularly
those across loop boundaries.
Patch by: Brian Rzycki <b.rzycki@samsung.com>,
Sebastian Pop <s.pop@samsung.com>
Differential revision: https://reviews.llvm.org/D37528
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@314435 91177308-0d34-0410-b5e6-96231b3b80d8
This was intended to be no-functional-change, but it's not - there's a test diff.
So I thought I should stop here and post it as-is to see if this looks like what was expected
based on the discussion in PR34603:
https://bugs.llvm.org/show_bug.cgi?id=34603
Notes:
1. The test improvement occurs because the existing 'LateSimplifyCFG' marker is not carried
through the recursive calls to 'SimplifyCFG()->SimplifyCFGOpt().run()->SimplifyCFG()'.
The parameter isn't passed down, so we pick up the default value from the function signature
after the first level. I assumed that was a bug, so I've passed 'Options' down in all of the
'SimplifyCFG' calls.
2. I split 'LateSimplifyCFG' into 2 bits: ConvertSwitchToLookupTable and KeepCanonicalLoops.
This would theoretically allow us to differentiate the transforms controlled by those params
independently.
3. We could stash the optional AssumptionCache pointer and 'LoopHeaders' pointer in the struct too.
I just stopped here to minimize the diffs.
4. Similarly, I stopped short of messing with the pass manager layer. I have another question that
could wait for the follow-up: why is the new pass manager creating the pass with LateSimplifyCFG
set to true no matter where in the pipeline it's creating SimplifyCFG passes?
// Create an early function pass manager to cleanup the output of the
// frontend.
EarlyFPM.addPass(SimplifyCFGPass());
-->
/// \brief Construct a pass with the default thresholds
/// and switch optimizations.
SimplifyCFGPass::SimplifyCFGPass()
: BonusInstThreshold(UserBonusInstThreshold),
LateSimplifyCFG(true) {} <-- switches get converted to lookup tables and loops may not be in canonical form
If this is unintended, then it's possible that the current behavior of dropping the 'LateSimplifyCFG'
setting via recursion was masking this bug.
Differential Revision: https://reviews.llvm.org/D38138
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@314308 91177308-0d34-0410-b5e6-96231b3b80d8
The fix is to avoid invalidating our insertion point in
replaceDbgDeclare:
Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
+ if (DII == InsertBefore)
+ InsertBefore = &*std::next(InsertBefore->getIterator());
DII->eraseFromParent();
I had to write a unit tests for this instead of a lit test because the
use list order matters in order to trigger the bug.
The reduced C test case for this was:
void useit(int*);
static inline void inlineme() {
int x[2];
useit(x);
}
void f() {
inlineme();
inlineme();
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313905 91177308-0d34-0410-b5e6-96231b3b80d8
.. as well as the two subsequent changes r313826 and r313875.
This leads to segfaults in combination with ASAN. Will forward repro
instructions to the original author (rnk).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313876 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This implements the design discussed on llvm-dev for better tracking of
variables that live in memory through optimizations:
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117222.html
This is tracked as PR34136
llvm.dbg.addr is intended to be produced and used in almost precisely
the same way as llvm.dbg.declare is today, with the exception that it is
control-dependent. That means that dbg.addr should always have a
position in the instruction stream, and it will allow passes that
optimize memory operations on local variables to insert llvm.dbg.value
calls to reflect deleted stores. See SourceLevelDebugging.rst for more
details.
The main drawback to generating DBG_VALUE machine instrs is that they
usually cause LLVM to emit a location list for DW_AT_location. The next
step will be to teach DwarfDebug.cpp how to recognize more DBG_VALUE
ranges as not needing a location list, and possibly start setting
DW_AT_start_offset for variables whose lifetimes begin mid-scope.
Reviewers: aprantl, dblaikie, probinson
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37768
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313825 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
With this change:
- Methods in LoopBase trip an assert if the receiver has been invalidated
- LoopBase::clear frees up the memory held the LoopBase instance
This change also shuffles things around as necessary to work with this stricter invariant.
