Predicating stores requires creating extra blocks. It's much cleaner if we do this in one pass instead of mutating the CFG while writing vector instructions.
Besides which we can make use of helper functions to update domtree for us, reducing the work we need to do.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247139 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a basic cost model for interleaved-access vectorization (and a better
default for shuffles), and enables interleaved-access vectorization by default.
The relevant difference from the default cost model for interleaved-access
vectorization, is that on PPC, the shuffles that end up being used are *much*
cheaper than modeling the process with insert/extract pairs (which are
quite expensive, especially on older cores).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246824 91177308-0d34-0410-b5e6-96231b3b80d8
On the A2, with an eye toward QPX unaligned-load merging, we should always use
aggressive interleaving. It is generally superior to only using concatenation
unrolling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246819 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This function was not taking into account that the
input type could be a vector, and wasn't properly
working for vector types.
This caused an assert when building spec2k6 perlbmk for armv8.
Reviewers: rengolin, mzolotukhin
Subscribers: silviu.baranga, mzolotukhin, rengolin, eugenis, jmolloy, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D12559
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246759 91177308-0d34-0410-b5e6-96231b3b80d8
We were bailing to two places if our runtime checks failed. If the initial overflow check failed, we'd go to ScalarPH. If any other check failed, we'd go to MiddleBlock. This caused us to have to have an extra PHI per induction and reduction as the vector loop's exit block was not dominated by its latch.
There's no need to have this behavior - if we just always go to ScalarPH we can get rid of a bunch of complexity.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246637 91177308-0d34-0410-b5e6-96231b3b80d8
This reduces the complexity of createEmptyBlock() and will open the door to further refactoring.
The test change is simply because we're now constant folding a trivial test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246634 91177308-0d34-0410-b5e6-96231b3b80d8
... and do a tad of tidyup while we're at it. Because StartIdx must now be zero, there's no difference between Count and EndIdx.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246633 91177308-0d34-0410-b5e6-96231b3b80d8
There's no need to widen canonical induction variables. It's just as efficient to create a *new*, wide, induction variable.
Consider, if we widen an indvar, then we'll have to truncate it before its uses anyway (1 trunc). If we create a new indvar instead, we'll have to truncate that instead (1 trunc) [besides which IndVars should go and clean up our mess after us anyway on principle].
This lets us remove a ton of special-casing code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246631 91177308-0d34-0410-b5e6-96231b3b80d8
Vectorized loops only ever have one induction variable. All induction PHIs from the scalar loop are rewritten to be in terms of this single indvar.
We were trying very hard to pick an indvar that already existed, even if that indvar wasn't canonical (didn't start at zero). But trying so hard is really fruitless - creating a new, canonical, indvar only results in one extra add in the worst case and that add is trivially easy to push through the PHI out of the loop by instcombine.
If we try and be less clever here and instead let instcombine clean up our mess (as we do in many other places in LV), we can remove unneeded complexity.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246630 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change turns on by default interleaved access vectorization
for AArch64.
We also clean up some tests which were spedifically enabling this
behaviour.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D12149
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246542 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change turns on by default interleaved access vectorization on ARM,
as it has shown to be beneficial on ARM.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D12146
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246541 91177308-0d34-0410-b5e6-96231b3b80d8
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'. Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.
While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node. The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.
I updated almost all the IR with the following script:
git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
grep -v test/Bitcode |
xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'
Likely some variant of would work for out-of-tree testcases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246327 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes the analysis diagnostics produced when loops with
floating-point recurrences or memory operations are identified. The new messages
say "cannot prove it is safe to reorder * operations; allow reordering by
specifying #pragma clang loop vectorize(enable)". Depending on the type of
diagnostic the message will include additional options such as ffast-math or
__restrict__.
This patch also allows the vectorize(enable) pragma to override the low pointer
memory check threshold. When the hint is given a higher threshold is used.
