This broke the buildbots, e.g.
http://bb.pgr.jp/builders/test-llvm-i686-linux-RA/builds/391
> Summary:
> This patch tries to vectorize loads of consecutive memory accesses, accessed
> in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
> which was reverted back due to some basic issue with representing the 'use mask'
> jumbled accesses.
>
> This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
>
> Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
>
> Subscribers: mzolotukhin
>
> Reviewed By: ayal
>
> Differential Revision: https://reviews.llvm.org/D36130
>
> Review comments updated accordingly
>
> Change-Id: I22ab0a8a9bac9d49d74baa81a08e1e486f5e75f0
>
> Added a TODO for sortLoadAccesses API
>
> Change-Id: I3c679bf1865422d1b45e17ea28f1992bca660b58
>
> Modified the TODO for sortLoadAccesses API
>
> Change-Id: Ie64a66cb5f9e2a7610438abb0e750c6e090f9565
>
> Review comment update for using OpdNum to insert the mask in respective location
>
> Change-Id: I016d0c1b29874e979efc0205bbf078991f92edce
>
> Fixes '-Wsign-compare warning' in LoopAccessAnalysis.cpp and code rebase
>
> Change-Id: I64b2ea5e68c1d7b6a028f5ef8251c5a97333f89b
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313781 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch tries to vectorize loads of consecutive memory accesses, accessed
in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
which was reverted back due to some basic issue with representing the 'use mask'
jumbled accesses.
This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
Subscribers: mzolotukhin
Reviewed By: ayal
Differential Revision: https://reviews.llvm.org/D36130
Review comments updated accordingly
Change-Id: I22ab0a8a9bac9d49d74baa81a08e1e486f5e75f0
Added a TODO for sortLoadAccesses API
Change-Id: I3c679bf1865422d1b45e17ea28f1992bca660b58
Modified the TODO for sortLoadAccesses API
Change-Id: Ie64a66cb5f9e2a7610438abb0e750c6e090f9565
Review comment update for using OpdNum to insert the mask in respective location
Change-Id: I016d0c1b29874e979efc0205bbf078991f92edce
Fixes '-Wsign-compare warning' in LoopAccessAnalysis.cpp and code rebase
Change-Id: I64b2ea5e68c1d7b6a028f5ef8251c5a97333f89b
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313771 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch tries to vectorize loads of consecutive memory accesses, accessed
in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
which was reverted back due to some basic issue with representing the 'use mask' of
jumbled accesses.
This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
Reviewers: mkuper, loladiro, Ayal, zvi, danielcdh
Reviewed By: Ayal
Subscribers: mzolotukhin
Differential Revision: https://reviews.llvm.org/D36130
Commit after rebase for patch D36130
Change-Id: I8add1c265455669ef288d880f870a9522c8c08ab
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313736 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
With this change:
- Methods in LoopBase trip an assert if the receiver has been invalidated
- LoopBase::clear frees up the memory held the LoopBase instance
This change also shuffles things around as necessary to work with this stricter invariant.
Reviewers: chandlerc
Subscribers: mehdi_amini, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D38055
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313708 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
See comment for why I think this is a good idea.
This change also:
- Removes an SCEV test case. The SCEV test was not testing anything useful (most of it was `#if 0` ed out) and it would need to be updated to deal with a private ~Loop::Loop.
- Updates the loop pass manager test case to deal with a private ~Loop::Loop.
- Renames markAsRemoved to markAsErased to contrast with removeLoop, via the usual remove vs. erase idiom we already have for instructions and basic blocks.
Reviewers: chandlerc
Subscribers: mehdi_amini, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D37996
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313695 91177308-0d34-0410-b5e6-96231b3b80d8
In the lambda we are now returning the remark by value so we need to preserve
its type in the insertion operator. This requires making the insertion
operator generic.
I've also converted a few cases to use the new API. It seems to work pretty
well. See the LoopUnroller for a slightly more interesting case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313691 91177308-0d34-0410-b5e6-96231b3b80d8
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313390 91177308-0d34-0410-b5e6-96231b3b80d8
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313382 91177308-0d34-0410-b5e6-96231b3b80d8
invalidated SCCs even when we do not have an updated SCC to redirect
towards.
This comes up in a fairly subtle and surprising circumstance: we need to
have a connected but internal node in the call graph which later becomes
a disconnected island, and then gets deleted. All of this needs to
happen mid-CGSCC walk. Because it is disconnected, we have no way of
computing a new "current" SCC when it gets deleted. Instead, we need to
explicitly check for a deleted "current" SCC and bail out of the current
CGSCC step. This will bubble all the way up to the post-order walk and
then resume correctly.
