The GlobalISel TableGen backend didn't check for predicates on the
source children. This caused it to generate code for ARM patterns such
as SMLABB or similar, but without properly checking for the sext_16_node
part of the operands. This in turn meant that we would select SMLABB
instead of MLA for simple sequences such as s32 + s32 * s32, which is
wrong (we want a MLA on the full operands, not just their bottom 16
bits).
This patch forces TableGen to skip patterns with predicates on the src
children, so it doesn't generate code for SMLABB and other similar ARM
instructions at all anymore. AArch64 and X86 are not affected.
Differential Revision: https://reviews.llvm.org/D39554
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317313 91177308-0d34-0410-b5e6-96231b3b80d8
This will enable us to prefer VALIGND/Q during shuffle lowering in order to get the extended register encoding space when BWI isn't available. But if we end up not using the extended registers we can switch VPALIGNR for the shorter VEX encoding.
Differential Revision: https://reviews.llvm.org/D39401
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317122 91177308-0d34-0410-b5e6-96231b3b80d8
The importer will now accept nested instructions in the result pattern such as
(ADDWrr $a, (SUBWrr $b, $c)). This is only valid when the nested instruction
def's a single vreg and the parent instruction consumes a single vreg where a
nested instruction is specified. The importer will automatically create a vreg
to connect the two using the type information from the pattern. This vreg will
be constrained to the register classes given in the instruction definitions*.
* REG_SEQUENCE is explicitly rejected because of this. The definition doesn't
constrain to a register class and it therefore needs special handling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317117 91177308-0d34-0410-b5e6-96231b3b80d8
The next commit will add support for multi-instruction emission so we need to
start allocating instruction ID's instead of hard-coding them to 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317057 91177308-0d34-0410-b5e6-96231b3b80d8
Multi-instruction emission needs to ensure the the instructions are generated
a depth-first fashion. For example:
(ADDWrr (SUBWrr a, b), c)
needs to emit the SUBWrr before the ADDWrr. However, our walk over
TreePatternNode's is highly context sensitive which makes it difficult to append
BuildMIActions in the order we want. To fix this, we now keep track of the
insertion point as we add actions. This will allow multi-insn emission to insert
BuildMI's in the correct place.
The previous commit failed on the Ubuntu bots using GCC 4.8. These bots lack the
const_iterator forms of insert() and emplace() that were added in C++11. As a
result I've switched the const_iterators to iterators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317049 91177308-0d34-0410-b5e6-96231b3b80d8
The same bots fail but I believe I know what the issue is now. These bots are
missing the const_iterator versions of insert/emplace/etc. that were introduced
in C++11.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317042 91177308-0d34-0410-b5e6-96231b3b80d8
Multi-instruction emission needs to ensure the the instructions are generated
a depth-first fashion. For example:
(ADDWrr (SUBWrr a, b), c)
needs to emit the SUBWrr before the ADDWrr. However, our walk over
TreePatternNode's is highly context sensitive which makes it difficult to append
BuildMIActions in the order we want. To fix this, we now keep track of the
insertion point as we add actions. This will allow multi-insn emission to insert
BuildMI's in the correct place.
The previous commit failed on the Ubuntu bots using GCC 4.8. These bots didn't
like a call to emplace(). I've replaced it with insert() to see if it's a quirk
of the C++11 support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317040 91177308-0d34-0410-b5e6-96231b3b80d8
Multi-instruction emission needs to ensure the the instructions are generated
a depth-first fashion. For example:
(ADDWrr (SUBWrr a, b), c)
needs to emit the SUBWrr before the ADDWrr. However, our walk over
TreePatternNode's is highly context sensitive which makes it difficult to append
BuildMIActions in the order we want. To fix this, we now keep track of the
insertion point as we add actions. This will allow multi-insn emission to insert
BuildMI's in the correct place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317029 91177308-0d34-0410-b5e6-96231b3b80d8
Multi-instruction emission will require that we have separate handling for
the defs between the implicitly created temporaries and the rule outputs.
The former require new temporary vregs while the latter should copy existing
operands. Factor out the implicit def/use renderers to minimize the code
duplication when we implement that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317025 91177308-0d34-0410-b5e6-96231b3b80d8
Prepare for multiple instruction emission by allowing BuildMIAction to
search for a suitable matcher that will support mutation.
This patch deliberately neglects to add matchers aside from the root to
preserve NFC. That said, it should be noted that until we support mutations
other than just the opcode the chances of finding a non-root instruction
for which canMutate() is true, is essentially zero. Furthermore in the
presence of multi-instruction emission the chances of finding any
instruction for which canMutate() is true is also zero. Nevertheless, we
can't continue to require that all BuildMIAction's consider the root of the match
to be recyclable due to the risk of recycling it twice in the same rule.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317022 91177308-0d34-0410-b5e6-96231b3b80d8
I'm considering implementing the mnemonic spell checker for x86, and that would require the separate intel and att variants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316641 91177308-0d34-0410-b5e6-96231b3b80d8
Also only emit in targets that specificially request it. This is required so we don't get an unused static function error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316640 91177308-0d34-0410-b5e6-96231b3b80d8
I missed a dereference of `Matched` that preceeded the new check. Thanks to
Justin Bogner for spotting it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316480 91177308-0d34-0410-b5e6-96231b3b80d8
When multi-instruction emission is supported, it will no longer be guaranteed
that every BuildMIAction has a corresponding matched instruction. BuildMIAction
should support not having one to cover the case where a rule produces more
instructions than it matched.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316463 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables the import of stores. Unfortunately, doing so by itself,
loses an optimization where storing 0 to memory makes use of WZR/XZR.
