The offset overflow check before was incorrect. It would always give the
correct result, but it was comparing the SCALED potential fixed-up offset
against an UNSCALED minimum/maximum. As a result, the outliner was missing a
bunch of frame setup/destroy instructions that ought to have been safe to
outline. This fixes that, and adds an instruction to the .mir test that
failed the old test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@320090 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds MachineCombiner patterns for transforming
(fsub (fmul x y) z) into (fma x y (fneg z)). This has a lower
latency on micro architectures where fneg is cheap.
Patch based on work by George Steed.
Reviewers: rengolin, joelkevinjones, joel_k_jones, evandro, efriedma
Reviewed By: evandro
Subscribers: aemerson, javed.absar, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D40306
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319980 91177308-0d34-0410-b5e6-96231b3b80d8
This patch splits atomics out of the generic G_LOAD/G_STORE and into their own
G_ATOMIC_LOAD/G_ATOMIC_STORE. This is a pragmatic decision rather than a
necessary one. Atomic load/store has little in implementation in common with
non-atomic load/store. They tend to be handled very differently throughout the
backend. It also has the nice side-effect of slightly improving the common-case
performance at ISel since there's no longer a need for an atomicity check in the
matcher table.
All targets have been updated to remove the atomic load/store check from the
G_LOAD/G_STORE path. AArch64 has also been updated to mark
G_ATOMIC_LOAD/G_ATOMIC_STORE legal.
There is one issue with this patch though which also affects the extending loads
and truncating stores. The rules only match when an appropriate G_ANYEXT is
present in the MIR. For example,
(G_ATOMIC_STORE (G_TRUNC:s16 (G_ANYEXT:s32 (G_ATOMIC_LOAD:s16 X))))
will match but:
(G_ATOMIC_STORE (G_ATOMIC_LOAD:s16 X))
will not. This shouldn't be a problem at the moment, but as we get better at
eliminating extends/truncates we'll likely start failing to match in some
cases. The current plan is to fix this in a patch that changes the
representation of extending-load/truncating-store to allow the MMO to describe
a different type to the operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319691 91177308-0d34-0410-b5e6-96231b3b80d8
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319665 91177308-0d34-0410-b5e6-96231b3b80d8
This matches how it is done on X86.
This allows using emulated tls on windows; in MinGW environments,
native tls isn't supported at the moment.
Set the right Data*bitsDirective for windows to match the existing
tests for other platforms. Make parts of the existing tests a regex,
to allow matching .section .rdata for windows, to avoid having to
duplicate the rest of the tests for windows.
Differential Revision: https://reviews.llvm.org/D40770
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319644 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: LegalizerInfo assumes all G_MERGE_VALUES and G_UNMERGE_VALUES instructions are legal, so it is not possible to legalize vector operations on illegal vector types. This patch fixes the problem by removing the related check and adding default actions for G_MERGE_VALUES and G_UNMERGE_VALUES.
Reviewers: qcolombet, ab, dsanders, aditya_nandakumar, t.p.northover, kristof.beyls
Reviewed By: dsanders
Subscribers: rovka, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39823
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319524 91177308-0d34-0410-b5e6-96231b3b80d8
G_ATOMICRMW_* is generally legal on AArch64. The exception is G_ATOMICRMW_NAND.
G_ATOMIC_CMPXCHG_WITH_SUCCESS needs to be lowered to G_ATOMIC_CMPXCHG with an
external comparison.
Note that IRTranslator doesn't generate these instructions yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319466 91177308-0d34-0410-b5e6-96231b3b80d8
output
As part of the unification of the debug format and the MIR format,
always use `printReg` to print all kinds of registers.
Updated the tests using '_' instead of '%noreg' until we decide which
one we want to be the default one.
Differential Revision: https://reviews.llvm.org/D40421
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319445 91177308-0d34-0410-b5e6-96231b3b80d8
As part of the unification of the debug format and the MIR format, avoid
printing "vreg" for virtual registers (which is one of the current MIR
possibilities).