Reviewers: chandlerc
Subscribers: mehdi_amini, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D38055
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313708 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The current promoteLoopAccessesToScalars method receives an AliasSet, but
the information used is in fact a list of Value*, known to must alias.
Create the list ahead of time to make this method independent of the AliasSet class.
While there is no functionality change, this adds overhead for creating
a set of Value*, when promotion would normally exit earlier.
This is meant to be as a first refactoring step in order to start replacing
AliasSetTracker with MemorySSA.
And while the end goal is to redesign LICM, the first few steps will focus on
adding MemorySSA as an alternative to the AliasSetTracker using most of the
existing functionality.
Reviewers: mkuper, danielcdh, dberlin
Subscribers: sanjoy, chandlerc, gberry, davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D35439
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313075 91177308-0d34-0410-b5e6-96231b3b80d8
This recommits r310869, with the moved files and no extra changes.
Original commit message:
This addresses a fixme in InstSimplify about using decomposeBitTest. This also fixes InstSimplify to handle ugt and ult compares too.
I've modified the interface a little to return only the APInt version of the mask that InstSimplify needs. InstCombine now has a small wrapper routine to create a Constant out of it. I've also dropped the returning of 0 since InstSimplify doesn't need that. So InstCombine creates a zero constant itself.
I also had to make decomposeBitTest support vectors since InstSimplify needs that.
As InstSimplify can't use something from the Transforms library, I've moved the CmpInstAnalysis code to the Analysis library.
Differential Revision: https://reviews.llvm.org/D36593
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@310889 91177308-0d34-0410-b5e6-96231b3b80d8
Failed to add the two files that moved. And then added an extra change I didn't mean to while trying to fix that. Reverting everything.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@310873 91177308-0d34-0410-b5e6-96231b3b80d8
This addresses a fixme in InstSimplify about using decomposeBitTest. This also fixes InstSimplify to handle ugt and ult compares too.
I've modified the interface a little to return only the APInt version of the mask that InstSimplify needs. InstCombine now has a small wrapper routine to create a Constant out of it. I've also dropped the returning of 0 since InstSimplify doesn't need that. So InstCombine creates a zero constant itself.
I also had to make decomposeBitTest support vectors since InstSimplify needs that.
As InstSimplify can't use something from the Transforms library, I've moved the CmpInstAnalysis code to the Analysis library.
Differential Revision: https://reviews.llvm.org/D36593
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@310869 91177308-0d34-0410-b5e6-96231b3b80d8
On some targets, the penalty of executing runtime unrolling checks
and then not the unrolled loop can be significantly detrimental to
performance. This results in the need to be more conservative with
the unroll count, keeping a trip count of 2 reduces the overhead as
well as increasing the chance of the unrolled body being executed. But
being conservative leaves performance gains on the table.
This patch enables the unrolling of the remainder loop introduced by
runtime unrolling. This can help reduce the overhead of misunrolled
loops because the cost of non-taken branches is much less than the
cost of the backedge that would normally be executed in the remainder
loop. This allows larger unroll factors to be used without suffering
performance loses with smaller iteration counts.
Differential Revision: https://reviews.llvm.org/D36309
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@310824 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
It is possible for some passes to materialize a call to a libcall (ex: ldexp, exp2, etc),
but these passes will not mark the call as a gc-leaf-function. All libcalls are
actually gc-leaf-functions, so we change llvm::callsGCLeafFunction() to tell us that
available libcalls are equivalent to gc-leaf-function calls.
Reviewers: sanjoy, anna, reames
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35840
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309291 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This changes SimplifyLibCalls to use the new OptimizationRemarkEmitter
API.
In fact, as SimplifyLibCalls is only ever called via InstCombine,
(as far as I can tell) the OptimizationRemarkEmitter is added there,
and then passed through to SimplifyLibCalls later.
I have avoided changing any remark text.
This closes PR33787
Patch by Sam Elliott!
Reviewers: anemet, davide
Reviewed By: anemet
Subscribers: davide, mehdi_amini, eraman, fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D35608
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309158 91177308-0d34-0410-b5e6-96231b3b80d8
Adds loop expansions for known-size and unknown-sized memcpy calls, allowing the
target to provide the operand types through TTI callbacks. The default values
for the TTI callbacks use int8 operand types and matches the existing behaviour
if they aren't overridden by the target.
