Implementing this pass as a PowerPC specific pass. Branch coalescing utilizes
the analyzeBranch method which currently does not include any implicit operands.
This is not an issue on PPC but must be handled on other targets.
Pass is currently off by default. Enabled via -enable-ppc-branch-coalesce.
Differential Revision : https: // reviews.llvm.org/D32776
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313061 91177308-0d34-0410-b5e6-96231b3b80d8
Issues addressed since original review:
- Moved removal of dead instructions found by
LiveIntervals::shrinkToUses() outside of loop iterating over
instructions to avoid instructions being deleted while pointed to by
iterator.
- Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312328 91177308-0d34-0410-b5e6-96231b3b80d8
From comments and code review it wasn't intended to be enabled by default yet.
This reverts commit r311588.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312214 91177308-0d34-0410-b5e6-96231b3b80d8
It caused PR34387: Assertion failed: (RegNo < NumRegs && "Attempting to access record for invalid register number!")
> Issues identified by buildbots addressed since original review:
> - Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
> - The pass no longer forwards COPYs to physical register uses, since
> doing so can break code that implicitly relies on the physical
> register number of the use.
> - The pass no longer forwards COPYs to undef uses, since doing so
> can break the machine verifier by creating LiveRanges that don't
> end on a use (since the undef operand is not considered a use).
>
> [MachineCopyPropagation] Extend pass to do COPY source forwarding
>
> This change extends MachineCopyPropagation to do COPY source forwarding.
>
> This change also extends the MachineCopyPropagation pass to be able to
> be run during register allocation, after physical registers have been
> assigned, but before the virtual registers have been re-written, which
> allows it to remove virtual register COPY LiveIntervals that become dead
> through the forwarding of all of their uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312178 91177308-0d34-0410-b5e6-96231b3b80d8
Issues identified by buildbots addressed since original review:
- Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312154 91177308-0d34-0410-b5e6-96231b3b80d8
Implementing this pass as a PowerPC specific pass. Branch coalescing utilizes
the analyzeBranch method which currently does not include any implicit operands.
This is not an issue on PPC but must be handled on other targets.
Differential Revision : https: // reviews.llvm.org/D32776
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311588 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r311135.
sanitizer-x86_64-linux-android buildbot is timing out with just this
patch applied.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311142 91177308-0d34-0410-b5e6-96231b3b80d8
Two issues identified by buildbots were addressed:
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
Reviewers: qcolombet, javed.absar, MatzeB, jonpa
Subscribers: jyknight, nemanjai, llvm-commits, nhaehnle, mcrosier, mgorny
Differential Revision: https://reviews.llvm.org/D30751
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311135 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r311038.
Several buildbots are breaking, and at least one appears to be due to
the forwarding of physical regs enabled by this change. Reverting while
I investigate further.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311062 91177308-0d34-0410-b5e6-96231b3b80d8
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
Reviewers: qcolombet, javed.absar, MatzeB, jonpa
Subscribers: jyknight, nemanjai, llvm-commits, nhaehnle, mcrosier, mgorny
Differential Revision: https://reviews.llvm.org/D30751
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311038 91177308-0d34-0410-b5e6-96231b3b80d8
CFI instructions that set appropriate cfa offset and cfa register are now
inserted in emitEpilogue() in X86FrameLowering.
Majority of the changes in this patch:
1. Ensure that CFI instructions do not affect code generation.
2. Enable maintaining correct information about cfa offset and cfa register
in a function when basic blocks are reordered, merged, split, duplicated.
These changes are target independent and described below.
Changed CFI instructions so that they:
1. are duplicable
2. are not counted as instructions when tail duplicating or tail merging
3. can be compared as equal
Add information to each MachineBasicBlock about cfa offset and cfa register
that are valid at its entry and exit (incoming and outgoing CFI info). Add
support for updating this information when basic blocks are merged, split,
duplicated, created. Add a verification pass (CFIInfoVerifier) that checks
that outgoing cfa offset and register of predecessor blocks match incoming
values of their successors.
Incoming and outgoing CFI information is used by a late pass
(CFIInstrInserter) that corrects CFA calculation rule for a basic block if
needed. That means that additional CFI instructions get inserted at basic
block beginning to correct the rule for calculating CFA. Having CFI
instructions in function epilogue can cause incorrect CFA calculation rule
for some basic blocks. This can happen if, due to basic block reordering,
or the existence of multiple epilogue blocks, some of the blocks have wrong
cfa offset and register values set by the epilogue block above them.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D18046
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306529 91177308-0d34-0410-b5e6-96231b3b80d8
Use the initializeXXX method to initialize the RABasic pass in the
pipeline. This enables us to take advantage of the .mir infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304602 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.
Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb
Reviewed By: MatzeB, andreadb
Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32563
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304371 91177308-0d34-0410-b5e6-96231b3b80d8
This also reverts follow-ups r303292 and r303298.
It broke some Chromium tests under MSan, and apparently also internal
tests at Google.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303369 91177308-0d34-0410-b5e6-96231b3b80d8
This provides a new way to access the TargetMachine through
TargetPassConfig, as a dependency.
The patterns replaced here are:
* Passes handling a null TargetMachine call
`getAnalysisIfAvailable<TargetPassConfig>`.
* Passes not handling a null TargetMachine
`addRequired<TargetPassConfig>` and call
`getAnalysis<TargetPassConfig>`.
* MachineFunctionPasses now use MF.getTarget().
* Remove all the TargetMachine constructors.
* Remove INITIALIZE_TM_PASS.
This fixes a crash when running `llc -start-before prologepilog`.
PEI needs StackProtector, which gets constructed without a TargetMachine
by the pass manager. The StackProtector pass doesn't handle the case
where there is no TargetMachine, so it segfaults.
Related to PR30324.
Differential Revision: https://reviews.llvm.org/D33222
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303360 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, when masked load, store, gather or scatter intrinsics are used, we check in CodeGenPrepare pass if the subtarget support these intrinsics, if not we replace them with scalar code - this is a functional transformation not an optimization (not optional).
CodeGenPrepare pass does not run when the optimization level is set to CodeGenOpt::None (-O0).
Functional transformation should run with all optimization levels, so here I created a new pass which runs on all optimization levels and does no more than this transformation.
Differential Revision: https://reviews.llvm.org/D32487
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303050 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.
Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb
Reviewed By: MatzeB, andreadb
Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32563
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302938 91177308-0d34-0410-b5e6-96231b3b80d8
Let targets specialize the pass with the register class so we can get a
parameterless default constructor and can put the pass into the pass
registry to enable testing with -run-pass=.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298184 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed the asan bot failure which led to the last commit of the outliner being reverted.
The change is in lib/CodeGen/MachineOutliner.cpp in the SuffixTree's constructor. LeafVector
is no longer initialized using reserve but just a standard constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297081 91177308-0d34-0410-b5e6-96231b3b80d8
This is a patch for the outliner described in the RFC at:
http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
The outliner is a code-size reduction pass which works by finding
repeated sequences of instructions in a program, and replacing them with
calls to functions. This is useful to people working in low-memory
environments, where sacrificing performance for space is acceptable.
This adds an interprocedural outliner directly before printing assembly.
For reference on how this would work, this patch also includes X86
target hooks and an X86 test.
The outliner is run like so:
clang -mno-red-zone -mllvm -enable-machine-outliner file.c
Patch by Jessica Paquette<jpaquette@apple.com>!
rdar://29166825
Differential Revision: https://reviews.llvm.org/D26872
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296418 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Make this interface reusable similarly to std::call_once and std::once_flag interface.
This makes porting LLDB to NetBSD easier as there was in the original approach a portable way to specify a non-static once_flag. With this change translating std::once_flag to llvm::once_flag is mechanical.
Sponsored by <The NetBSD Foundation>
Reviewers: mehdi_amini, labath, joerg
Reviewed By: mehdi_amini
Subscribers: emaste, clayborg
Differential Revision: https://reviews.llvm.org/D29566
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294143 91177308-0d34-0410-b5e6-96231b3b80d8
When GlobalISel is configured to abort rather than fallback the only
thing that resetting the machine function does is make things harder
to debug. If we ever get to this point in the abort configuration it
indicates that we've already hit a bug, so this changes the behaviour
to abort instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291977 91177308-0d34-0410-b5e6-96231b3b80d8
Passing a MachineFunction as argument is more natural and avoids an
unnecessary round-trip through the logic determining the correct
Subtarget because MachineFunction already has a reference anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285039 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed in https://reviews.llvm.org/D22666, our current mechanism to
support -pg profiling, where we insert calls to mcount(), or some similar
function, is fundamentally broken. We insert these calls in the frontend, which
means they get duplicated when inlining, and so the accumulated execution
counts for the inlined-into functions are wrong.