Basically:
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/%vreg([0-9]+)/%\1/g"
* grep -nr '%vreg' . and fix if needed
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/ vreg([0-9]+)/ %\1/g"
* grep -nr 'vreg[0-9]\+' . and fix if needed
Differential Revision: https://reviews.llvm.org/D40420
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319427 91177308-0d34-0410-b5e6-96231b3b80d8
The IRTranslator cannot generate these instructions at the moment so there's no
issue with not having implemented ISel for them yet. D40092 will add
G_ATOMIC_CMPXCHG_WITH_SUCCESS and G_ATOMICRMW_* to the IRTranslator and a
further patch will add support for lowering G_ATOMIC_CMPXCHG_WITH_SUCCESS into
G_ATOMIC_CMPXCHG with an external success check via the `Lower` action.
The separation of G_ATOMIC_CMPXCHG_WITH_SUCCESS and G_ATOMIC_CMPXCHG is
to import SelectionDAG rules while still supporting targets that prefer to
custom lower the original LLVM-IR-like operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319216 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM Coding Standards:
Function names should be verb phrases (as they represent actions), and
command-like function should be imperative. The name should be camel
case, and start with a lower case letter (e.g. openFile() or isFoo()).
Differential Revision: https://reviews.llvm.org/D40416
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319168 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Now that store-merge is only generates type-safe stores, do a second
pass just before instruction selection to allow lowered intrinsics to
be merged as well.
Reviewers: jyknight, hfinkel, RKSimon, efriedma, rnk, jmolloy
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33675
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319036 91177308-0d34-0410-b5e6-96231b3b80d8
This partially reverts r298851. The the underlying issue is that we don't
currently model the dependency between mrs (read system register) and
msr (write system register) instructions.
Something like the below should never be reordered:
msr TPIDR_EL0, x0 ;; set thread pointer
mrs x8, TPIDR_EL0 ;; read thread pointer
but was being reordered after r298851. The functional part of the patch
that wasn't reverted needed to remain in place in order to not break
r299462.
PR35317
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318788 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch fixes an issue so that the right alias is printed when the instruction has tied operands. It checks the number of operands in the resulting instruction as opposed to the alias, and then skips over tied operands that should not be printed in the alias.
This allows to generate the preferred assembly syntax for the AArch64 'ins' instruction, which should always be displayed as 'mov' according to the ARM Architecture Reference Manual. Several unit tests have changed as a result, but only to reflect the preferred disassembly. Some other InstAlias patterns (movk/bic/orr) needed a slight adjustment to stop them becoming the default and breaking other unit tests.
Please note that the patch is mostly the same as https://reviews.llvm.org/D29219 which was reverted because of an issue found when running TableGen with the Address Sanitizer. That issue has been addressed in this iteration of the patch.
Reviewers: rengolin, stoklund, huntergr, SjoerdMeijer, rovka
Reviewed By: rengolin, SjoerdMeijer
Subscribers: fhahn, aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D40030
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318650 91177308-0d34-0410-b5e6-96231b3b80d8
We used to detect loads feeding fp instructions, but we were
failing to take into account cases where this happens through copies.
For instance, loads can fed copies coming from the ABI lowering
of floating point arguments/results.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318589 91177308-0d34-0410-b5e6-96231b3b80d8
We used to detect that stores were fed by fp instructions, but we were
failing to take into account cases where this happens through copies.
For instance, stores can be fed by copies coming from the ABI lowering
of floating point arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318588 91177308-0d34-0410-b5e6-96231b3b80d8
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318490 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds a LLVM_ENABLE_GISEL_COV which, like LLVM_ENABLE_DAGISEL_COV,
causes TableGen to instrument the generated table to collect rule coverage
information. However, LLVM_ENABLE_GISEL_COV goes a bit further than
LLVM_ENABLE_DAGISEL_COV. The information is written to files
(${CMAKE_BINARY_DIR}/gisel-coverage-* by default). These files can then be
concatenated into ${LLVM_GISEL_COV_PREFIX}-all after which TableGen will
read this information and use it to emit warnings about untested rules.
This technique could also be used by SelectionDAG and can be further
extended to detect hot rules and give them priority over colder rules.
Usage:
* Enable LLVM_ENABLE_GISEL_COV in CMake
* Build the compiler and run some tests
* cat gisel-coverage-[0-9]* > gisel-coverage-all
* Delete lib/Target/*/*GenGlobalISel.inc*
* Build the compiler
Known issues:
* ${LLVM_GISEL_COV_PREFIX}-all must be generated as a manual
step due to a lack of a portable 'cat' command. It should be the
concatenation of all ${LLVM_GISEL_COV_PREFIX}-[0-9]* files.
