X86. The pass optimizes as a unit the entire wide load + shuffles pattern
produced by interleaved vectorization. This initial patch optimizes one pattern
(64-bit elements interleaved by a factor of 4). Future patches will generalize
to additional patterns.
Patch by Farhana Aleen
Differential revision: http://reviews.llvm.org/D24681
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284260 91177308-0d34-0410-b5e6-96231b3b80d8
This test was apparently checking for 2 independent folds, but we have
plenty of tests for those individual folds already. We are lacking
vector tests, however, because we don't have the shift folds for vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284243 91177308-0d34-0410-b5e6-96231b3b80d8
This patch ensures that we scale the estimated cost of predicated stores by
block probability. This is a follow-on patch for r284123.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284126 91177308-0d34-0410-b5e6-96231b3b80d8
This patch modifies the cost calculation of predicated instructions (div and
rem) to avoid the accumulation of rounding errors due to multiple truncating
integer divisions. The calculation for predicated stores will be addressed in a
follow-on patch since we currently don't scale the cost of predicated stores by
block probability.
Differential Revision: https://reviews.llvm.org/D25333
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284123 91177308-0d34-0410-b5e6-96231b3b80d8
This CL didn't actually address the test case in PR30499, and clang
still crashes.
Also revert dependent change "Memory-SSA cleanup of clobbers interface, NFC"
Reverts r283965 and r283967.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284093 91177308-0d34-0410-b5e6-96231b3b80d8
Reappy r284044 after revert in r284051. Krzysztof fixed the error in r284049.
The original summary:
This patch tries to fully unroll loops having break statement like this
for (int i = 0; i < 8; i++) {
if (a[i] == value) {
found = true;
break;
}
}
GCC can fully unroll such loops, but currently LLVM cannot because LLVM only
supports loops having exact constant trip counts.
The upper bound of the trip count can be obtained from calling
ScalarEvolution::getMaxBackedgeTakenCount(). Part of the patch is the
refactoring work in SCEV to prevent duplicating code.
The feature of using the upper bound is enabled under the same circumstance
when runtime unrolling is enabled since both are used to unroll loops without
knowing the exact constant trip count.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284053 91177308-0d34-0410-b5e6-96231b3b80d8
This patch tries to fully unroll loops having break statement like this
for (int i = 0; i < 8; i++) {
if (a[i] == value) {
found = true;
break;
}
}
GCC can fully unroll such loops, but currently LLVM cannot because LLVM only
supports loops having exact constant trip counts.
The upper bound of the trip count can be obtained from calling
ScalarEvolution::getMaxBackedgeTakenCount(). Part of the patch is the
refactoring work in SCEV to prevent duplicating code.
The feature of using the upper bound is enabled under the same circumstance
when runtime unrolling is enabled since both are used to unroll loops without
knowing the exact constant trip count.
Differential Revision: https://reviews.llvm.org/D24790
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284044 91177308-0d34-0410-b5e6-96231b3b80d8
Branch folder removes implicit defs if they are the only non-branching
instructions in a block, and the branches do not use the defined registers.
The problem is that in some cases these implicit defs are required for
the liveness information to be correct.
Differential Revision: https://reviews.llvm.org/D25478
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284036 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Constant bundle operands may need to retain their constant-ness for
correctness. I'll admit that this is slightly odd, but it looks like
SimplifyCFG already does this for things like @llvm.frameaddress and
@llvm.stackmap, so I suppose adding one more case is not a big deal.
It is possible to add a mechanism to denote bundle operands that need to
remain constants, but that's probably too complicated for the time
being.
Reviewers: jmolloy
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D25502
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284028 91177308-0d34-0410-b5e6-96231b3b80d8
An arithmetic shift can be safely changed to a logical shift if the first
operand is known positive. This allows ComputeKnownBits (and similar analysis)
to determine the sign bit of the shifted value in some cases. In turn, this
allows InstCombine to canonicalize a signed comparison (a > 0) into an equality
check (a != 0).