Because we don't want the presence of these functions to affect optimizaton,
they should be inserted in the backend. Here's a pass which would do just that.
The knowledge of the name of the counting function lives in the frontend, so
we're passing it here as a function attribute. Clang will be updated to use
this mechanism.
Differential Revision: https://reviews.llvm.org/D22825
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280347 91177308-0d34-0410-b5e6-96231b3b80d8
When global-isel fails on a MachineFunction MF, MF will be cleaned up
and given to SDISel.
Thanks to this fallback, we can already perform correctness test even if
we support only a small portion of the functions in a test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279891 91177308-0d34-0410-b5e6-96231b3b80d8
Re-apply this patch, hopefully I will get away without any warnings
in the constructor now.
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279602 91177308-0d34-0410-b5e6-96231b3b80d8
dereferenced null pointer) in MachineModuleInfo::MachineModuleInfo that causes
-Werror builds (including several buildbots) to fail.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279580 91177308-0d34-0410-b5e6-96231b3b80d8
Re-apply this commit with the deletion of a MachineFunction delegated to
a separate pass to avoid use after free when doing this directly in
AsmPrinter.
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279564 91177308-0d34-0410-b5e6-96231b3b80d8
Software pipelining is an optimization for improving ILP by
overlapping loop iterations. Swing Modulo Scheduling (SMS) is
an implementation of software pipelining that attempts to
reduce register pressure and generate efficient pipelines with
a low compile-time cost.
This implementaion of SMS is a target-independent back-end pass.
When enabled, the pass should run just prior to the register
allocation pass, while the machine IR is in SSA form. If the pass
is successful, then the original loop is replaced by the optimized
loop. The optimized loop contains one or more prolog blocks, the
pipelined kernel, and one or more epilog blocks.
This pass is enabled for Hexagon only. To enable for other targets,
a couple of target specific hooks must be implemented, and the
pass needs to be called from the target's TargetMachine
implementation.
Differential Review: http://reviews.llvm.org/D16829
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277169 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In this patch we implement the following parts of XRay:
- Supporting a function attribute named 'function-instrument' which currently only supports 'xray-always'. We should be able to use this attribute for other instrumentation approaches.
- Supporting a function attribute named 'xray-instruction-threshold' used to determine whether a function is instrumented with a minimum number of instructions (IR instruction counts).
- X86-specific nop sleds as described in the white paper.
- A machine function pass that adds the different instrumentation marker instructions at a very late stage.
- A way of identifying which return opcode is considered "normal" for each architecture.
There are some caveats here:
1) We don't handle PATCHABLE_RET in platforms other than x86_64 yet -- this means if IR used PATCHABLE_RET directly instead of a normal ret, instruction lowering for that platform might do the wrong thing. We think this should be handled at instruction selection time to by default be unpacked for platforms where XRay is not availble yet.
2) The generated section for X86 is different from what is described from the white paper for the sole reason that LLVM allows us to do this neatly. We're taking the opportunity to deviate from the white paper from this perspective to allow us to get richer information from the runtime library.
Reviewers: sanjoy, eugenis, kcc, pcc, echristo, rnk
Subscribers: niravd, majnemer, atrick, rnk, emaste, bmakam, mcrosier, mehdi_amini, llvm-commits
Differential Revision: http://reviews.llvm.org/D19904
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275367 91177308-0d34-0410-b5e6-96231b3b80d8
Add an option to enable the analysis of MachineFunction register
usage to extract the list of clobbered registers.
When enabled, the CodeGen order is changed to be bottom up on the Call
Graph.
The analysis is split in two parts, RegUsageInfoCollector is the
MachineFunction Pass that runs post-RA and collect the list of
clobbered registers to produce a register mask.
An immutable pass, RegisterUsageInfo, stores the RegMask produced by
RegUsageInfoCollector, and keep them available. A future tranformation
pass will use this information to update every call-sites after
instruction selection.
Patch by Vivek Pandya <vivekvpandya@gmail.com>
Differential Revision: http://reviews.llvm.org/D20769
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272403 91177308-0d34-0410-b5e6-96231b3b80d8
CALL_ONCE_... macro in the legacy pass manager with the new
llvm::call_once facility.
Nothing changed sicne the last attempt in r271781 which I reverted in
r271788. At least one of the failures I saw was spurious, and I want to
make sure the other failures are real before I work around them -- they
appeared to only effect ppc64le and ppc64be.