To mitigate this, this patch also introduces a new feature that allows register
operands to nominate a zero register. When this is done, GlobalISel will
substitute (G_CONSTANT 0) with the nominated register automatically. This
is currently configured to only apply to the stores.
Applying it to GPR32/GPR64 register classes in general will be done after
review see (https://reviews.llvm.org/D39150).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316360 91177308-0d34-0410-b5e6-96231b3b80d8
This is similar to how we generate the VEX tables.
More fixes are still needed for the instructions that use EVEX.b (broadcast and embedded rounding).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316294 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces a new operand type to encode the whether the index register should be XMM/YMM/ZMM. And new code to fixup the results created by readSIB.
This has the nice effect of removing a bunch of code that hard coded the name of every GATHER and SCATTER instruction to map the index type.
This fixes PR32807.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316273 91177308-0d34-0410-b5e6-96231b3b80d8
ComplexRendererFn -> ComplexRendererFns
Corrected a couple lingering references to tied operands that were missed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316237 91177308-0d34-0410-b5e6-96231b3b80d8
MSVC doesn't seem to like implicitly instantiating addPredicate and then
explicitly specializing it later. It causes an internal compiler error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315930 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
iPTR is a pointer of subtarget-specific size to any address space. Therefore
type checks on this size derive the SizeInBits from a subtarget hook.
At this point, we can import the simplests G_LOAD rules and select load
instructions using them. Further patches will support for the predicates to
enable additional loads as well as the stores.
The previous commit failed on MSVC due to a failure to convert an
initializer_list to a std::vector. Hopefully, MSVC will accept this version.
Depends on D37457
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: kristof.beyls, javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37458
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315887 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
iPTR is a pointer of subtarget-specific size to any address space. Therefore
type checks on this size derive the SizeInBits from a subtarget hook.
At this point, we can import the simplests G_LOAD rules and select load
instructions using them. Further patches will support for the predicates to
enable additional loads as well as the stores.
Depends on D37457
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: kristof.beyls, javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37458
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315885 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This includes some context-sensitivity in the MVT to LLT conversion so that
pointer types are tested correctly.
FIXME: I'm not happy with the way this is done since everything is a
special-case. I've yet to find a reasonable way to implement it.
select-load.mir fails because <1 x s64> loads in tablegen get priority over s64
loads. This is fixed in the next patch and as such they should be committed
together, I've posted them separately to help with the review.
Depends on D37456
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Subscribers: kristof.beyls, javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37457
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315884 91177308-0d34-0410-b5e6-96231b3b80d8
These are cheaper ways of testing for the presence of code than generating the C++ code and testing it's empty.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315872 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
It's possible for a ComplexPattern to be used as an operator in a match
pattern. This is used by the load/store patterns in AArch64 to name the
suboperands returned by ComplexPattern predicate so that they can be broken
apart and referenced independently in the result pattern.
This patch adds support for this in order to enable the import of load/store
patterns.
Depends on D37445
Hopefully fixed the ambiguous constructor that a large number of bots reported.
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: aemerson, javed.absar, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D37456
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315869 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
It's possible for a ComplexPattern to be used as an operator in a match
pattern. This is used by the load/store patterns in AArch64 to name the
suboperands returned by ComplexPattern predicate so that they can be broken
apart and referenced independently in the result pattern.
This patch adds support for this in order to enable the import of load/store
patterns.
Depends on D37445
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: aemerson, javed.absar, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D37456
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315863 91177308-0d34-0410-b5e6-96231b3b80d8
In type inference, an empty type set for a specific hw mode is not an
error. In earlier stages of the design it was, but having to use non-
parameterized types with target intrinsics necessarily led to type
contradictions: since the intrinsics used specific types, they were
only valid for a specific hw mode, and the resulting type set for other
modes ended up empty. To accommodate the existence of such intrinsics
individual type sets were allowed to be empty as long as not all sets
were empty.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315858 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
There is an important mismatch between ISD::LOAD and G_LOAD (and likewise for
ISD::STORE and G_STORE). In SelectionDAG, ISD::LOAD is a non-atomic load
and atomic loads are handled by a separate node. However, this is not true of
GlobalISel's G_LOAD. For G_LOAD, the MachineMemOperand indicates the atomicity
of the operation. As a result, this mapping must also add a predicate that
checks for non-atomic MachineMemOperands.
This is NFC since these nodes always have predicates in practice and are
therefore always rejected at the moment.
Depends on D37443
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: kristof.beyls, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37445
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315843 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
GlobalISel and SelectionDAG require different code for the common
load/store predicates due to differences in the representation.
For example:
SelectionDAG: (load<signext,i8>:i32 GPR32:$addr) // The <> denote properties of the SDNode that are not printed in the DAG
GlobalISel: (G_SEXT:s32 (G_LOAD:s8 GPR32:$addr))
Even without that, differences in the IR (SDNode vs MachineInstr) require
differences in the C++ predicate.
This patch moves the implementation of the common load/store predicates
into tablegen so that it can handle these differences.
It's NFC for SelectionDAG since it emits equivalent code and it's NFC for
GlobalISel since the rules involving the relevant predicates are still
rejected by the importer.
Depends on D36618
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Subscribers: llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37443
Includes a partial revert of r315826 since this patch makes it necessary for
getPredCode() to return a std::string and getImmCode() should have the same
interface as getPredCode().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315841 91177308-0d34-0410-b5e6-96231b3b80d8