PR30577
Differential Revision: https://reviews.llvm.org/D25119
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284013 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed by Andrea on PR30486, we have an unsafe cast to an Instruction type in the select combine which doesn't take into account that it could be a ConstantExpr instead.
Differential Revision: https://reviews.llvm.org/D25466
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284000 91177308-0d34-0410-b5e6-96231b3b80d8
This is a refreshed version of a patch that was reverted: it fixes
the problems reported in both PR30216 and PR30499, and
contains all the test-cases from both bugs.
To hoist stores past loads, we used to search for potential
conflicting loads on the hoisting path by following a MemorySSA
def-def link from the store to be hoisted to the previous
defining memory access, and from there we followed the def-use
chains to all the uses that occur on the hoisting path. The
problem is that the def-def link may point to a store that does
not alias with the store to be hoisted, and so the loads that are
walked may not alias with the store to be hoisted, and even as in
the testcase of PR30216, the loads that may alias with the store
to be hoisted are not visited.
The current patch visits all loads on the path from the store to
be hoisted to the hoisting position and uses the alias analysis
to ask whether the store may alias the load. I was not able to
use the MemorySSA functionality to ask for whether load and
store are clobbered: I'm not sure which function to call, so I
used a call to AA->isNoAlias().
Store past store is still working as before using a MemorySSA
query: I added an extra test to pr30216.ll to make sure store
past store does not regress.
Tested on x86_64-linux with check and a test-suite run.
Differential Revision: https://reviews.llvm.org/D25476
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283965 91177308-0d34-0410-b5e6-96231b3b80d8
When combining an integer load with !range metadata that does not include 0 to a pointer load, make sure emit !nonnull metadata on the newly-created pointer load. This prevents the !nonnull metadata from being dropped during a ptrtoint/inttoptr pair.
This fixes PR30597.
Patch by Ariel Ben-Yehuda!
Differential Revision: https://reviews.llvm.org/D25215
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283836 91177308-0d34-0410-b5e6-96231b3b80d8
This is a regression introduced by the global variable ownership
reversal performed in r281284.
rdar://problem/28448075
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283784 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed copy+paste vector alignment to correct for per-element scalar loads
Increased to 512-bit data sizes in preparation of avx512 tests
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283748 91177308-0d34-0410-b5e6-96231b3b80d8
Value names may be prefixed with a binary '1' to indicate that the
backend should not modify the symbols due to any platform naming
convention.
This should not show up in the YAML opt record file because it breaks
the YAML parser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283656 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If heap allocation of a coroutine is elided, we need to make sure that we will update an address stored in the coroutine frame from f.destroy to f.cleanup.
Before this change, CoroSplit synthesized these stores after coro.begin:
```
store void (%f.Frame*)* @f.resume, void (%f.Frame*)** %resume.addr
store void (%f.Frame*)* @f.destroy, void (%f.Frame*)** %destroy.addr
```
In those cases where we did heap elision, but were not able to devirtualize all indirect calls, destroy call will attempt to "free" the coroutine frame stored on the stack. Oops.
Now we use select to put an appropriate coroutine subfunction in the destroy slot. As bellow:
```
store void (%f.Frame*)* @f.resume, void (%f.Frame*)** %resume.addr
%0 = select i1 %need.alloc, void (%f.Frame*)* @f.destroy, void (%f.Frame*)* @f.cleanup
store void (%f.Frame*)* %0, void (%f.Frame*)** %destroy.addr
```
Reviewers: majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D25377
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283625 91177308-0d34-0410-b5e6-96231b3b80d8
If we're going to canonicalize IR towards select of constants, try harder to create those.
Also, don't lose the metadata.