See the clang patch for the options produced for each diagnostic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246187 91177308-0d34-0410-b5e6-96231b3b80d8
Unlike scalar operations, we can perform vector operations on element types that
are smaller than the native integer types. We type-promote scalar operations if
they are smaller than a native type (e.g., i8 arithmetic is promoted to i32
arithmetic on Arm targets). This patch detects and removes type-promotions
within the reduction detection framework, enabling the vectorization of small
size reductions.
In the legality phase, we look through the ANDs and extensions that InstCombine
creates during promotion, keeping track of the smaller type. In the
profitability phase, we use the smaller type and ignore the ANDs and extensions
in the cost model. Finally, in the code generation phase, we truncate the result
of the reduction to allow InstCombine to rewrite the entire expression in the
smaller type.
This fixes PR21369.
http://reviews.llvm.org/D12202
Patch by Matt Simpson <mssimpso@codeaurora.org>!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246149 91177308-0d34-0410-b5e6-96231b3b80d8
This patch ensures that every analysis diagnostic produced by the vectorizer
will be printed if the loop has a vectorization hint on it. The condition has
also been improved to prevent printing when a disabling hint is specified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246132 91177308-0d34-0410-b5e6-96231b3b80d8
This patch and a relatec clang patch solve the problem of having to explicitly enable analysis when specifying a loop hint pragma to get the diagnostics. Passing AlwasyPrint as the pass name (see below) causes the front-end to print the diagnostic if the user has specified '-Rpass-analysis' without an '=<target-pass>’. Users of loop hints can pass that compiler option without having to specify the pass and they will get diagnostics for only those loops with loop hints.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244555 91177308-0d34-0410-b5e6-96231b3b80d8
This patch moves checking the threshold of runtime pointer checks to the vectorization requirements (late diagnostics) and emits a diagnostic that infroms the user the loop would be vectorized if not for exceeding the pointer-check threshold. Clang will also append the options that can be used to allow vectorization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244523 91177308-0d34-0410-b5e6-96231b3b80d8
This patch moves the verification of fast-math to just before vectorization is done. This way we can tell clang to append the command line options would that allow floating-point commutativity. Specifically those are enableing fast-math or specifying a loop hint.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244489 91177308-0d34-0410-b5e6-96231b3b80d8
Sometimes interleaving is not beneficial, as determined by the cost-model and sometimes it is disabled by a loop hint (by the user). This patch modifies the diagnostic messages to make it clear why interleaving wasn't done.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244485 91177308-0d34-0410-b5e6-96231b3b80d8
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode. This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.
Almost all the testcases were updated with this script:
git grep -e '= !DICompileUnit' -l -- test |
grep -v test/Bitcode |
xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'
I imagine something similar should work for out-of-tree testcases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243885 91177308-0d34-0410-b5e6-96231b3b80d8
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243774 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Fix the cost of interleaved accesses for ARM/AArch64.
We were calling getTypeAllocSize and using it to check
the number of bits, when we should have called
getTypeAllocSizeInBits instead.
This would pottentially cause the vectorizer to
generate loads/stores and shuffles which cannot
be matched with an interleaved access instruction.
No performance changes are expected for now since
matching/generating interleaved accesses is still
disabled by default.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11524
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243270 91177308-0d34-0410-b5e6-96231b3b80d8
r243250 appeared to break clang/test/Analysis/dead-store.c on one of the build
slaves, but I couldn't reproduce this failure locally. Probably a false
positive as I saw this test was broken by r243246 or r243247 too but passed
later without people fixing anything.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243253 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch updates TargetTransformInfoImplCRTPBase::getGEPCost to consider
addressing modes. It now returns TCC_Free when the GEP can be completely folded
to an addresing mode.
I started this patch as I refactored SLSR. Function isGEPFoldable looks common
and is indeed used by some WIP of mine. So I extracted that logic to getGEPCost.
Furthermore, I noticed getGEPCost wasn't directly tested anywhere. The best
testing bed seems CostModel, but its getInstructionCost method invokes
getAddressComputationCost for GEPs which provides very coarse estimation. So
this patch also makes getInstructionCost call the updated getGEPCost for GEPs.
