Commit Graph

135 Commits

Author SHA1 Message Date
Teresa Johnson
08d0e94685 [ThinLTO] Add support for emitting minimized bitcode for thin link
Summary:
The cumulative size of the bitcode files for a very large application
can be huge, particularly with -g. In a distributed build environment,
all of these files must be sent to the remote build node that performs
the thin link step, and this can exceed size limits.

The thin link actually only needs the summary along with a bitcode
symbol table. Until we have a proper bitcode symbol table, simply
stripping the debug metadata results in significant size reduction.

Add support for an option to additionally emit minimized bitcode
modules, just for use in the thin link step, which for now just strips
all debug metadata. I plan to add a cc1 option so this can be invoked
easily during the compile step.

However, care must be taken to ensure that these minimized thin link
bitcode files produce the same index as with the original bitcode files,
as these original bitcode files will be used in the backends.

Specifically:
1) The module hash used for caching is typically produced by hashing the
written bitcode, and we want to include the hash that would correspond
to the original bitcode file. This is because we want to ensure that
changes in the stripped portions affect caching. Added plumbing to emit
the same module hash in the minimized thin link bitcode file.
2) The module paths in the index are constructed from the module ID of
each thin linked bitcode, and typically is automatically generated from
the input file path. This is the path used for finding the modules to
import from, and obviously we need this to point to the original bitcode
files. Added gold-plugin support to take a suffix replacement during the
thin link that is used to override the identifier on the MemoryBufferRef
constructed from the loaded thin link bitcode file. The assumption is
that the build system can specify that the minimized bitcode file has a
name that is similar but uses a different suffix (e.g. out.thinlink.bc
instead of out.o).

Added various tests to ensure that we get identical index files out of
the thin link step.

Reviewers: mehdi_amini, pcc

Subscribers: Prazek, llvm-commits

Differential Revision: https://reviews.llvm.org/D31027

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298638 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-23 19:47:39 +00:00
Peter Collingbourne
e53e585ce9 IPO: Const correctness for summaries passed into passes.
Pass const qualified summaries into importers and unqualified summaries into
exporters. This lets us const-qualify the summary argument to thinBackend.

Differential Revision: https://reviews.llvm.org/D31230

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298534 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-22 18:22:59 +00:00
Dehao Chen
287fe25641 Do not inline hot callsites for samplepgo in thinlto compile phase.
Summary: Because SamplePGO passes will be invoked twice in ThinLTO build: once at compile phase, the other at backend. We want to make sure the IR at the 2nd phase matches the hot part in profile, thus we do not want to inline hot callsites in the first phase.

Reviewers: tejohnson, eraman

Reviewed By: tejohnson

Subscribers: mehdi_amini, llvm-commits, Prazek

Differential Revision: https://reviews.llvm.org/D31201

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298428 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-21 19:55:36 +00:00
Peter Collingbourne
a5035323ac IR: Type ID summary extensions for WPD; thread summary into WPD pass.
Make the whole thing testable by adding YAML I/O support for the WPD
summary information and adding some negative tests that exercise the
YAML support.

Differential Revision: https://reviews.llvm.org/D29782

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294981 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-13 19:26:18 +00:00
Peter Collingbourne
637c07c74b Rename LowerTypeTestsSummaryAction to PassSummaryAction. NFCI.
I intend to use the same type with the same semantics in the WholeProgramDevirt
pass.

Differential Revision: https://reviews.llvm.org/D29746

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294629 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-09 21:45:01 +00:00
Xin Tong
4f4c80c1df Fix Grammar. NFCI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292704 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-21 02:11:40 +00:00
Peter Collingbourne
260cfbc963 LowerTypeTests: Thread summary and action from the API and command line into the pass.
Also move command line handling out of the pass constructor and into
a separate function.

Differential Revision: https://reviews.llvm.org/D28422

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291323 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-07 01:17:24 +00:00
Peter Collingbourne
83179504e5 IPO: Remove the ModuleSummary argument to the FunctionImport pass. NFCI.
No existing client is passing a non-null value here. This will come back
in a slightly different form as part of the type identifier summary work.

Differential Revision: https://reviews.llvm.org/D28006

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290222 91177308-0d34-0410-b5e6-96231b3b80d8
2016-12-21 00:50:12 +00:00
Peter Collingbourne
d150401278 IPO: Introduce ThinLTOBitcodeWriter pass.
This pass prepares a module containing type metadata for ThinLTO by splitting
it into regular and thin LTO parts if possible, and writing both parts to
a multi-module bitcode file. Modules that do not contain type metadata are
written unmodified as a single module.

