Add a sentence that says that the type argument can refer to
either the type of a result, or that of an operand.
Review: Eli Friedman.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292584 91177308-0d34-0410-b5e6-96231b3b80d8
Inline spiller can decide to move a spill as early as possible in the basic block.
It will skip phis and label, but we also need to make sure it skips instructions
in the basic block prologue which restore exec mask.
Added isPositionLike callback in TargetInstrInfo to detect instructions which
shall be skipped in addition to common phis, labels etc.
Differential Revision: https://reviews.llvm.org/D27997
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292554 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Adds a RegisterBank tablegen class that can be used to declare the register
banks and an associated tablegen pass to generate the necessary code.
Changes since first commit attempt:
* Added missing guards
* Added more missing guards
* Found and fixed a use-after-free bug involving Twine locals
Reviewers: t.p.northover, ab, rovka, qcolombet
Reviewed By: qcolombet
Subscribers: aditya_nandakumar, rengolin, kristof.beyls, vkalintiris, mgorny, dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D27338
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292478 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Adds a RegisterBank tablegen class that can be used to declare the register
banks and an associated tablegen pass to generate the necessary code.
Changes since last commit:
The new tablegen pass is now correctly guarded by LLVM_BUILD_GLOBAL_ISEL and
this should fix the buildbots however it may not be the whole fix. The previous
buildbot failures suggest there may be a memory bug lurking that I'm unable to
reproduce (including when using asan) or spot in the source. If they re-occur
on this commit then I'll need assistance from the bot owners to track it down.
Reviewers: t.p.northover, ab, rovka, qcolombet
Reviewed By: qcolombet
Subscribers: aditya_nandakumar, rengolin, kristof.beyls, vkalintiris, mgorny, dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D27338
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292367 91177308-0d34-0410-b5e6-96231b3b80d8
Several buildbots encountered a crash in tablegen when building this commit.
Reverting while I investigate the cause.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292136 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Adds a RegisterBank tablegen class that can be used to declare the register
banks and an associated tablegen pass to generate the necessary code.
Reviewers: t.p.northover, ab, rovka, qcolombet
Subscribers: aditya_nandakumar, rengolin, kristof.beyls, vkalintiris, mgorny, dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D27338
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292132 91177308-0d34-0410-b5e6-96231b3b80d8
With some minor manual fixes for using function_ref instead of
std::function. No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291904 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Previously if you had
* a function with the fast-math-enabled attr, followed by
* a function without the fast-math attr,
the second function would inherit the first function's fast-math-ness.
This means that mixing fast-math and non-fast-math functions in a module
was completely broken unless you explicitly annotated every
non-fast-math function with "unsafe-fp-math"="false". This appears to
have been broken since r176986 (March 2013), when the resetTargetOptions
function was introduced.
This patch tests the correct behavior as best we can. I don't think I
can test FPDenormalMode and NoTrappingFPMath, because they aren't used
in any backends during function lowering. Surprisingly, I also can't
find any uses at all of LessPreciseFPMAD affecting generated code.
The NVPTX/fast-math.ll test changes are an expected result of fixing
this bug. When FMA is disabled, we emit add as "add.rn.f32", which
prevents fma combining. Before this patch, fast-math was enabled in all
functions following the one which explicitly enabled it on itself, so we
were emitting plain "add.f32" where we should have generated
"add.rn.f32".
Reviewers: mkuper
Subscribers: hfinkel, majnemer, jholewinski, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28507
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291618 91177308-0d34-0410-b5e6-96231b3b80d8
If a vector index is out of bounds, the result is supposed to be
undefined but is not undefined behavior. Change the legalization
for indexing the vector on the stack so that an out of bounds
index does not create an out of bounds memory access.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291604 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a basic tablegen backend that analyzes the SelectionDAG
patterns to find simple ones that are eligible for GlobalISel-emission.
That's similar to FastISel, with one notable difference: we're not fed
ISD opcodes, so we need to map the SDNode operators to generic opcodes.
That's done using GINodeEquiv in TargetGlobalISel.td.
Otherwise, this is mostly boilerplate, and lots of filtering of any kind
of "complicated" pattern. On AArch64, this is sufficient to match G_ADD
up to s64 (to ADDWrr/ADDXrr) and G_BR (to B).
Differential Revision: https://reviews.llvm.org/D26878
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290284 91177308-0d34-0410-b5e6-96231b3b80d8
The vectorcall calling convention specifies that arguments to functions are to be passed in registers, when possible.
vectorcall uses more registers for arguments than fastcall or the default x64 calling convention use.
The vectorcall calling convention is only supported in native code on x86 and x64 processors that include Streaming SIMD Extensions 2 (SSE2) and above.
The current implementation does not handle Homogeneous Vector Aggregates (HVAs) correctly and this review attempts to fix it.
This aubmit also includes additional lit tests to cover better HVAs corner cases.