This change inevitably breaks some tests because the cost model changes, but
nothing looks seriously wrong -- if we believe the new cost model is the right
way to go, these tests should be updated.
This patch is not perfect yet -- the comments in some tests need to be updated.
I want to know whether this is a right approach before fixing those details.
Reviewers: chandlerc, hfinkel
Subscribers: aschwaighofer, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D9819
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243250 91177308-0d34-0410-b5e6-96231b3b80d8
This is mostly an NFC, which increases code readability (instead of
saving old terminator, generating new one in front of old, and deleting
old, we just call a function). However, it would additionaly copy
the debug location from old instruction to replacement, which
would help PR23837.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241197 91177308-0d34-0410-b5e6-96231b3b80d8
If we are dealing with a pointer induction variable, isInductionPHI
gives back a step value of Stride / size of pointer. However, we might
be indexing with a legal type wider than the pointer width.
Handle this by inserting casts where appropriate instead of crashing.
This fixes PR23954.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240877 91177308-0d34-0410-b5e6-96231b3b80d8
With option OptForSize enabled, the Loop Vectorizer is not supposed to
create tail loop. The condition checking that was invalid and was not
matching to the comment above.
Patch by Marianne Mailhot-Sarrasin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240556 91177308-0d34-0410-b5e6-96231b3b80d8
Interleaved memory accesses are grouped and vectorized into vector load/store and shufflevector.
E.g. for (i = 0; i < N; i+=2) {
a = A[i]; // load of even element
b = A[i+1]; // load of odd element
... // operations on a, b, c, d
A[i] = c; // store of even element
A[i+1] = d; // store of odd element
}
The loads of even and odd elements are identified as an interleave load group, which will be transfered into vectorized IRs like:
%wide.vec = load <8 x i32>, <8 x i32>* %ptr
%vec.even = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
%vec.odd = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 1, i32 3, i32 5, i32 7>
The stores of even and odd elements are identified as an interleave store group, which will be transfered into vectorized IRs like:
%interleaved.vec = shufflevector <4 x i32> %vec.even, %vec.odd, <8 x i32> <i32 0, i32 4, i32 1, i32 5, i32 2, i32 6, i32 3, i32 7>
store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
This optimization is currently disabled by defaut. To try it by adding '-enable-interleaved-mem-accesses=true'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239291 91177308-0d34-0410-b5e6-96231b3b80d8
isInductionPHI wants to calculate the stride based on the pointee size.
However, this is not possible when the pointee is zero sized.
This fixes PR23763.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239143 91177308-0d34-0410-b5e6-96231b3b80d8
This has caused some local failures. Updating the test case to be more
like the majority of the similar test cases.
Committing on behalf of Hubert Tong (hstong@ca.ibm.com).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237449 91177308-0d34-0410-b5e6-96231b3b80d8
The patch disabled unrolling in loop vectorization pass when VF==1 on x86 architecture,
by setting MaxInterleaveFactor to 1. Unrolling in loop vectorization pass may introduce
the cost of overflow check, memory boundary check and extra prologue/epilogue code when
regular unroller will unroll the loop another time. Disable it when VF==1 remove the
unnecessary cost on x86. The same can be done for other platforms after verifying
interleaving/memory bound checking to be not perf critical on those platforms.
Differential Revision: http://reviews.llvm.org/D9515
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236613 91177308-0d34-0410-b5e6-96231b3b80d8
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236120 91177308-0d34-0410-b5e6-96231b3b80d8
Fix debug info in these tests, which started failing with a WIP patch to
verify compile units and types. The problems look like they were all
caused by bitrot. They fell into these categories:
- Using `!{i32 0}` instead of `!{}`.
- Using `!{null}` instead of `!{}`.
- Using `!MDExpression()` instead of `!{}`.
- Using `!8` instead of `!{!8}`.
- `file:` references that pointed at `MDCompileUnit`s instead of the
same `MDFile` as the compile unit.
- `file:` references that were numerically off-by-one or (off-by-ten).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233415 91177308-0d34-0410-b5e6-96231b3b80d8