All globals with type metadata are added to the regular LTO module, and
the rest are added to the thin LTO module.

Differential Revision: https://reviews.llvm.org/D27324

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289899 91177308-0d34-0410-b5e6-96231b3b80d8
2016-12-16 00:26:30 +00:00
Peter Collingbourne
510c1b6ff7 Introduce GlobalSplit pass.
This pass splits globals into elements using inrange annotations on
getelementptr indices.

Differential Revision: https://reviews.llvm.org/D22295

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287178 91177308-0d34-0410-b5e6-96231b3b80d8
2016-11-16 23:40:26 +00:00
Michael Ilseman
5bd98bf7d6 Add -strip-nonlinetable-debuginfo capability
This adds a new function to DebugInfo.cpp that takes an llvm::Module
as input and removes all debug info metadata that is not directly
needed for line tables, thus effectively stripping all type and
variable information from the module.

The primary motivation for this feature was the bitcode work flow
(cf. http://lists.llvm.org/pipermail/llvm-dev/2016-June/100643.html
for more background). This is not wired up yet, but will be in
subsequent patches.  For testing, the new functionality is exposed to
opt with a -strip-nonlinetable-debuginfo option.

The secondary use-case (and one that works right now!) is as a
reduction pass in bugpoint. I added two new bugpoint options
(-disable-strip-debuginfo and -disable-strip-debug-types) to control
the new features. By default it will first attempt to remove all debug
information, then only the type info, and then proceed to hack at any
remaining MDNodes.

Thanks to Adrian Prantl for stewarding this patch!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285094 91177308-0d34-0410-b5e6-96231b3b80d8
2016-10-25 18:44:13 +00:00
Michael Ilseman
33fe838cad Revert "Add -strip-nonlinetable-debuginfo capability"
This reverts commit r283473.

Reverted until review is completed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283478 91177308-0d34-0410-b5e6-96231b3b80d8
2016-10-06 18:30:26 +00:00
Michael Ilseman
bda4e020b8 Add -strip-nonlinetable-debuginfo capability
This adds a new function to DebugInfo.cpp that takes an llvm::Module
as input and removes all debug info metadata that is not directly
needed for line tables, thus effectively stripping all type and
variable information from the module.

The primary motivation for this feature was the bitcode work flow
(cf. http://lists.llvm.org/pipermail/llvm-dev/2016-June/100643.html
for more background). This is not wired up yet, but will be in
subsequent patches.  For testing, the new functionality is exposed to
opt with a -strip-nonlinetable-debuginfo option.

The secondary use-case (and one that works right now!) is as a
reduction pass in bugpoint. I added two new bugpoint options
(-disable-strip-debuginfo and -disable-strip-debug-types) to control
the new features. By default it will first attempt to remove all debug
information, then only the type info, and then proceed to hack at any
remaining MDNodes.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283473 91177308-0d34-0410-b5e6-96231b3b80d8
2016-10-06 17:58:38 +00:00
Chandler Carruth
b699f7b88f [PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.

This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:

- Array alloca merging
  - To support the above, bottom-up inlining with careful history
    tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
  Instead, it focuses on inlining functions with that attribute.

The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.

The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.

The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.

One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.

Anyways, hopefully a reasonable starting point for this pass.

Differential Revision: https://reviews.llvm.org/D23299

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278896 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-17 02:56:20 +00:00
Easwaran Raman
2d003b3f5e Add a new method to create SimpleInliner instance and make pre-inliner use this.
This adds a createFunctionInliningPass pass that takes an InlineParams object and use this to create the pre-inliner pass. This prevents the regular inliner's threshold flag from influencing the preinliner.

Differential revision: https://reviews.llvm.org/D23377


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278377 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-11 18:24:08 +00:00
Peter Collingbourne
dba9146333 IR: New representation for CFI and virtual call optimization pass metadata.
The bitset metadata currently used in LLVM has a few problems:

1. It has the wrong name. The name "bitset" refers to an implementation
   detail of one use of the metadata (i.e. its original use case, CFI).
   This makes it harder to understand, as the name makes no sense in the
   context of virtual call optimization.

2. It is represented using a global named metadata node, rather than
   being directly associated with a global. This makes it harder to
   manipulate the metadata when rebuilding global variables, summarise it
   as part of ThinLTO and drop unused metadata when associated globals are
   dropped. For this reason, CFI does not currently work correctly when
   both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
   globals, and fails to associate metadata with the rebuilt globals. As I
   understand it, the same problem could also affect ASan, which rebuilds
   globals with a red zone.