This is actually 4 related transforms in one patch:
// select X, (sext X), C --> select X, -1, C
// select X, (zext X), C --> select X, 1, C
// select X, C, (sext X) --> select X, C, 0
// select X, C, (zext X) --> select X, C, 0
Differential Revision: https://reviews.llvm.org/D25126
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283575 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, we marked the branch conditions of latch blocks uniform after
vectorization if they were instructions contained in the loop. However, if a
condition instruction has users other than the branch, it may not remain
uniform. This patch ensures the conditions we mark uniform are only used by the
branch. This should fix PR30627.
Reference: https://llvm.org/bugs/show_bug.cgi?id=30627
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283563 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
While walking defs of pointer operands we were assuming that the pointer
size would remain constant. This is not true, because addresspacecast
instructions may cast the pointer to an address space with a different
pointer width.
This partial reverts r282612, which was a more conservative solution
to this problem.
Reviewers: reames, sanjoy, apilipenko
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D24772
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283557 91177308-0d34-0410-b5e6-96231b3b80d8
unrolling.
The next code is not vectorized by the SLPVectorizer:
```
int test(unsigned int *p) {
int sum = 0;
for (int i = 0; i < 8; i++)
sum += p[i];
return sum;
}
```
During optimization this loop is fully unrolled and SLPVectorizer is
unable to vectorize it. Patch tries to fix this problem.
Differential Revision: https://reviews.llvm.org/D24796
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283535 91177308-0d34-0410-b5e6-96231b3b80d8
With the ROPI and RWPI relocation models we can't always have pointers
to global data or functions in constant data, so don't try to convert switches
into lookup tables if any value in the lookup table would require a relocation.
We can still safely emit lookup tables of other values, such as simple
constants.
Differential Revision: https://reviews.llvm.org/D24462
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283530 91177308-0d34-0410-b5e6-96231b3b80d8
GetCaseResults assumed that a terminator with one successor was an
unconditional branch. This is not necessarily the case, it could be a
cleanupret.
Strengthen the check by querying whether or not the terminator is
exceptional.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283517 91177308-0d34-0410-b5e6-96231b3b80d8
Vectorizer tests in the target-independent directory should not have a target
triple. If a test really needs to query a specific backend, it belongs in the
right target subdirectory (which "REQUIRES" the right backend). Otherwise, it
should not specify a triple.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283512 91177308-0d34-0410-b5e6-96231b3b80d8
Add a weak alias to the renamed Comdat function in IR level instrumentation,
using it's original name. This ensures the same behavior w/ and w/o IR
instrumentation, even for non standard conforming code.
Differential Revision: http://reviews.llvm.org/D25339
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283490 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a new function to DebugInfo.cpp that takes an llvm::Module
as input and removes all debug info metadata that is not directly
needed for line tables, thus effectively stripping all type and
variable information from the module.
The primary motivation for this feature was the bitcode work flow
(cf. http://lists.llvm.org/pipermail/llvm-dev/2016-June/100643.html
for more background). This is not wired up yet, but will be in
subsequent patches. For testing, the new functionality is exposed to
opt with a -strip-nonlinetable-debuginfo option.
The secondary use-case (and one that works right now!) is as a
reduction pass in bugpoint. I added two new bugpoint options
(-disable-strip-debuginfo and -disable-strip-debug-types) to control
the new features. By default it will first attempt to remove all debug
information, then only the type info, and then proceed to hack at any
remaining MDNodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283473 91177308-0d34-0410-b5e6-96231b3b80d8
The purpose of the YAML diagnostic output file is to collect information on
optimizations performed, or not performed, for later processing by tools that
help users (and compiler developers) understand how code was optimized. As
such, the diagnostics that appear in the file should not be coupled to what a
user might want to see summarized for them as the compiler runs, and in fact,
because the user likely does not know what optimization diagnostics their tools
might want to use, the user cannot provide a useful filter regardless. As such,
we shouldn't filter the diagnostics going to the output file.
Differential Revision: https://reviews.llvm.org/D25224
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283236 91177308-0d34-0410-b5e6-96231b3b80d8