Differential Revision: https://reviews.llvm.org/D27392
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290240 91177308-0d34-0410-b5e6-96231b3b80d8
Specifically avoid implicit conversions from/to integral types to
avoid potential errors when changing the underlying type. For example,
a typical initialization of a "full" mask was "LaneMask = ~0u", which
would result in a value of 0x00000000FFFFFFFF if the type was extended
to uint64_t.
Differential Revision: https://reviews.llvm.org/D27454
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289820 91177308-0d34-0410-b5e6-96231b3b80d8
The original motivation for this patch comes from wanting to canonicalize
more IR to selects and also canonicalizing min/max.
If we're going to do that, we need more backend fixups to undo select codegen
when simpler ops will do. I chose AArch64 for the tests because that shows the
difference in the simplest way. This should fix:
https://llvm.org/bugs/show_bug.cgi?id=31175
Differential Revision: https://reviews.llvm.org/D27489
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289738 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Most targets set the action for these nodes to Expand even though there
isn't actually any code for them in ExpandNode. Instead, targets simply
relied on the fact that no code generates these nodes as long as the
nodes aren't legal or custom.
However, generating these nodes can be useful e.g. for divide-by-constant
in wider integer types.
Expand of [US]MUL_LOHI will use MULH[US] when legal or custom, and
a sequence of half-width multiplications otherwise. Promote uses a wider
multiply.
This patch intends to not change the generated code, but indirect effects
are possible since expansions/promotions that were previously done in
DAGCombine may now be done in LegalizeDAG.
See D24822 for a change that actually uses the new expansion.
Reviewers: spatel, bkramer, venkatra, efriedma, hfinkel, ast, nadav, tstellarAMD
Subscribers: arsenm, jyknight, nemanjai, wdng, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D24956
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289050 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the createGenericSchedLive() function that constructs the
default scheduler available for the public API. This should help when
you want to get a scheduler and the default list of DAG mutations.
This also shrinks the list of default DAG mutations:
{Load|Store}ClusterDAGMutation and MacroFusionDAGMutation are no longer
added by default. Targets can easily add them if they need them. It also
makes it easier for targets to add alternative/custom macrofusion or
clustering mutations while staying with the default
createGenericSchedLive(). It also saves the callback back and forth in
TargetInstrInfo::enableClusterLoads()/enableClusterStores().
Differential Revision: https://reviews.llvm.org/D26986
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288057 91177308-0d34-0410-b5e6-96231b3b80d8
The scavenger was not passed if requiresFrameIndexScavenging was
enabled. I need to be able to test for the availability of an
unallocatable register here, so I can't create a virtual register for
it.
It might be better to just always use the scavenger and stop
creating virtual registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287843 91177308-0d34-0410-b5e6-96231b3b80d8
We did not support subregs in InlineSpiller:foldMemoryOperand() because targets
may not deal with them correctly.
This adds a target hook to let the spiller know that a target can handle
subregs, and actually enables it for x86 for the case of stack slot reloads.
This fixes PR30832.
Differential Revision: https://reviews.llvm.org/D26521
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287792 91177308-0d34-0410-b5e6-96231b3b80d8
Implemented widening (v2f32) and splitting (v16f64).
On splitting, I use "popcnt" to calculate memory increment.
More type legalization work will come in the next patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287761 91177308-0d34-0410-b5e6-96231b3b80d8
No-one actually had a mangler handy when calling this function, and
getSymbol itself went most of the way towards getting its own mangler
(with a local TLOF variable) so forcing all callers to supply one was
just extra complication.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287645 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Previously, CGP would unconditionally sink addrspacecast instructions,
even going so far as to sink them into a loop.
Now we check that the cast is "cheap", as defined by TLI.
We introduce a new "is-cheap" function to TLI rather than using
isNopAddrSpaceCast because some GPU platforms want the ability to ask
for non-nop casts to be sunk.
Reviewers: arsenm, tra
Subscribers: jholewinski, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D26923
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287591 91177308-0d34-0410-b5e6-96231b3b80d8
For 64bit ABIs it is common practice to use relative Jump Tables with
potentially different relocation bases. As the logic for the jump table
itself doesn't depend on the relocation base, make it easier for targets
to use the generic logic. Start by dropping the now redundant MIPS logic.
Differential Revision: https://reviews.llvm.org/D26578
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286951 91177308-0d34-0410-b5e6-96231b3b80d8
The generic infrastructure to compute the Newton series for reciprocal and
reciprocal square root was conceived to allow a target to compute the series
itself. However, the original code did not properly consider this condition
if returned by a target. This patch addresses the issues to allow a target
to compute the series on its own.
Differential revision: https://reviews.llvm.org/D22975
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286523 91177308-0d34-0410-b5e6-96231b3b80d8
Teach X86InstrInfo::analyzeCompare() not to crash on CMP and SUB instructions
that take a global address operand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286420 91177308-0d34-0410-b5e6-96231b3b80d8
Suspected to be the cause of a sanitizer-windows bot failure:
Assertion failed: isImm() && "Wrong MachineOperand accessor", file C:\b\slave\sanitizer-windows\llvm\include\llvm/CodeGen/MachineOperand.h, line 420
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286385 91177308-0d34-0410-b5e6-96231b3b80d8
A relocatable immediate is either an immediate operand or an operand that
can be relocated by the linker to an immediate, such as a regular symbol
in non-PIC code.