* There's no mechanism to discard coverage information when the ruleset
changes
Depends on D39742
Reviewers: ab, qcolombet, t.p.northover, aditya_nandakumar, rovka
Reviewed By: rovka
Subscribers: vsk, arsenm, nhaehnle, mgorny, kristof.beyls, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39747
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318356 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Make it possible to feed runtime information back to tablegen to enable
profile-guided tablegen-eration, detection of untested tablegen definitions, etc.
Being a cross-compiler by nature, LLVM will potentially collect data for multiple
architectures (e.g. when running 'ninja check'). We therefore need a way for
TableGen to figure out what data applies to the backend it is generating at the
time. This patch achieves that by including the name of the 'def X : Target ...'
for the backend in the TargetRegistry.
Reviewers: qcolombet
Reviewed By: qcolombet
Subscribers: jholewinski, arsenm, jyknight, aditya_nandakumar, sdardis, nemanjai, ab, nhaehnle, t.p.northover, javed.absar, qcolombet, llvm-commits, fedor.sergeev
Differential Revision: https://reviews.llvm.org/D39742
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318352 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Prevent an issue where a diagnostic is reported multiple times by bailing out with a ParseFail if an invalid SVE register element qualifier/suffix is specified, for example:
<stdin>:10:18: error: invalid sve vector kind qualifier
add z20.h, z2.h, z31.x
^
<stdin>:10:18: error: invalid sve vector kind qualifier
add z20.h, z2.h, z31.x
...
<stdin>:10:18: error: invalid sve vector kind qualifier
add z20.h, z2.h, z31.x
^
Reviewers: fhahn, rengolin
Reviewed By: rengolin
Subscribers: aemerson, javed.absar, tschuett, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D39894
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318297 91177308-0d34-0410-b5e6-96231b3b80d8
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317647 91177308-0d34-0410-b5e6-96231b3b80d8
Patch [3/5] in a series to add assembler/disassembler support for AArch64 SVE unpredicated ADD/SUB instructions.
To summarise, this patch adds:
* SVE register definitions
* Methods to parse SVE register operands
* Methods to print SVE register operands
* RegKind SVEDataVector to distinguish it from other data types like scalar register or Neon vector.
* k_SVEDataRegister and SVEDataRegOp to describe SVE registers (which will be extended by further patches with e.g. ElementWidth and the shift-extend type).
Patch by Sander De Smalen.
Reviewed by: rengolin
Differential Revision: https://reviews.llvm.org/D39089
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317590 91177308-0d34-0410-b5e6-96231b3b80d8
Patch [4/5] in a series to add assembler/disassembler support for AArch64 SVE unpredicated ADD/SUB instructions.
We add SVE as unsupported feature for CPUs that don't have SVE to prevent errors from scheduler models saying it lacks information for these instructions.
Patch by Sander De Smalen.
Reviewed by: rengolin
Differential Revision: https://reviews.llvm.org/D39090
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317582 91177308-0d34-0410-b5e6-96231b3b80d8
Patch [2/5] in a series to add assembler/disassembler support for AArch64 SVE unpredicated ADD/SUB instructions.
This change is a non functional change that adds RegKind as an alternative to 'isVector' to prepare it for newer types (SVE data vectors and predicate vectors) that will be added in next patches (where the SVE data vector is added as part of this patch set)
Patch by Sander De Smalen.
Reviewed by: rengolin
Differential Revision: https://reviews.llvm.org/D39088
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317569 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the interface of how targets describe how to legalize, see
the below description.
1. Interface for targets to describe how to legalize.
In GlobalISel, the API in the LegalizerInfo class is the main interface
for targets to specify which types are legal for which operations, and
what to do to turn illegal type/operation combinations into legal ones.
For each operation the type sizes that can be legalized without having
to change the size of the type are specified with a call to setAction.
