If we have a non-splat constant shift amount, the minimum shift amount can be used to infer the number of zero upper bits of the result. There's probably a lot more that we can do here, but this
fixes a case where I wanted to infer the sign bit as zero when all the shift amounts are non-zero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319639 91177308-0d34-0410-b5e6-96231b3b80d8
The version that takes APInt is out of line. The 'unsigned' version optimizes for the common case of single word APInts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319628 91177308-0d34-0410-b5e6-96231b3b80d8
Two issues found when doing codegen for splitting vector with non-zero alloca addr space:
DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT/SplitVecOp_EXTRACT_VECTOR_ELT uses dummy pointer info for creating
SDStore. Since one pointer operand contains multiply and add, InferPointerInfo is unable to
infer the correct pointer info, which ends up with a dummy pointer info for the target to lower
store and results in isel failure. The fix is to introduce MachinePointerInfo::getUnknownStack to
represent MachinePointerInfo which is known in alloca address space but without other information.
TargetLowering::getVectorElementPointer uses value type of pointer in addr space 0 for
multiplication of index and then add it to the pointer. However the pointer may be in an addr
space which has different size than addr space 0. The fix is to use the pointer value type for
index multiplication.
Differential Revision: https://reviews.llvm.org/D39758
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319622 91177308-0d34-0410-b5e6-96231b3b80d8
TransferDbgValues (capital 'T') is wired into ReplaceAllUsesWith, and
transferDbgValues (lowercase 't') is used elsewhere (e.g in Legalize).
Both functions should be doing the exact same thing. This patch
consolidates the logic into one place.
This was reverted in r318455 because some newly introduced asserts,
which I thought were NFC, were firing. I filed PR35338. For now I've
weakened the asserts.
Testing: check-llvm, check-clang, and a stage2 Rel+Deb build of clang
Differential Revision: https://reviews.llvm.org/D40104
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318498 91177308-0d34-0410-b5e6-96231b3b80d8
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318490 91177308-0d34-0410-b5e6-96231b3b80d8
TransferDbgValues (capital 'T') is wired into ReplaceAllUsesWith, and
transferDbgValues (lowercase 't') is used elsewhere (e.g in Legalize).
Both functions should be doing the exact same thing. This patch
consolidates the logic into one place.
Differential Revision: https://reviews.llvm.org/D40104
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318448 91177308-0d34-0410-b5e6-96231b3b80d8
Some of the AMDGPU stack addressing modes require knowing the sign
bit is zero. We used to accomplish this by custom lowering
frame indexes, and then putting an AssertZext around a
TargetFrameIndex. This required specifically looking for
the AssextZext + frame index pattern which was moderately
disgusting. The same could probably be accomplished
with a target specific node, but would still
require special handling of frame indexes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317671 91177308-0d34-0410-b5e6-96231b3b80d8
We don't need to extend/truncate the Known structure before calling computeKnownBits - it will reset at the start of the function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316962 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce a isConstOrDemandedConstSplat helper function that can recognise a constant splat build vector for at least the demanded elts we care about.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316866 91177308-0d34-0410-b5e6-96231b3b80d8
For cases where we know the floating point representations match the bitcasted integer equivalent, allow bitcasting to these types.
This is especially useful for the X86 floating point compare results which return all/zero bits but as a floating point type.
Differential Revision: https://reviews.llvm.org/D39289
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316831 91177308-0d34-0410-b5e6-96231b3b80d8
Not having the subclass data on an MemIntrinsicSDNodes means it was possible
to try to fold 2 nodes with the same operands but differing MMO flags. This
would trip an assertion when trying to refine the alignment between the 2
MachineMemOperands.
Differential Revision: https://reviews.llvm.org/D38898
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316737 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to how llvm::salvagDebugInfo hooks into InstCombine, this adds
a hook that can be invoked before an SDNode that is associated with an
SDDbgValue is erased to capture the effect of the deleted node in a
DIExpression.