I've included minimal tests for this bug. The specific behavior
matches something we've seen in the wild with the new PM combined with
ThinLTO and sample PGO, but I've not yet confirmed whether this is the
only issue there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313242 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes pr34283, which exposed that the computation of
maximum legal width for vectorization was wrong, because it relied
on MaxInterleaveFactor to obtain the maximum stride used in the loop,
however not all strided accesses in the loop have an interleave-group
associated with them.
Instead of recording the maximum stride in the loop, which can be over
conservative (e.g. if the access with the maximum stride is not involved
in the dependence limitation), this patch tracks the actual maximum legal
width imposed by accesses that are involved in dependencies.
Differential Revision: https://reviews.llvm.org/D37507
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313237 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Print profile counts as the third value in addition to the existing 'float' and
the 'int' values in the textual block frequency dump, if available.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37835
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313220 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Full inline cost is computed when -inline-cost-full is true or ORE is
non-null. This patch adds another way to compute full inline cost by
adding a field to InlineParams. This will be used by SampleProfileLoader
to check legality of inlining a callee that it wants to inline.
Reviewers: danielcdh, haicheng
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37819
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313185 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Added text options to -pgo-view-counts and -pgo-view-raw-counts that dump block frequency and branch probability info in text.
This is useful when the graph is very large and complex (the dot command crashes, lines/edges too close to tell apart, hard to navigate without textual search) or simply when text is preferred.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37776
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313159 91177308-0d34-0410-b5e6-96231b3b80d8
TargetTransformInfo::getInstructionCost's switch covers all TargetCostKind cases so we shouldn't return for a default case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312888 91177308-0d34-0410-b5e6-96231b3b80d8
This is intended to be a superset of the functionality from D31037 (EarlyCSE) but implemented
as an independent pass, so there's no stretching of scope and feature creep for an existing pass.
I also proposed a weaker version of this for SimplifyCFG in D30910. And I initially had almost
this same functionality as an addition to CGP in the motivating example of PR31028:
https://bugs.llvm.org/show_bug.cgi?id=31028
The advantage of positioning this ahead of SimplifyCFG in the pass pipeline is that it can allow
more flattening. But it needs to be after passes (InstCombine) that could sink a div/rem and
undo the hoisting that is done here.
Decomposing remainder may allow removing some code from the backend (PPC and possibly others).
Differential Revision: https://reviews.llvm.org/D37121
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312862 91177308-0d34-0410-b5e6-96231b3b80d8
In function TargetTransformInfo::getInstructionCost, all enum values in the switch statement has been covered, so the default is unnecessary, and may cause error with option -Werror,-Wcovered-switch-default, so remove it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312834 91177308-0d34-0410-b5e6-96231b3b80d8
Current TargetTransformInfo can support throughput cost model and code size model, but sometimes we also need instruction latency cost model in different optimizations. Hal suggested we need a single public interface to query the different cost of an instruction. So I proposed following interface:
enum TargetCostKind {
TCK_RecipThroughput, ///< Reciprocal throughput.
TCK_Latency, ///< The latency of instruction.
TCK_CodeSize ///< Instruction code size.
};
int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const;
All clients should mainly use this function to query the cost of an instruction, parameter <kind> specifies the desired cost model.
This patch also provides a simple default implementation of getInstructionLatency.
The default getInstructionLatency provides latency numbers for only small number of instruction classes, those latency numbers are only reasonable for modern OOO processors. It can be extended in following ways:
Add more detail into this function.
Add getXXXLatency function and call it from here.
Implement target specific getInstructionLatency function.
Differential Revision: https://reviews.llvm.org/D37170
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312832 91177308-0d34-0410-b5e6-96231b3b80d8
SLP vectorizer supports horizontal reductions for Add/FAdd binary
operations. Patch adds support for horizontal min/max reductions.
Function getReductionCost() is split to getArithmeticReductionCost() for
binary operation reductions and getMinMaxReductionCost() for min/max
reductions.
Patch fixes PR26956.
Differential revision: https://reviews.llvm.org/D27846
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312791 91177308-0d34-0410-b5e6-96231b3b80d8
Many of these uses can get by with forward declarations. Hopefully this
speeds up compilation after adding a single intrinsic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312759 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary step towards solving the remaining part of PR27145 - IR for isfinite():
https://bugs.llvm.org/show_bug.cgi?id=27145
In order to solve that one more generally, we need to add matching for and/or of fcmp ord/uno
with a constant operand.
But while looking at those patterns, I realized we were missing a canonicalization for nonzero
constants. Rather than limiting to just folds for constants, we're adding a general value
tracking method for this based on an existing DAG helper.
By transforming everything to 0.0, we can simplify the existing code in foldLogicOfFCmps()
and pick up missing vector folds.
Differential Revision: https://reviews.llvm.org/D37427
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312591 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches decomposeBitTestICmp to look through truncate instructions on the input to the compare. If a truncate is found it will now return the pre-truncated Value and appropriately extend the APInt mask.