This patch solves both of those problems in the following way:

1. Rename the metadata to "type metadata". This new name reflects how
   the metadata is currently being used (i.e. to represent type information
   for CFI and vtable opt). The new name is reflected in the name for the
   associated intrinsic (llvm.type.test) and pass (LowerTypeTests).

2. Attach metadata directly to the globals that it pertains to, rather
   than using the "llvm.bitsets" global metadata node as we are doing now.
   This is done using the newly introduced capability to attach
   metadata to global variables (r271348 and r271358).

See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html

Differential Revision: http://reviews.llvm.org/D21053

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273729 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-24 21:21:32 +00:00
Mehdi Amini
f6071e14c5 [NFC] Header cleanup
Removed some unused headers, replaced some headers with forward class declarations.

Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'

Patch by Eugene Kosov <claprix@yandex.ru>

Differential Revision: http://reviews.llvm.org/D19219

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266595 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-18 09:17:29 +00:00
Mehdi Amini
a98cfea3ed Refactor Internalization pass to use as a callback instead of a StringSet (NFC)
This will save a bunch of copies / initialization of intermediate
datastructure, and (hopefully) simplify the code.

This also abstract the symbol preservation mechanism outside of the
Internalization pass into the client code, which is not forced
to keep a map of strings for instance (ThinLTO will prefere hashes).

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266163 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-13 04:20:32 +00:00
Teresa Johnson
f2403fe5b5 [ThinLTO] Renaming of function index to module summary index (NFC)
(Resubmitting after fixing missing file issue)

With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.

A companion clang patch will immediately succeed this patch to reflect
this renaming.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263513 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-15 00:04:37 +00:00
Teresa Johnson
c37b05528e Revert "[ThinLTO] Renaming of function index to module summary index (NFC)"
This reverts commit r263490. Missed a file.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263493 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-14 21:18:10 +00:00
Teresa Johnson
256128f217 [ThinLTO] Renaming of function index to module summary index (NFC)
With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.

A companion clang patch will immediately succeed this patch to reflect
this renaming.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263490 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-14 21:05:56 +00:00
Chandler Carruth
e9afeb0bd1 [PM] Port the PostOrderFunctionAttrs pass to the new pass manager and
convert one test to use this.

This is a particularly significant milestone because it required
a working per-function AA framework which can be queried over each
function from within a CGSCC transform pass (and additionally a module
analysis to be accessible). This is essentially *the* point of the
entire pass manager rewrite. A CGSCC transform is able to query for
multiple different function's analysis results. It works. The whole
thing appears to actually work and accomplish the original goal. While
we were able to hack function attrs and basic-aa to "work" in the old
pass manager, this port doesn't use any of that, it directly leverages
the new fundamental functionality.

For this to work, the CGSCC framework also has to support SCC-based
behavior analysis, etc. The only part of the CGSCC pass infrastructure
not sorted out at this point are the updates in the face of inlining and
running function passes that mutate the call graph.

The changes are pretty boring and boiler-plate. Most of the work was
factored into more focused preperatory patches. But this is what wires
it all together.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261203 91177308-0d34-0410-b5e6-96231b3b80d8
2016-02-18 11:03:11 +00:00
Mehdi Amini
f1539bbfd8 Use a StringSet in Internalize, and allow to create the pass from an existing one (NFC)
There is not reason to pass an array of "char *" to rebuild a set if
the client already has one.

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@260462 91177308-0d34-0410-b5e6-96231b3b80d8
2016-02-10 23:24:31 +00:00
Peter Collingbourne
40cd497a24 WholeProgramDevirt: introduce.
This pass implements whole program optimization of virtual calls in cases
where we know (via bitset information) that the list of callees is fixed. This
includes the following:

- Single implementation devirtualization: if a virtual call has a single
  possible callee, replace all calls with a direct call to that callee.

- Virtual constant propagation: if the virtual function's return type is an
  integer <=64 bits and all possible callees are readnone, for each class and
  each list of constant arguments: evaluate the function, store the return
  value alongside the virtual table, and rewrite each virtual call as a load
  from the virtual table.

- Uniform return value optimization: if the conditions for virtual constant
  propagation hold and each function returns the same constant value, replace
  each virtual call with that constant.

- Unique return value optimization for i1 return values: if the conditions
  for virtual constant propagation hold and a single vtable's function
  returns 0, or a single vtable's function returns 1, replace each virtual
  call with a comparison of the vptr against that vtable's address.

