MachineIRBuilder had weird before/after and beginning/end flags for the insert
point. Unfortunately the non-default means that instructions will be inserted
in reverse order which is almost never what anyone wants.
Really, I think we just want (like IRBuilder has) the ability to insert at any
C++ iterator-style point (i.e. before any instruction or before MBB.end()). So
this fixes MIRBuilders to behave like IRBuilders in this respect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288980 91177308-0d34-0410-b5e6-96231b3b80d8
This makes it more similar to the floating-point constant, and also allows for
larger constants to be translated later. There's no real functional change in
this patch though, just syntax updates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288712 91177308-0d34-0410-b5e6-96231b3b80d8
This function seems target-independent so far: all the target-specific behaviour
is isolated in the CCAssignFn and the ValueHandler (which we're also extracting
into the generic CallLowering).
The intention is to use this in the ARM backend.
Differential Revision: https://reviews.llvm.org/D27045
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288658 91177308-0d34-0410-b5e6-96231b3b80d8
This change fixes a regression in r279537 and
makes getRawSubclassData behave like r279536.
Without this change, the fp128-g.ll test case will have an
infinite loop involving SoftenFloatRes_LOAD.
Differential Revision: http://reviews.llvm.org/D26942
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288420 91177308-0d34-0410-b5e6-96231b3b80d8
Recommitting r288293 with some extra fixes for GlobalISel code.
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288405 91177308-0d34-0410-b5e6-96231b3b80d8
The DIEUnit class represents a compile or type unit and it owns the unit DIE as an instance variable. This allows anyone with a DIE, to get the unit DIE, and then get back to its DIEUnit without adding any new ivars to the DIE class. Why was this needed? The DIE class has an Offset that is always the CU relative DIE offset, not the "offset in debug info section" as was commented in the header file (the comment has been corrected). This is great for performance because most DIE references are compile unit relative and this means most code that accessed the DIE's offset didn't need to make it into a compile unit relative offset because it already was. When we needed to emit a DW_FORM_ref_addr though, we needed to find the absolute offset of the DIE by finding the DIE's compile/type unit. This class did have the absolute debug info/type offset and could be added to the CU relative offset to compute the absolute offset. With this change we can easily get back to a DIE's DIEUnit which will have this needed offset. Prior to this is required having a DwarfDebug and required calling:
DwarfCompileUnit *DwarfDebug::lookupUnit(const DIE *CU) const;
Now we can use the DIEUnit class to do so without needing DwarfDebug. All clients now use DIEUnit objects (the DwarfDebug stack and the DwarfLinker). A follow on patch for the DWARF generator will also take advantage of this.
Differential Revision: https://reviews.llvm.org/D27170
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288399 91177308-0d34-0410-b5e6-96231b3b80d8
Currently when cost of scalar operations is evaluated the vector type is
used for scalar operations. Patch fixes this issue and fixes evaluation
of the vector operations cost.
Several test showed that vector cost model is too optimistic. It
allowed vectorization of 8 or less add/fadd operations, though scalar
code is faster. Actually, only for 16 or more operations vector code
provides better performance.
Differential Revision: https://reviews.llvm.org/D26277
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288398 91177308-0d34-0410-b5e6-96231b3b80d8
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288293 91177308-0d34-0410-b5e6-96231b3b80d8
VariableDbgInfo is per function data, so it makes sense to have it with
the function instead of the module.
This is a necessary step to have machine module passes work properly.
Differential Revision: https://reviews.llvm.org/D27186
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288292 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the createGenericSchedLive() function that constructs the
default scheduler available for the public API. This should help when
you want to get a scheduler and the default list of DAG mutations.
This also shrinks the list of default DAG mutations:
{Load|Store}ClusterDAGMutation and MacroFusionDAGMutation are no longer
added by default. Targets can easily add them if they need them. It also
makes it easier for targets to add alternative/custom macrofusion or
clustering mutations while staying with the default
createGenericSchedLive(). It also saves the callback back and forth in
TargetInstrInfo::enableClusterLoads()/enableClusterStores().
Differential Revision: https://reviews.llvm.org/D26986
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288057 91177308-0d34-0410-b5e6-96231b3b80d8
This patch makes AsmPrinter less reliant on DwarfDebug by relying on the DWARF version in the AsmPrinter's MCStreamer's MCContext. This allows us to remove the redundant DWARF version from DwarfDebug. It also lets us change code that used to access the AsmPrinter's DwarfDebug just to get to the DWARF version by changing the DWARF version accessor on AsmPrinter so that it grabs the version from its MCStreamer's MCContext.
Differential Revision: https://reviews.llvm.org/D27032
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287839 91177308-0d34-0410-b5e6-96231b3b80d8
The previously used "names" are rather descriptions (they use multiple
words and contain spaces), use short programming language identifier
like strings for the "names" which should be used when exporting to
machine parseable formats.
Also removed a unused TimerGroup from Hexxagon.
Differential Revision: https://reviews.llvm.org/D25583
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287369 91177308-0d34-0410-b5e6-96231b3b80d8
They're not SelectionDAG- or FunctionLoweringInfo-specific. They
are, however, specific to building MMI from IR.
We could make them members, but it's nice having MMI be a "simple" data
structure and this logic kept separate.