This isn't different to how GlobalISel worked before. For example, for a
target that supports 32 and 64 bit adds natively:
for (auto Ty : {s32, s64})
setAction({G_ADD, 0, s32}, Legal);
or for a target that needs a library call for a 32 bit division:
setAction({G_SDIV, s32}, Libcall);
The main conceptual change to the LegalizerInfo API, is in specifying
how to legalize the type sizes for which a change of size is needed. For
example, in the above example, how to specify how all types from i1 to
i8388607 (apart from s32 and s64 which are legal) need to be legalized
and expressed in terms of operations on the available legal sizes
(again, i32 and i64 in this case). Before, the implementation only
allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0,
s128}, NarrowScalar). A worse limitation was that if you'd wanted to
specify how to legalize all the sized types as allowed by the LLVM-IR
LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times
and probably would need a lot of memory to store all of these
specifications.
Instead, the legalization actions that need to change the size of the
type are specified now using a "SizeChangeStrategy". For example:
setLegalizeScalarToDifferentSizeStrategy(
G_ADD, 0, widenToLargerAndNarrowToLargest);
This example indicates that for type sizes for which there is a larger
size that can be legalized towards, do it by Widening the size.
For example, G_ADD on s17 will be legalized by first doing WidenScalar
to make it s32, after which it's legal.
The "NarrowToLargest" indicates what to do if there is no larger size
that can be legalized towards. E.g. G_ADD on s92 will be legalized by
doing NarrowScalar to s64.
Another example, taken from the ARM backend is:
for (unsigned Op : {G_SDIV, G_UDIV}) {
setLegalizeScalarToDifferentSizeStrategy(Op, 0,
widenToLargerTypesUnsupportedOtherwise);
if (ST.hasDivideInARMMode())
setAction({Op, s32}, Legal);
else
setAction({Op, s32}, Libcall);
}
For this example, G_SDIV on s8, on a target without a divide
instruction, would be legalized by first doing action (WidenScalar,
s32), followed by (Libcall, s32).
The same principle is also followed for when the number of vector lanes
on vector data types need to be changed, e.g.:
setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal);
setLegalizeVectorElementToDifferentSizeStrategy(
G_ADD, 0, widenToLargerTypesUnsupportedOtherwise);
As currently implemented here, vector types are legalized by first
making the vector element size legal, followed by then making the number
of lanes legal. The strategy to follow in the first step is set by a
call to setLegalizeVectorElementToDifferentSizeStrategy, see example
above. The strategy followed in the second step
"moreToWiderTypesAndLessToWidest" (see code for its definition),
indicating that vectors are widened to more elements so they map to
natively supported vector widths, or when there isn't a legal wider
vector, split the vector to map it to the widest vector supported.
Therefore, for the above specification, some example legalizations are:
* getAction({G_ADD, LLT::vector(3, 3)})
returns {WidenScalar, LLT::vector(3, 8)}
* getAction({G_ADD, LLT::vector(3, 8)})
then returns {MoreElements, LLT::vector(8, 8)}
* getAction({G_ADD, LLT::vector(20, 8)})
returns {FewerElements, LLT::vector(16, 8)}
2. Key implementation aspects.
How to legalize a specific (operation, type index, size) tuple is
represented by mapping intervals of integers representing a range of
size types to an action to take, e.g.:
setScalarAction({G_ADD, LLT:scalar(1)},
{{1, WidenScalar}, // bit sizes [ 1, 31[
{32, Legal}, // bit sizes [32, 33[
{33, WidenScalar}, // bit sizes [33, 64[
{64, Legal}, // bit sizes [64, 65[
{65, NarrowScalar} // bit sizes [65, +inf[
});
Please note that most of the code to do the actual lowering of
non-power-of-2 sized types is currently missing, this is just trying to
make it possible for targets to specify what is legal, and how non-legal
types should be legalized. Probably quite a bit of further work is
needed in the actual legalizing and the other passes in GlobalISel to
support non-power-of-2 sized types.
I hope the documentation in LegalizerInfo.h and the examples provided in the
various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well
enough how this is meant to be used.
This drops the need for LLT::{half,double}...Size().
Differential Revision: https://reviews.llvm.org/D30529
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317560 91177308-0d34-0410-b5e6-96231b3b80d8
This header already includes a CodeGen header and is implemented in
lib/CodeGen, so move the header there to match.
This fixes a link error with modular codegeneration builds - where a
header and its implementation are circularly dependent and so need to be
in the same library, not split between two like this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317379 91177308-0d34-0410-b5e6-96231b3b80d8