This allows some code to be removed from InstSimplify that was doing this functionality.
This allows InstCombine's bit test combining code to match a pre-truncate Value with the same Value appear with an 'and' on another icmp. Or it allows us to combine a truncate to i16 and a truncate to i8. This also required removing the type check from the beginning of getMaskedTypeForICmpPair, but I believe that's ok because we still have to find two values from the input to each icmp that are equal before we'll do any transformation. So the type check was really just serving as an early out.
There was one user of decomposeBitTestICmp that didn't want to look through truncates, so I've added a flag to prevent that behavior when necessary.
Differential Revision: https://reviews.llvm.org/D37158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312382 91177308-0d34-0410-b5e6-96231b3b80d8
Previously this would sporadically crash as TargetType
was never initialized. We special-case the single-operand
case returning earlier and trying to mimic the behaviour of
isLegalAddressingMode as closely as possible.
Differential Revision: https://reviews.llvm.org/D37277
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312357 91177308-0d34-0410-b5e6-96231b3b80d8
We expect the pointer to be initialized by the above loop, but
if that's not executed, the contents are garbage.
A fix for the crash will be committed immediately after.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312353 91177308-0d34-0410-b5e6-96231b3b80d8
In LLVM IR the following code:
%r = urem <ty> %t, %b
is equivalent to
%q = udiv <ty> %t, %b
%s = mul <ty> nuw %q, %b
%r = sub <ty> nuw %t, %q ; (t / b) * b + (t % b) = t
As UDiv, Mul and Sub are already supported by SCEV, URem can be implemented
with minimal effort using that relation:
%r --> (-%b * (%t /u %b)) + %t
We implement two special cases:
- if %b is 1, the result is always 0
- if %b is a power-of-two, we produce a zext/trunc based expression instead
That is, the following code:
%r = urem i32 %t, 65536
Produces:
%r --> (zext i16 (trunc i32 %a to i16) to i32)
Note that while this helps get a tighter bound on the range analysis and the
known-bits analysis, this exposes some normalization shortcoming of SCEVs:
%div = udim i32 %a, 65536
%mul = mul i32 %div, 65536
%rem = urem i32 %a, 65536
%add = add i32 %mul, %rem
Will usually not be reduced.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312329 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We add the precise cache sizes and associativity for the following Intel
architectures:
- Penry
- Nehalem
- Westmere
- Sandy Bridge
- Ivy Bridge
- Haswell
- Broadwell
- Skylake
- Kabylake
Polly uses since several months a performance model for BLAS computations that
derives optimal cache and register tile sizes from cache and latency
information (based on ideas from "Analytical Modeling Is Enough for High-Performance BLIS", by Tze Meng Low published at TOMS 2016).
While bootstrapping this model, these target values have been kept in Polly.
However, as our implementation is now rather mature, it seems time to teach
LLVM itself about cache sizes.
Interestingly, L1 and L2 cache sizes are pretty constant across
micro-architectures, hence a set of architecture specific default values
seems like a good start. They can be expanded to more target specific values,
in case certain newer architectures require different values. For now a set
of Intel architectures are provided.
Just as a little teaser, for a simple gemm kernel this model allows us to
improve performance from 1.2s to 0.27s. For gemm kernels with less optimal
memory layouts even larger speedups can be reported.
Reviewers: Meinersbur, bollu, singam-sanjay, hfinkel, gareevroman, fhahn, sebpop, efriedma, asb
Reviewed By: fhahn, asb
Subscribers: lsaba, asb, pollydev, llvm-commits
Differential Revision: https://reviews.llvm.org/D37051
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311647 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, the inline cost model will bail once the inline cost exceeds the
inline threshold in order to avoid unnecessary compile-time. However, when
debugging it is useful to compute the full cost, so this command line option
is added to override the default behavior.
I took over this work from Chad Rosier (mcrosier@codeaurora.org).
Differential Revision: https://reviews.llvm.org/D35850
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311371 91177308-0d34-0410-b5e6-96231b3b80d8
This recommits r310869, with the moved files and no extra changes.
Original commit message:
This addresses a fixme in InstSimplify about using decomposeBitTest. This also fixes InstSimplify to handle ugt and ult compares too.
I've modified the interface a little to return only the APInt version of the mask that InstSimplify needs. InstCombine now has a small wrapper routine to create a Constant out of it. I've also dropped the returning of 0 since InstSimplify doesn't need that. So InstCombine creates a zero constant itself.
I also had to make decomposeBitTest support vectors since InstSimplify needs that.
As InstSimplify can't use something from the Transforms library, I've moved the CmpInstAnalysis code to the Analysis library.
Differential Revision: https://reviews.llvm.org/D36593
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@310889 91177308-0d34-0410-b5e6-96231b3b80d8