Differential revision: https://reviews.llvm.org/D32536
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@307346 91177308-0d34-0410-b5e6-96231b3b80d8
Check if a single cast is preventing handling a first-order-recurrence Phi,
because the scheduling constraints it imposes on the first-order-recurrence
shuffle are infeasible; but they can be made feasible by moving the cast
downwards. Record such casts and move them when vectorizing the loop.
Differential Revision: https://reviews.llvm.org/D33058
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306884 91177308-0d34-0410-b5e6-96231b3b80d8
The style guide states that the explicit `inline`
should not be used with inline methods. classof is
very common inline method with a fair amount on
inconsistency:
$ git grep classof ./include | grep inline | wc -l
230
$ git grep classof ./include | grep -v inline | wc -l
257
I chose to target this method rather the larger change
since this method is easily cargo-culted (I did it at
least once). I considered doing the larger change and
removing all occurrences but that would be a much larger
change.
Differential Revision: https://reviews.llvm.org/D33906
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306731 91177308-0d34-0410-b5e6-96231b3b80d8
metadata out of InstCombine and into helpers.
NFC, this just exposes the logic used by InstCombine when propagating
metadata from one load instruction to another. The plan is to use this
in SROA to address PR32902.
If anyone has better ideas about how to factor this or name variables,
I'm all ears, but this seemed like a pretty good start and lets us make
progress on the PR.
This is based on a patch by Ariel Ben-Yehuda (D34285).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306267 91177308-0d34-0410-b5e6-96231b3b80d8
This was reverted in r306252, but I already had the bug fixed and was
just trying to form a test case.
The original commit factored the logic for forming dedicated exits
inside of LoopSimplify into a helper that could be used elsewhere and
with an approach that required fewer intermediate data structures. See
that commit for full details including the change to the statistic, etc.
The code looked fine to me and my reviewers, but in fact didn't handle
indirectbr correctly -- it left the 'InLoopPredecessors' vector dirty.
If you have code that looks *just* right, you can end up leaking these
predecessors into a subsequent rewrite, and crash deep down when trying
to update PHI nodes for predecessors that don't exist.
I've added an assert that makes the bug much more obvious, and then
changed the code to reliably clear the vector so we don't get this bug
again in some other form as the code changes.
I've also added a test case that *does* manage to catch this while also
giving some nice positive coverage in the face of indirectbr.
The real code that found this came out of what I think is CPython's
interpreter loop, but any code with really "creative" interpreter loops
mixing indirectbr and other exit paths could manage to tickle the bug.
I was hard to reduce the original test case because in addition to
having a particular pattern of IR, the whole thing depends on the order
of the predecessors which is in turn depends on use list order. The test
case added here was designed so that in multiple different predecessor
orderings it should always end up going down the same path and tripping
the same bug. I hope. At least, it tripped it for me without
manipulating the use list order which is better than anything bugpoint
could do...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306257 91177308-0d34-0410-b5e6-96231b3b80d8
This leads to a segfault. Chandler already has a test case and should be
able to recommit with a fix soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306252 91177308-0d34-0410-b5e6-96231b3b80d8
I want to use the same logic as LoopSimplify to form dedicated exits in
another pass (SimpleLoopUnswitch) so I wanted to factor it out here.
I also noticed that there is a pretty significantly more efficient way
to implement this than the way the code in LoopSimplify worked. We don't
need to actually retain the set of unique exit blocks, we can just
rewrite them as we find them and use only a set to deduplicate.
This did require changing one part of LoopSimplify to not re-use the
unique set of exits, but it only used it to check that there was
a single unique exit. That part of the code is about to walk the exiting
blocks anyways, so it seemed better to rewrite it to use those exiting
blocks to compute this property on-demand.
I also had to ditch a statistic, but it doesn't seem terribly valuable.
Differential Revision: https://reviews.llvm.org/D34049
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306081 91177308-0d34-0410-b5e6-96231b3b80d8