1. Use 'auto' with dyn_cast.
2. Variables start with a capital letter.
3. Use proper punctuation in comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285200 91177308-0d34-0410-b5e6-96231b3b80d8
The original patch of the A->B->A BitCast optimization was reverted by r274094 because it may cause infinite loop inside compiler https://llvm.org/bugs/show_bug.cgi?id=27996.
The problem is with following code
xB = load (type B);
xA = load (type A);
+yA = (A)xB; B -> A
+zAn = PHI[yA, xA]; PHI
+zBn = (B)zAn; // A -> B
store zAn;
store zBn;
optimizeBitCastFromPhi generates
+zBn = (B)zAn; // A -> B
and expects it will be combined with the following store instruction to another
store zAn
Unfortunately before combineStoreToValueType is called on the store instruction, optimizeBitCastFromPhi is called on the new BitCast again, and this pattern repeats indefinitely.
optimizeBitCastFromPhi only generates BitCast for load/store instructions, only the BitCast before store can cause the reexecution of optimizeBitCastFromPhi, and BitCast before store can easily be handled by InstCombineLoadStoreAlloca.cpp. So the solution to the problem is if all users of a CI are store instructions, we should not do optimizeBitCastFromPhi on it. Then optimizeBitCastFromPhi will not be called on the new BitCast instructions.
Differential Revision: https://reviews.llvm.org/D23896
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285116 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed by Andrea on PR30486, we have an unsafe cast to an Instruction type in the select combine which doesn't take into account that it could be a ConstantExpr instead.
Differential Revision: https://reviews.llvm.org/D25466
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284000 91177308-0d34-0410-b5e6-96231b3b80d8
When combining an integer load with !range metadata that does not include 0 to a pointer load, make sure emit !nonnull metadata on the newly-created pointer load. This prevents the !nonnull metadata from being dropped during a ptrtoint/inttoptr pair.
This fixes PR30597.
Patch by Ariel Ben-Yehuda!
Differential Revision: https://reviews.llvm.org/D25215
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283836 91177308-0d34-0410-b5e6-96231b3b80d8
If we're going to canonicalize IR towards select of constants, try harder to create those.
Also, don't lose the metadata.
This is actually 4 related transforms in one patch:
// select X, (sext X), C --> select X, -1, C
// select X, (zext X), C --> select X, 1, C
// select X, C, (sext X) --> select X, C, 0
// select X, C, (zext X) --> select X, C, 0
Differential Revision: https://reviews.llvm.org/D25126
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283575 91177308-0d34-0410-b5e6-96231b3b80d8
Also, make foldSelectExtConst() a member of InstCombiner, remove
unnecessary parameters from its interface, and group visitSelectInst
helpers together in the header file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282796 91177308-0d34-0410-b5e6-96231b3b80d8
The index of the new insertelement instruction was evaluated in the
wrong way, it was considered as the index of the inserted value instead
of index of the position, where the value should be inserted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282401 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes PR30366.
Function foldUDivShl() worked under the assumption that one of the values
in input to the function was always an instance of llvm::Instruction.
However, function visitUDivOperand() (the only user of foldUDivShl) was
clearly violating that precondition; internally, visitUDivOperand() uses pattern
matches to check the operands of a udiv. Pattern matchers for binary operators
know how to handle both Instruction and ConstantExpr values.
This patch fixes the problem in foldUDivShl(). Now we use pattern matchers
instead of explicit casts to Instruction. The reduced test case from PR30366
has been added to test file InstCombine/udiv-simplify.ll.
Differential Revision: https://reviews.llvm.org/D24565
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282398 91177308-0d34-0410-b5e6-96231b3b80d8
If inserting more than one constant into a vector:
define <4 x float> @foo(<4 x float> %x) {
%ins1 = insertelement <4 x float> %x, float 1.0, i32 1
%ins2 = insertelement <4 x float> %ins1, float 2.0, i32 2
ret <4 x float> %ins2
}
InstCombine could reduce that to a shufflevector:
define <4 x float> @goo(<4 x float> %x) {
%shuf = shufflevector <4 x float> %x, <4 x float> <float undef, float 1.0, float 2.0, float undef>, <4 x i32><i32 0, i32 5, i32 6, i32 3>
ret <4 x float> %shuf
}
Also, InstCombine tries to convert shuffle instruction to single insertelement, if one of the vectors is a constant vector and only a single element from this constant should be used in shuffle, i.e.
shufflevector <4 x float> %v, <4 x float> <float undef, float 1.0, float
undef, float undef>, <4 x i32> <i32 0, i32 5, i32 undef, i32 undef> ->
insertelement <4 x float> %v, float 1.0, 1
Differential Revision: https://reviews.llvm.org/D24182
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282237 91177308-0d34-0410-b5e6-96231b3b80d8
computeKnownBits() already works for integer vectors, so allow vector types when calling that from InstCombine.
I don't think the change to use m_APInt in computeKnownBits is strictly necessary because we do check for
ConstantVector later, but it's more efficient to handle the splat case without needing to loop on vector elements.
This should work with InstSimplify, but doesn't yet, so I made that a FIXME comment on the test for PR24942:
https://llvm.org/bugs/show_bug.cgi?id=24942
Differential Revision: https://reviews.llvm.org/D24677
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281777 91177308-0d34-0410-b5e6-96231b3b80d8
These 2 helper functions were already using APInt internally, so just
change the API and caller to allow folds for splats. The scalar
regression tests look quite thorough, so I just added a couple of
tests to prove that vectors are handled too.
These folds should be grouped with the other cmp+shift folds though.
That can be an NFC follow-up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281663 91177308-0d34-0410-b5e6-96231b3b80d8
This pattern is matched in foldICmpBinOpEqualityWithConstant() and already works
with vectors too. I changed some comments over there to point out the current
location. The tests for this transform are currently in 'sub.ll'.
Note that the remaining folds in this block all require a sub too, so they should
get grouped with the other icmp(sub) patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281627 91177308-0d34-0410-b5e6-96231b3b80d8
This is a big glob of transforms that probably should work for vectors,
but currently they are disallowed because of ConstantInt guards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281614 91177308-0d34-0410-b5e6-96231b3b80d8
This reapplies r272987 with a fix for infinitely looping
when the truncated value is another shift of a constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281379 91177308-0d34-0410-b5e6-96231b3b80d8
This generates invalid IR: the only users of swifterror can be call
arguments, loads, and stores.
rdar://28242257
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281144 91177308-0d34-0410-b5e6-96231b3b80d8
1. Rename variables to be consistent with related/preceding code (may want to reorganize).
2. Fix comments/formatting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281140 91177308-0d34-0410-b5e6-96231b3b80d8
Everything under foldICmpInstWithConstant() should now be working for
splat vectors via m_APInt matchers. Ie, I've removed all of the FIXMEs
that I added while cleaning that section up. Note that not all of the
associated FIXMEs in the regression tests are gone though, because some
of the tests require earlier folds that are still scalar-only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281139 91177308-0d34-0410-b5e6-96231b3b80d8
I introduced this potential bug by missing this diff in:
https://reviews.llvm.org/rL280873
...however, I'm not sure how to reach this code path with a regression test.
We may be able to remove this code and assume that the transform to a constant
is always handled by InstSimplify?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280964 91177308-0d34-0410-b5e6-96231b3b80d8