Differential Revision: http://reviews.llvm.org/D16795

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@260312 91177308-0d34-0410-b5e6-96231b3b80d8
2016-02-09 22:50:34 +00:00
Chandler Carruth
e96fb9ab15 [attrs] Split the late-revisit pattern for deducing norecurse in
a top-down manner into a true top-down or RPO pass over the call graph.

There are specific patterns of function attributes, notably the
norecurse attribute, which are most effectively propagated top-down
because all they us caller information.

Walk in RPO over the call graph SCCs takes the form of a module pass run
immediately after the CGSCC pass managers postorder walk of the SCCs,
trying again to deduce norerucrse for each singular SCC in the call
graph.

This removes a very legacy pass manager specific trick of using a lazy
revisit list traversed during finalization of the CGSCC pass. There is
no analogous finalization step in the new pass manager, and a lazy
revisit list is just trying to produce an RPO iteration of the call
graph. We can do that more directly if more expensively. It seems
unlikely that this will be the expensive part of any compilation though
as we never examine the function bodies here. Even in an LTO run over
a very large module, this should be a reasonable fast set of operations
over a reasonably small working set -- the function call graph itself.

In the future, if this really is a compile time performance issue, we
can look at building support for both post order and RPO traversals
directly into a pass manager that builds and maintains the PO list of
SCCs.

Differential Revision: http://reviews.llvm.org/D15785

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257163 91177308-0d34-0410-b5e6-96231b3b80d8
2016-01-08 10:55:52 +00:00
Evgeniy Stepanov
053615be02 Cross-DSO control flow integrity (LLVM part).
An LTO pass that generates a __cfi_check() function that validates a
call based on a hash of the call-site-known type and the target
pointer.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255693 91177308-0d34-0410-b5e6-96231b3b80d8
2015-12-15 23:00:08 +00:00
Teresa Johnson
fbc5640b6b [ThinLTO] FunctionImport pass can take a const index pointer (NFC)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255140 91177308-0d34-0410-b5e6-96231b3b80d8
2015-12-09 19:39:47 +00:00
Teresa Johnson
a16511be95 Fix function return type in declaration (bot errors from r254926).
Try to fix bot build errors from r254926 by correcting the function
return type.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254934 91177308-0d34-0410-b5e6-96231b3b80d8
2015-12-07 19:53:38 +00:00
Teresa Johnson
5d0d98f6ec [ThinLTO] Support for specifying function index from pass manager
Summary:
Add a field on the PassManagerBuilder that clang or gold can use to pass
down a pointer to the function index in memory to use for importing when
the ThinLTO backend is triggered. Add support to supply this to the
function import pass.

Reviewers: joker.eph, dexonsmith

Subscribers: davidxl, llvm-commits, joker.eph

Differential Revision: http://reviews.llvm.org/D15024

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254926 91177308-0d34-0410-b5e6-96231b3b80d8
2015-12-07 19:21:11 +00:00
Diego Novillo
eb6eb153d9 Convert SampleProfile pass into a Module pass.
Eventually, we will need sample profiles to be incorporated into the
inliner's cost models.  To do this, we need the sample profile pass to
be a module pass.

This patch makes no functional changes beyond the mechanical adjustments
needed to run SampleProfile as a module pass.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245940 91177308-0d34-0410-b5e6-96231b3b80d8
2015-08-25 15:25:11 +00:00
Teresa Johnson
3d41fcb3da Resubmit "Add new EliminateAvailableExternally module pass" (r239480)
This change includes a fix for https://code.google.com/p/chromium/issues/detail?id=499508#c3,
which required updating the visibility for symbols with eliminated definitions.

--Original Commit Message--

Add new EliminateAvailableExternally module pass, which is performed in
O2 compiles just before GlobalDCE, unless we are preparing for LTO.

This pass eliminates available externally globals (turning them into
declarations), regardless of whether they are dead/unreferenced, since
we are guaranteed to have a copy available elsewhere at link time.
This enables additional opportunities for GlobalDCE.

If we are preparing for LTO (e.g. a -flto -c compile), the pass is not
included as we want to preserve available externally functions for possible
link time inlining. The FE indicates whether we are doing an -flto compile
via the new PrepareForLTO flag on the PassManagerBuilder.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241466 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-06 16:22:42 +00:00
Alexander Kornienko
cd52a7a381 Revert r240137 (Fixed/added namespace ending comments using clang-tidy. NFC)
Apparently, the style needs to be agreed upon first.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240390 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-23 09:49:53 +00:00
Alexander Kornienko
cf0db29df2 Fixed/added namespace ending comments using clang-tidy. NFC
The patch is generated using this command:

tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
  -checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
  llvm/lib/


Thanks to Eugene Kosov for the original patch!



