The instructions VLDM/VSTM can only access word-aligned memory
locations and produce alignment fault if the condition is not met.
The compiler currently generates VLDM/VSTM for v2f64 load/store
regardless the alignment of the memory access. Instead, if a v2f64
load/store is not word-aligned, the compiler should generate
VLD1/VST1. For each non double-word-aligned VLD1/VST1, a VREV
instruction should be generated when targeting Big Endian.
Differential Revision: https://reviews.llvm.org/D25281
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283763 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Rotate by 1 is translated to 1 micro-op, while rotate with imm8 is translated to 2 micro-ops.
Fixes pr30644.
Reviewers: delena, igorb, craig.topper, spatel, RKSimon
Differential Revision: https://reviews.llvm.org/D25399
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283758 91177308-0d34-0410-b5e6-96231b3b80d8
Commit in the name of:Coby Tayree
1.'v' constraint for (x86) non-avx arch imitates the already implemented 'x' constraint, i.e. allows XMM{0-15} & YMM{0-15} depending on the apparent arch & mode (32/64).
2.for the avx512 arch it allows [X,Y,Z]MM{0-31} (mode dependent)
This patch applies the needed changes to clang
clang patch: https://reviews.llvm.org/D25004
Differential Revision: D25005
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283717 91177308-0d34-0410-b5e6-96231b3b80d8
Masked-expand-load node represents load operation that loads a variable amount of elements from memory according to amount of "true" bits in the mask and expands the loaded elements according to their position in the mask vector.
Right now, the node is used in intrinsics for VEXPAND* instructions.
The work is done towards implementation of masked.expandload and masked.compressstore intrinsics.
Differential Revision: https://reviews.llvm.org/D25322
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283694 91177308-0d34-0410-b5e6-96231b3b80d8
This seems to have been responsible for the XMM16-31 spills observed in PR29112. With this fixed the test case has been modified to no longer have a spill of XMM16.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283668 91177308-0d34-0410-b5e6-96231b3b80d8
Avoid generating indexed vector instructions for Exynos. This is needed for
fmla/fmls/fmul/fmulx. For example, the instruction
fmla v0.4s, v1.4s, v2.s[1]
is less efficient than the instructions
dup v2.4s, v2.s[1]
fmla v0.4s, v1.4s, v2.4s
Patch written by Abderrazek Zaafrani.
Differential Revision: https://reviews.llvm.org/D21571
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283663 91177308-0d34-0410-b5e6-96231b3b80d8
Once MULHS was expanded, this exposed an issue where the condition
register was thought to be 16-bit. This caused an attempt to copy a
16-bit register to an 8-bit register.
Authored by Jake Goulding
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283634 91177308-0d34-0410-b5e6-96231b3b80d8
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well. Issue was worklist/scheduling/taildup issue in layout.
Issue from 2nd rollback fixed, with 2 additional tests. Issue was
tail merging/loop info/tail-duplication causing issue with loops that share
a header block.
Differential revision: https://reviews.llvm.org/D18226
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283619 91177308-0d34-0410-b5e6-96231b3b80d8
The code used llvm basic block predecessors to decided where to insert phi
nodes. Instruction selection can and will liberally insert new machine basic
block predecessors. There is not a guaranteed one-to-one mapping from pred.
llvm basic blocks and machine basic blocks.
Therefore the current approach does not work as it assumes we can mark
predecessor machine basic block as needing a copy, and needs to know the set of
all predecessor machine basic blocks to decide when to insert phis.
Instead of computing the swifterror vregs as we select instructions, propagate
them at the end of instruction selection when the MBB CFG is complete.
When an instruction needs a swifterror vreg and we don't know the value yet,
generate a new vreg and remember this "upward exposed" use, and reconcile this
at the end of instruction selection.
This will only happen if the target supports promoting swifterror parameters to
registers and the swifterror attribute is used.
rdar://28300923
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283617 91177308-0d34-0410-b5e6-96231b3b80d8
Reapplying r283383 after revert in r283442. The additional fix
is a getting rid of a stray space in a function name, in the
refactoring part of the commit.
This avoids falling back to calling out to the GCC rem functions
(__moddi3, __umoddi3) when targeting Windows.
The __rt_div functions have flipped the two arguments compared
to the __aeabi_divmod functions. To match MSVC, we emit a
check for division by zero before actually calling the library
function (even if the library function itself also might do
the same check).
Not all calls to __rt_div functions for division are currently
merged with calls to the same function with the same parameters
for the remainder. This is more wasteful than a div + mls as before,
but avoids calls to __moddi3.
Differential Revision: https://reviews.llvm.org/D25332
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283550 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds Cortex-R52, the new ARM real-time processor, to LLVM.
Cortex-R52 implements the ARMv8-R architecture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283542 91177308-0d34-0410-b5e6-96231b3b80d8
MOVSD/MOVSS take a 128-bit register and a FR32/FR64 register input, the commutation code wasn't taking this into account leading to verification errors.
This patch inserts a vreg copy mi to ensure that the registers are correct.
Fix for PR30607
Differential Revision: https://reviews.llvm.org/D25280
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283539 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
There was a bug with sequences like
s_mov_b64 s[0:1], exec
s_and_b64 s[2:3]<def>, s[0:1], s[2:3]<kill>
...
s_mov_b64_term exec, s[2:3]
because s[2:3] was defined and used in the same instruction, ending up with
SaveExecInst inside OtherUseInsts.
Note that the test case also exposes an unrelated bug.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=98028
Reviewers: tstellarAMD, arsenm
Subscribers: kzhuravl, wdng, yaxunl, llvm-commits, tony-tye
Differential Revision: https://reviews.llvm.org/D25306
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283528 91177308-0d34-0410-b5e6-96231b3b80d8