Original commit message of r271781:
----
[LPM] Reinstate r271652 to replace the CALL_ONCE_... macro in the legacy
pass manager with the new llvm::call_once facility.
This reverts commit r271657 and re-applies r271652 with a fix to
actually work with arguments. In the original version, we just ended up
directly calling std::call_once via ADL because of the std::once_flag
argument. The llvm::call_once never worked with arguments. Now,
llvm::call_once is a variadic template that perfectly forwards
everything. As a part of this it had to move to the header and we use
a generic functor rather than an explict function pointer. It would be
nice to use std::invoke here but we don't have it yet. That means
pointer to members won't work here, but that seems a tolerable
compromise.
I've also tested this by forcing the fallback path, so hopefully it
sticks this time.
----
Original commit message of r271652:
----
[LPM] Replace the CALL_ONCE_... macro in the legacy pass manager with
the new llvm::call_once facility.
This facility matches the standard APIs and when the platform supports
it actually directly uses the standard provided functionality. This is
both more efficient on some platforms and much more TSan friendly.
The only remaining user of the cas_flag and home-rolled atomics is the
fallback implementation of call_once. I have a patch that removes them
entirely, but it needs a Windows patch to land first.
This alone substantially cleans up the macros for the legacy pass
manager, and should subsume some of the work Mehdi was doing to clear
the path for TSan testing of ThinLTO, a really important step to have
reliable upstream testing of ThinLTO in all forms.
----
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271800 91177308-0d34-0410-b5e6-96231b3b80d8
There appears to be a strange exception thrown and crash using call_once
on a PPC build bot, and a *really* weird windows link error for
GCMetadata.obj. Still need to investigate the cause of both problems.
Original change summary:
[LPM] Reinstate r271652 to replace the CALL_ONCE_... macro in the legacy
pass manager with the new llvm::call_once facility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271788 91177308-0d34-0410-b5e6-96231b3b80d8
pass manager with the new llvm::call_once facility.
This reverts commit r271657 and re-applies r271652 with a fix to
actually work with arguments. In the original version, we just ended up
directly calling std::call_once via ADL because of the std::once_flag
argument. The llvm::call_once never worked with arguments. Now,
llvm::call_once is a variadic template that perfectly forwards
everything. As a part of this it had to move to the header and we use
a generic functor rather than an explict function pointer. It would be
nice to use std::invoke here but we don't have it yet. That means
pointer to members won't work here, but that seems a tolerable
compromise.
I've also tested this by forcing the fallback path, so hopefully it
sticks this time.
Original commit message:
----
[LPM] Replace the CALL_ONCE_... macro in the legacy pass manager with
the new llvm::call_once facility.
This facility matches the standard APIs and when the platform supports
it actually directly uses the standard provided functionality. This is
both more efficient on some platforms and much more TSan friendly.
The only remaining user of the cas_flag and home-rolled atomics is the
fallback implementation of call_once. I have a patch that removes them
entirely, but it needs a Windows patch to land first.
This alone substantially cleans up the macros for the legacy pass
manager, and should subsume some of the work Mehdi was doing to clear
the path for TSan testing of ThinLTO, a really important step to have
reliable upstream testing of ThinLTO in all forms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271781 91177308-0d34-0410-b5e6-96231b3b80d8
the new llvm::call_once facility.
This facility matches the standard APIs and when the platform supports
it actually directly uses the standard provided functionality. This is
both more efficient on some platforms and much more TSan friendly.
The only remaining user of the cas_flag and home-rolled atomics is the
fallback implementation of call_once. I have a patch that removes them
entirely, but it needs a Windows patch to land first.
This alone substantially cleans up the macros for the legacy pass
manager, and should subsume some of the work Mehdi was doing to clear
the path for TSan testing of ThinLTO, a really important step to have
reliable upstream testing of ThinLTO in all forms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271652 91177308-0d34-0410-b5e6-96231b3b80d8
Refactor LiveIntervals::renameDisconnectedComponents() to be a pass.
Also change the name to "RenameIndependentSubregs":
- renameDisconnectedComponents() worked on a MachineFunction at a time
so it is a natural candidate for a machine function pass.
- The algorithm is testable with a .mir test now.
- This also fixes a problem where the lazy renaming as part of the
MachineScheduler introduced IMPLICIT_DEF instructions after the number
of a nodes in a region were counted leading to a mismatch.
Differential Revision: http://reviews.llvm.org/D20507
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271345 91177308-0d34-0410-b5e6-96231b3b80d8