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240137 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-19 15:57:42 +00:00
Teresa Johnson
e0de59ac91 Revert commit r239480 as it causes https://code.google.com/p/chromium/issues/detail?id=499508#c3.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239589 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-12 03:12:00 +00:00
Teresa Johnson
b78ea510c1 Add new EliminateAvailableExternally module pass, which is performed in
O2 compiles just before GlobalDCE, unless we are preparing for LTO.

This pass eliminates available externally globals (turning them into
declarations), regardless of whether they are dead/unreferenced, since
we are guaranteed to have a copy available elsewhere at link time.
This enables additional opportunities for GlobalDCE.

If we are preparing for LTO (e.g. a -flto -c compile), the pass is not
included as we want to preserve available externally functions for possible
link time inlining. The FE indicates whether we are doing an -flto compile
via the new PrepareForLTO flag on the PassManagerBuilder.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239480 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-10 17:49:28 +00:00
Peter Collingbourne
5a81e14385 Introduce bitset metadata format and bitset lowering pass.
This patch introduces a new mechanism that allows IR modules to co-operatively
build pointer sets corresponding to addresses within a given set of
globals. One particular use case for this is to allow a C++ program to
efficiently verify (at each call site) that a vtable pointer is in the set
of valid vtable pointers for the class or its derived classes. One way of
doing this is for a toolchain component to build, for each class, a bit set
that maps to the memory region allocated for the vtables, such that each 1
bit in the bit set maps to a valid vtable for that class, and lay out the
vtables next to each other, to minimize the total size of the bit sets.

The patch introduces a metadata format for representing pointer sets, an
'@llvm.bitset.test' intrinsic and an LTO lowering pass that lays out the globals
and builds the bitsets, and documents the new feature.

Differential Revision: http://reviews.llvm.org/D7288

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230054 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-20 20:30:47 +00:00
Duncan P. N. Exon Smith
2602b66b91 Move -verify-use-list-order into llvm-uselistorder
Ugh.  Turns out not even transformation passes link in how to read IR.
I sincerely believe the buildbots will finally agree with my system
after this though.  (I don't really understand why all of this has been
working on my system, but not on all the buildbots.)

Create a new tool called llvm-uselistorder to use for verifying use-list
order.  For now, just dump everything from the (now defunct)
-verify-use-list-order pass into the tool.

This might be a better way to test use-list order anyway.

Part of PR5680.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213957 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-25 17:13:03 +00:00
Duncan P. N. Exon Smith
7bf73bd378 IPO: Add use-list-order verifier
Add a -verify-use-list-order pass, which shuffles use-list order, writes
to bitcode, reads back, and verifies that the (shuffled) order matches.

  - The utility functions live in lib/IR/UseListOrder.cpp.

  - Moved (and renamed) the command-line option to enable writing
    use-lists, so that this pass can return early if the use-list orders
    aren't being serialized.

It's not clear that this pass is the right direction long-term (perhaps
a separate tool instead?), but short-term it's a great way to test the
use-list order prototype.  I've added an XFAIL-ed testcase that I'm
hoping to get working pretty quickly.

This is part of PR5680.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213945 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-25 14:49:26 +00:00
NAKAMURA Takumi
a1b1165f30 Reformat linefeeds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209609 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-26 00:25:26 +00:00
Duncan P. N. Exon Smith
3845c071a7 Revert "Reapply "LTO: add API to set strategy for -internalize""
This reverts commit r199244.

Conflicts:
	include/llvm-c/lto.h
	include/llvm/LTO/LTOCodeGenerator.h
	lib/LTO/LTOCodeGenerator.cpp

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205471 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-02 22:05:57 +00:00
Eli Bendersky
ce306f9f99 Move duplicated code into a helper function (exposed through overload).
There's a bit of duplicated "magic" code in opt.cpp and Clang's CodeGen that
computes the inliner threshold from opt level and size opt level.

This patch moves the code to a function that lives alongside the inliner itself,
providing a convenient overload to the inliner creation.

A separate patch can be committed to Clang to use this once it's committed to
LLVM. Standalone tools that use the inlining pass can also avoid duplicating
this code and fearing it will go out of sync.