The motivating example is an SDDebugValue attached to an ADD operation
that gets folded into a LOAD+OFFSET operation.
rdar://problem/32121503
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316525 91177308-0d34-0410-b5e6-96231b3b80d8
We don't need to do any additional recursion, we just need to analyze the APInt stored in the node. This matches what the ValueTracking versions do for IR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316256 91177308-0d34-0410-b5e6-96231b3b80d8
I don't know if we ever hit this case or not. Turning it into an assert only fired on expanding some atomic operation in a SystemZ lit test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315648 91177308-0d34-0410-b5e6-96231b3b80d8
For cases where we are BITCASTing to vectors of smaller elements, then if the entire source was a splatted sign (src's NumSignBits == SrcBitWidth) we can say that the dst's NumSignBit == DstBitWidth, as we're just splitting those sign bits across multiple elements.
We could generalize this but at the moment the only use case I have is to peek through bitcasts to vector comparison results.
Differential Revision: https://reviews.llvm.org/D37849
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313543 91177308-0d34-0410-b5e6-96231b3b80d8
Use RotAmt.urem(VTBits) instead of AND(RotAmt, VTBits - 1)
TBH I don't expect non-power-of-2 types to be created, but it makes the logic clearer and matches what we do in other rotation combines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313245 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This intrinsic represents a label with a list of associated metadata
strings. It is modelled as reading and writing inaccessible memory so
that it won't be removed as dead code. I think the intention is that the
annotation strings should appear at most once in the debug info, so I
marked it noduplicate. We are allowed to inline code with annotations as
long as we strip the annotation, but that can be done later.
Reviewers: majnemer
Subscribers: eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D36904
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312569 91177308-0d34-0410-b5e6-96231b3b80d8
This partially reverts r311429 in favor of making ISD::isConstantSplatVector do something not confusing. Turns out the only other user of it was also having to deal with the weird property of it returning a smaller size.
So rather than continue to deal with this quirk everywhere, just make the interface do something sane.
Differential Revision: https://reviews.llvm.org/D37039
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311510 91177308-0d34-0410-b5e6-96231b3b80d8
This adds debug messages to various functions that create new SDValue nodes.
This is e.g. useful to have during legalization, as otherwise it can prints
legalization info of nodes that did not appear in the dumps before.
Differential Revision: https://reviews.llvm.org/D36984
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311444 91177308-0d34-0410-b5e6-96231b3b80d8
ISD::isConstantSplatVector can shrink to the smallest splat width. But we don't check the size of the resulting APInt at all. This can cause us to misinterpret the results.
This patch just adds a flag to prevent the APInt from changing width.
Fixes PR34271.
Differential Revision: https://reviews.llvm.org/D36996
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311429 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Preserve chain dependecies between old and new loads constructed to
prevent loads from reordering below later stores.
Fixes PR34088.
Reviewers: craig.topper, spatel, RKSimon, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36528
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@310604 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is in 2 parts:
1 - replace combineBT's use of SimplifyDemandedBits (hasOneUse only) with SelectionDAG::GetDemandedBits to more aggressively determine the lower bits used by BT.
2 - update SelectionDAG::GetDemandedBits to support ANY_EXTEND - if the demanded bits are only in the non-extended portion, then peek through and demand from the source value and then ANY_EXTEND that if we found a match.
Differential Revision: https://reviews.llvm.org/D35896
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309486 91177308-0d34-0410-b5e6-96231b3b80d8
This patch moves the DAGCombiner::GetDemandedBits function to SelectionDAG::GetDemandedBits as a first step towards making it easier for targets to get to the source of any demanded bits without the limitations of SimplifyDemandedBits.
Differential Revision: https://reviews.llvm.org/D35841
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@308983 91177308-0d34-0410-b5e6-96231b3b80d8
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@307722 91177308-0d34-0410-b5e6-96231b3b80d8