In principle this should behave as any other constant. However
eliminateFrameIndex currently assumes a VALU use and uses a vector
shift. Work around this by selecting to VGPR for now until
eliminateFrameIndex is fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@373415 91177308-0d34-0410-b5e6-96231b3b80d8
There are 1024 bit register classes defined for AGPRs. Additionally
OpenCL defines vectors up to 16 x i64, and this helps those tests
legalize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@373350 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAG has a bunch of machinery to defer this to selection time
for some reason. Just directly emit a copy during IRTranslator. The
x86 usage does somewhat questionably check hasFP, which could depend
on the whole function being at minimum translated.
This does lose the convergent bit if the callsite had it, which may be
a problem. We also lose that in general for intrinsics, which may also
be a problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@373294 91177308-0d34-0410-b5e6-96231b3b80d8
This is sort of papering over the fact that we don't run a combiner
anywhere, but avoiding creating 2 instructions in the first place is
easy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@373293 91177308-0d34-0410-b5e6-96231b3b80d8
Handle other cases besides LDS. Mostly a straight port of the existing
handling, without the intermediate custom nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@373286 91177308-0d34-0410-b5e6-96231b3b80d8
I believe all of the uniform/divergent pattern predicates are
redundant and can be removed. The uniformity bit already influences
the register class, and nothhing has broken when I've removed this and
others.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372450 91177308-0d34-0410-b5e6-96231b3b80d8
According to the documentation method returns predecessor
if the given loop's header has exactly one unique predecessor
outside the loop. Otherwise return null.
In reality it asserts if there is no predecessor outside of
the loop.
The testcase has the loop where predecessors outside of the
loop were not identified as analyzeBranch() was unable to
process the mask branch and returned true. That is also not
correct to assert for the truly dead loops.
Differential Revision: https://reviews.llvm.org/D67634
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372405 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 52621307bcab2013e8833f3317cebd63a6db3885.
Tests have been failing all night with
[0/2] ACTION //llvm/test:check-llvm(//llvm/utils/gn/build/toolchain:unix)
-- Testing: 33647 tests, 64 threads --
Testing: 0 .. 10..
UNRESOLVED: LLVM :: CodeGen/AMDGPU/GlobalISel/isel-blendi-gettargetconstant.ll (6943 of 33647)
******************** TEST 'LLVM :: CodeGen/AMDGPU/GlobalISel/isel-blendi-gettargetconstant.ll' FAILED ********************
Test has no run line!
********************
Since there were other concerns on https://reviews.llvm.org/D67785,
I'm just reverting for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372383 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This fixes a crasher introduced by r372338.
Reviewers: echristo, arsenm
Subscribers: jvesely, wdng, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67785
Tighten up the test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372366 91177308-0d34-0410-b5e6-96231b3b80d8
If an instruction had multiple subregister defs, and one of them was
undef, this would improperly conclude all other lanes are
killed. There could still be other defs of those read-undef lanes in
other operands. This would improperly remove register uses from
CurrentVRegUses, so the visitation of later operands would not find
the necessary register dependency. This would also mean this would
fail or not depending on how different subregister def operands were
ordered.
On an undef subregister def, scan the instruction for other
subregister defs and avoid killing those.
This possibly should be deferring removing anything from
CurrentVRegUses until the entire instruction has been processed
instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372362 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r372314, reapplying r372285 and the commits which depend
on it (r372286-r372293, and r372296-r372297)
This was missing one switch to getTargetConstant in an untested case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372338 91177308-0d34-0410-b5e6-96231b3b80d8
This broke the Chromium build, causing it to fail with e.g.
fatal error: error in backend: Cannot select: t362: v4i32 = X86ISD::VSHLI t392, Constant:i8<15>
See llvm-commits thread of r372285 for details.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372314 91177308-0d34-0410-b5e6-96231b3b80d8
This needs special handling due to some subtargets that have a
nonstandard register layout for f16 vectors
Also reject some illegal types on other targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372293 91177308-0d34-0410-b5e6-96231b3b80d8
The assert would fail if there was a dead def of a subregister if
there was a previous use of a different subregister.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372287 91177308-0d34-0410-b5e6-96231b3b80d8
Encode them directly as an imm argument to G_INTRINSIC*.
Since now intrinsics can now define what parameters are required to be
immediates, avoid using registers for them. Intrinsics could
potentially want a constant that isn't a legal register type. Also,
since G_CONSTANT is subject to CSE and legalization, transforms could
potentially obscure the value (and create extra work for the
selector). The register bank of a G_CONSTANT is also meaningful, so
this could throw off future folding and legalization logic for AMDGPU.
This will be much more convenient to work with than needing to call
getConstantVRegVal and checking if it may have failed for every
constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
immarg operands, many of which need inspection during lowering. Having
to find the value in a register is going to add a lot of boilerplate
and waste compile time.
SelectionDAG has always provided TargetConstant for constants which
should not be legalized or materialized in a register. The distinction
between Constant and TargetConstant was somewhat fuzzy, and there was
no automatic way to force usage of TargetConstant for certain
intrinsic parameters. They were both ultimately ConstantSDNode, and it
was inconsistently used. It was quite easy to mis-select an
instruction requiring an immediate. For SelectionDAG, start emitting
TargetConstant for these arguments, and using timm to match them.
Most of the work here is to cleanup target handling of constants. Some
targets process intrinsics through intermediate custom nodes, which
need to preserve TargetConstant usage to match the intrinsic
expectation. Pattern inputs now need to distinguish whether a constant
is merely compatible with an operand or whether it is mandatory.
The GlobalISelEmitter needs to treat timm as a special case of a leaf
node, simlar to MachineBasicBlock operands. This should also enable
handling of patterns for some G_* instructions with immediates, like
G_FENCE or G_EXTRACT.
This does include a workaround for a crash in GlobalISelEmitter when
ARM tries to uses "imm" in an output with a "timm" pattern source.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372285 91177308-0d34-0410-b5e6-96231b3b80d8
r371901 was overeager and widenScalarDst() and the like in the legalizer
attempt to increment the insert point given in order to add new instructions
after the currently legalizing inst. In cases where the insertion point is not
exactly the current instruction, then callers need to de-compensate for the
behaviour by decrementing the insertion iterator before calling them. It's not
a nice state of affairs, for now just undo the problematic parts of the change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372050 91177308-0d34-0410-b5e6-96231b3b80d8