Note: this patch also restructures the conditinal logic of the computation to
be cleaner.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203669 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-12 16:12:36 +00:00
Duncan P. N. Exon Smith
3e4542b2ca Reapply "LTO: add API to set strategy for -internalize"
Reapply r199191, reverted in r199197 because it carelessly broke
Other/link-opts.ll.  The problem was that calling
createInternalizePass("main") would select
createInternalizePass(bool("main")) instead of
createInternalizePass(ArrayRef<const char *>("main")).  This commit
fixes the bug.

The original commit message follows.

Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.

This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker.  This puts the onus on the
linker to decide whether (and what) to internalize.

In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.

This patch enables three strategies:

- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
  visibility.

LTO_INTERNALIZE_FULL should be used when linking an executable.

Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized.  E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise.  However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.

lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().

<rdar://problem/14334895>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199244 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-14 18:52:17 +00:00
NAKAMURA Takumi
d13b9da1b6 Revert r199191, "LTO: add API to set strategy for -internalize"
Please update also Other/link-opts.ll, in next time.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199197 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-14 09:40:18 +00:00
Duncan P. N. Exon Smith
67af0456bc LTO: add API to set strategy for -internalize
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.

This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker.  This puts the onus on the
linker to decide whether (and what) to internalize.

In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.

This patch enables three strategies:

- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
  visibility.

LTO_INTERNALIZE_FULL should be used when linking an executable.

Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized.  E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise.  However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.

lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().

<rdar://problem/14334895>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199191 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-14 06:37:26 +00:00
Rafael Espindola
7e667c56cf Use LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN instead of the "dso list".
There are two ways one could implement hiding of linkonce_odr symbols in LTO:
* LLVM tells the linker which symbols can be hidden if not used from native
  files.
* The linker tells LLVM which symbols are not used from other object files,
  but will be put in the dso symbol table if present.

GOLD's API is the second option. It was implemented almost 1:1 in llvm by
passing the list down to internalize.

LLVM already had partial support for the first option. It is also very similar
to how ld64 handles hiding these symbols when *not* doing LTO.

This patch then
* removes the APIs for the DSO list.
* marks LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN all linkonce_odr unnamed_addr
  global values and other linkonce_odr whose address is not used.
* makes the gold plugin responsible for handling the API mismatch.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193800 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-31 20:51:58 +00:00
Rafael Espindola
438900938c Optimize linkonce_odr unnamed_addr functions during LTO.
Generalize the API so we can distinguish symbols that are needed just for a DSO
symbol table from those that are used from some native .o.

The symbols that are only wanted for the dso symbol table can be dropped if
llvm can prove every other dso has a copy (linkonce_odr) and the address is not
important (unnamed_addr).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191922 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-03 18:29:09 +00:00
Rafael Espindola
775079c227 Rename some variables to match the style guide.
I am about to patch this code, and this makes the diff far more readable.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189982 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-04 20:08:46 +00:00
Rafael Espindola
0439f3e0cf Use an ArrayRef instead of a std::vector&.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169881 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 16:36:02 +00:00
Rafael Espindola
e5551ed9ce Change the internalize pass to internalize all symbols when given an empty
list of externals. This makes sense since a shared library with no symbols
can still be useful if it has static constructors.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166795 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-26 18:47:48 +00:00
Chandler Carruth
63a1eb62e4 Introduce a BarrierNoop pass, a hack designed to allow *some* control
over the implicitly-formed-and-nesting CGSCC pass manager and function
pass managers, especially when using them on the opt commandline or
using extension points in the module builder. The '-barrier' opt flag
(or the pass itself) will create a no-op module pass in the pipeline,
resetting the pass manager stack, and allowing the creation of a new
pipeline of function passes or CGSCC passes to be created that is
independent from any previous pipelines.

For example, this can be used to test running two CGSCC passes in
independent CGSCC pass managers as opposed to in the same CGSCC pass
manager. It also allows us to introduce a further hack into the
PassManagerBuilder to separate the O0 pipeline extension passes from the
always-inliner's CGSCC pass manager, which they likely do not want to
participate in... At the very least none of the Sanitizer passes want
this behavior.

This fixes a bug with ASan at O0 currently, and I'll commit the ASan
test which covers this pass. I'm happy to add a test case that this pass
exists and works, but not sure how much time folks would like me to
spend adding test cases for the details of its behavior of partition
pass managers.... The whole thing is just vile, and mostly intended to
unblock ASan, so I'm hoping to rip this all out in a brave new pass
manager world.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166172 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-18 08:05:46 +00:00