Start using relocImm for 32-bit and 64-bit MOV instructions, and for operands
of type "imm32_su". Remove a number of now-redundant patterns.
Differential Revision: https://reviews.llvm.org/D25812
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286384 91177308-0d34-0410-b5e6-96231b3b80d8
Add an option to allow easier experimentation by target maintainers with the
minimum number of entries to create jump tables. Also clarify the name of
the other existing option governing the creation of jump tables.
Differential revision: https://reviews.llvm.org/D25883
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285104 91177308-0d34-0410-b5e6-96231b3b80d8
These functions are about classifying a global which will actually be
emitted, so it does not make sense for them to take a GlobalValue which may
for example be an alias.
Change the Mach-O object writer and the Hexagon, Lanai and MIPS backends to
look through aliases before using TargetLoweringObjectFile interfaces. These
are functional changes but all appear to be bug fixes.
Differential Revision: https://reviews.llvm.org/D25917
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285006 91177308-0d34-0410-b5e6-96231b3b80d8
This is a retry of r284495 which was reverted at r284513 due to use-after-scope bugs
caused by faulty usage of StringRef.
This version also renames a pair of functions:
getRecipEstimateDivEnabled()
getRecipEstimateSqrtEnabled()
as suggested by Eric Christopher.
original commit msg:
[Target] remove TargetRecip class; move reciprocal estimate isel functionality to TargetLowering
This is a follow-up to https://reviews.llvm.org/D24816 - where we changed reciprocal estimates to be function attributes
rather than TargetOptions.
This patch is intended to be a structural, but not functional change. By moving all of the
TargetRecip functionality into TargetLowering, we can remove all of the reciprocal estimate
state, shield the callers from the string format implementation, and simplify/localize the
logic needed for a target to enable this.
If a function has a "reciprocal-estimates" attribute, those settings may override the target's
default reciprocal preferences for whatever operation and data type we're trying to optimize.
If there's no attribute string or specific setting for the op/type pair, just use the target
default settings.
As noted earlier, a better solution would be to move the reciprocal estimate settings to IR
instructions and SDNodes rather than function attributes, but that's a multi-step job that
requires infrastructure improvements. I intend to work on that, but it's not clear how long
it will take to get all the pieces in place.
Differential Revision: https://reviews.llvm.org/D25440
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284746 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up to D24816 - where we changed reciprocal estimates to be function attributes
rather than TargetOptions.
This patch is intended to be a structural, but not functional change. By moving all of the
TargetRecip functionality into TargetLowering, we can remove all of the reciprocal estimate
state, shield the callers from the string format implementation, and simplify/localize the
logic needed for a target to enable this.
If a function has a "reciprocal-estimates" attribute, those settings may override the target's
default reciprocal preferences for whatever operation and data type we're trying to optimize.
If there's no attribute string or specific setting for the op/type pair, just use the target
default settings.
As noted earlier, a better solution would be to move the reciprocal estimate settings to IR
instructions and SDNodes rather than function attributes, but that's a multi-step job that
requires infrastructure improvements. I intend to work on that, but it's not clear how long
it will take to get all the pieces in place.
Differential Revision: https://reviews.llvm.org/D25440
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284495 91177308-0d34-0410-b5e6-96231b3b80d8
The previous names were both misleading (the MachineLegalizer actually
contained the info tables) and inconsistent with the selector & translator (in
having a "Machine") prefix. This should make everything sensible again.
The only functional change is the name of a couple of command-line options.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284287 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The main purpose of this new helper is to enable simplifying operations that
have multiple uses. SimplifyDemandedBits does not handle multiple uses
currently, and this new function makes it possible to optimize:
and v1, v0, 0xffffff
mul24 v2, v1, v1 ; Multiply ignoring high 8-bits.
To:
mul24 v2, v0, v0
Where before this would not be optimized, because v1 has multiple uses.
Reviewers: bogner, arsenm
Subscribers: nhaehnle, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D24964
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284266 91177308-0d34-0410-b5e6-96231b3b80d8
The motivation for the change is that we can't have pseudo-global settings for
codegen living in TargetOptions because that doesn't work with LTO.
Ideally, these reciprocal attributes will be moved to the instruction-level via
FMF, metadata, or something else. But making them function attributes is at least
an improvement over the current state.
The ingredients of this patch are:
Remove the reciprocal estimate command-line debug option.
Add TargetRecip to TargetLowering.
Remove TargetRecip from TargetOptions.
Clean up the TargetRecip implementation to work with this new scheme.
Set the default reciprocal settings in TargetLoweringBase (everything is off).
Update the PowerPC defaults, users, and tests.
Update the x86 defaults, users, and tests.
Note that if this patch needs to be reverted, the related clang patch checked in
at r283251 should be reverted too.
Differential Revision: https://reviews.llvm.org/D24816
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283252 91177308-0d34-0410-b5e6-96231b3b80d8