This also lets us reuse them from GlobalISel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287167 91177308-0d34-0410-b5e6-96231b3b80d8
The DAG mutators in the scheduler cannot really remove DAG nodes as
additional anlysis information such as ScheduleDAGToplogicalSort are
already computed at this point and rely on a fixed number of DAG nodes.
Alleviate the missing removal with a new flag: Setting the new skip
flag on a node ignores it during scheduling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286655 91177308-0d34-0410-b5e6-96231b3b80d8
Push VRegUses/collectVRegUses() down the class hierarchy towards its
only user ScheduleDAGMILive.
NFCI: The initialization of the map happens at a later point but that
should not matter.
This is in preparation to allow DAG mutators to merge nodes, which
relies on this map getting computed later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286654 91177308-0d34-0410-b5e6-96231b3b80d8
addSchedBarrierDeps() is supposed to add use operands to the ExitSU
node. The current implementation adds uses for calls/barrier instruction
and the MBB live-outs in all other cases. The use
operands of conditional jump instructions were missed.
Also added code to macrofusion to set the latencies between nodes to
zero to avoid problems with the fusing nodes lingering around in the
pending list now.
Differential Revision: https://reviews.llvm.org/D25140
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286544 91177308-0d34-0410-b5e6-96231b3b80d8
When copying to/from a constant register interferences can be ignored.
Also update the documentation for isConstantPhysReg() to make it more
obvious that this transformation is valid.
Differential Revision: https://reviews.llvm.org/D26106
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286503 91177308-0d34-0410-b5e6-96231b3b80d8
Pretty bare-bones support for exception handling (no weird MSVC stuff, no SjLj
etc), but it should get things going.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286407 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Unrolled Loop Size calculations moved to a function.
Constant representing number of optimized instructions
when "back edge" becomes "fall through" replaced with
variable.
Some comments added.
Reviewers: mzolotukhin
Differential Revision: http://reviews.llvm.org/D21719
From: Evgeny Stupachenko <evstupac@gmail.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286389 91177308-0d34-0410-b5e6-96231b3b80d8
After instruction selection we perform some checks on each VReg just before
discarding the type information. These checks were assertions before, but that
breaks the fallback path so this patch moves the logic into the main flow and
reports a better error on failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286289 91177308-0d34-0410-b5e6-96231b3b80d8
Currently computeKnownBits returns the common known zero/one bits for all elements of vector data, when we may only be interested in one/some of the elements.
This patch adds a DemandedElts argument that allows us to specify the elements we actually care about. The original computeKnownBits implementation calls with a DemandedElts demanding all elements to match current behaviour. Scalar types set this to 1.
The approach was found to be easier than trying to add a per-element known bits solution, for a similar usefulness given the combines where computeKnownBits is typically used.
I've only added support for a few opcodes so far (the ones that have proven straightforward to test), all others will default to demanding all elements but can be updated in due course.
DemandedElts support could similarly be added to computeKnownBitsForTargetNode in a future commit.
This looked like this had caused compile time regressions on some buildbots (and was reverted in rL285381), but appears to have just been a harmless bystander!
Differential Revision: https://reviews.llvm.org/D25691
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285494 91177308-0d34-0410-b5e6-96231b3b80d8
Currently computeKnownBits returns the common known zero/one bits for all elements of vector data, when we may only be interested in one/some of the elements.
This patch adds a DemandedElts argument that allows us to specify the elements we actually care about. The original computeKnownBits implementation calls with a DemandedElts demanding all elements to match current behaviour. Scalar types set this to 1.
The approach was found to be easier than trying to add a per-element known bits solution, for a similar usefulness given the combines where computeKnownBits is typically used.
I've only added support for a few opcodes so far (the ones that have proven straightforward to test), all others will default to demanding all elements but can be updated in due course.
DemandedElts support could similarly be added to computeKnownBitsForTargetNode in a future commit.
Differential Revision: https://reviews.llvm.org/D25691
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285296 91177308-0d34-0410-b5e6-96231b3b80d8
This is a function to go backwards in a block to find the first
instruction in a bundle, so iterator is a more natural choice for
parameter/return rather than a reference to a MachineInstruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285051 91177308-0d34-0410-b5e6-96231b3b80d8
Passing a MachineFunction as argument is more natural and avoids an
unnecessary round-trip through the logic determining the correct
Subtarget because MachineFunction already has a reference anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285039 91177308-0d34-0410-b5e6-96231b3b80d8
I took the opportunity to replace some copy|move constructors|assignment
operators with default implementations.
As a follow-up, I plan on threading unique_ptr<T []> through a few areas
per David Blaikie's advice.
Differential Revision: https://reviews.llvm.org/D24424
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285018 91177308-0d34-0410-b5e6-96231b3b80d8
These functions are about classifying a global which will actually be
emitted, so it does not make sense for them to take a GlobalValue which may
for example be an alias.
Change the Mach-O object writer and the Hexagon, Lanai and MIPS backends to
look through aliases before using TargetLoweringObjectFile interfaces. These
are functional changes but all appear to be bug fixes.
Differential Revision: https://reviews.llvm.org/D25917
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285006 91177308-0d34-0410-b5e6-96231b3b80d8