This will hold flags specific to subprograms. In the future
we could potentially free up scarce bits in DIFlags by moving
subprogram-specific flags from there to the new flags word.
This patch does not change IR/bitcode formats, that will be
done in a follow-up.
Differential Revision: https://reviews.llvm.org/D54597
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@347239 91177308-0d34-0410-b5e6-96231b3b80d8
We already determine a bunch of information about an MBB in
getMachineOutlinerMBBFlags. We can reuse that information to avoid calculating
things that must be false/true.
The first thing we can easily check is if an outlined sequence could ever
contain calls. There's no reason to walk over the outlined range, checking for
calls, if we already know that there are no calls in the block containing the
sequence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@346809 91177308-0d34-0410-b5e6-96231b3b80d8
Since we never outline anything with fewer than 2 occurrences, there's no
reason to compute cost model information if there's less than that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@346803 91177308-0d34-0410-b5e6-96231b3b80d8
Flags variable was not initialized and later used (both isMBBSafeToOutlineFrom
implementations assume it's initialized), which breaks
test/CodeGen/AArch64/machine-outliner.mir. under memory sanitizer:
MemorySanitizer: use-of-uninitialized-value
#0 in llvm::AArch64InstrInfo::getOutliningType(llvm::MachineInstrBundleIterator<llvm::MachineInstr, false>&, unsigned int) const llvm/lib/Target/AArch64/AArch64InstrInfo.cpp:5494:9
#1 in (anonymous namespace)::InstructionMapper::convertToUnsignedVec(llvm::MachineBasicBlock&, llvm::TargetInstrInfo const&) llvm/lib/CodeGen/MachineOutliner.cpp:772:19
#2 in (anonymous namespace)::MachineOutliner::populateMapper((anonymous namespace)::InstructionMapper&, llvm::Module&, llvm::MachineModuleInfo&) llvm/lib/CodeGen/MachineOutliner.cpp:1543:14
#3 in (anonymous namespace)::MachineOutliner::runOnModule(llvm::Module&) llvm/lib/CodeGen/MachineOutliner.cpp:1645:3
#4 in (anonymous namespace)::MPPassManager::runOnModule(llvm::Module&) llvm/lib/IR/LegacyPassManager.cpp:1744:27
#5 in llvm::legacy::PassManagerImpl::run(llvm::Module&) llvm/lib/IR/LegacyPassManager.cpp:1857:44
#6 in compileModule(char**, llvm::LLVMContext&) llvm/tools/llc/llc.cpp:597:8
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@346761 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of returning Flags, return true if the MBB is safe to outline from.
This lets us check for unsafe situations, like say, in AArch64, X17 is live
across a MBB without being defined in that MBB. In that case, there's no point
in performing an instruction mapping.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@346718 91177308-0d34-0410-b5e6-96231b3b80d8
There's no way they can overlap in this case.
This can save a few iterations when the candidate is close to the beginning
of a MachineBasicBlock. It's particularly useful when the average length of
a MachineBasicBlock in the program is small.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@346682 91177308-0d34-0410-b5e6-96231b3b80d8
If a block doesn't have any ranges of adjacent legal instructions, then it
can't have outlining candidates. There's no point in mapping legal isntructions
in situations like this.
I noticed this reduces the size of the suffix tree in sqlite3 for AArch64 at
-Oz by about 3%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@346379 91177308-0d34-0410-b5e6-96231b3b80d8
I noticed that there are lots of basic blocks that don't have enough legal
instructions in them to warrant outlining. We can skip mapping these entirely.
In sqlite3, compiled for AArch64 at -Oz, this results in a 10% reduction of
the total nodes in the suffix tree. These nodes can never be part of a
repeated substring, and so they don't impact the result at all.
Before this, there were 62128 nodes in the tree for sqlite3. After this, there
are 56457 nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@346373 91177308-0d34-0410-b5e6-96231b3b80d8
This is only used for calculating ConcatLen. This isn't necessary,
since it's easily derived from the traversal setting suffix indices.
Remove that. Rename CurrIdx to CurrNodeLen to better describe what's
going on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@346349 91177308-0d34-0410-b5e6-96231b3b80d8
This takes the traversal methods introduced in r346269 and adapts them
into an iterator. This allows the outliner to iterate over repeated substrings
within the suffix tree directly without having to initially find all of the
substrings and then iterate over them after you've found them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@346345 91177308-0d34-0410-b5e6-96231b3b80d8
NFC-ish. This doesn't change the behaviour of the outliner, but does make sure
that you won't end up with say
OUTLINED_FUNCTION_2:
...
ret
OUTLINED_FUNCTION_248:
...
ret
as the only outlined functions in your module. Those should really be
OUTLINED_FUNCTION_0:
...
ret
OUTLINED_FUNCTION_1:
...
ret
If we produce outlined functions, they probably should have sequential numbers
attached to them. This makes it a bit easier+stable to write outliner tests.
The point of this is to move towards a bit more stability in outlined function
names. By doing this, we at least don't rely on the traversal order of the
suffix tree. Instead, we rely on the order of the candidate list, which is
*far* more consistent. The candidate list is ordered by the end indices of
candidates, so we're more likely to get a stable ordering. This is still
susceptible to changes in the cost model though (like, if we suddenly find new
candidates, for example).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@346340 91177308-0d34-0410-b5e6-96231b3b80d8
After changing the way we find repeated substrings in r346269, this
field is no longer used by anything, so it can be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@346274 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of iterating over the leaves to find repeated substrings, and walking
collecting leaf children when we don't necessarily need them, let's just
calculate what we need and iterate over that.
By doing this, we don't have to save every leaf. It's easier to read the code
too and understand what's going on.
The goal here, at the end of the day, is to set up to allow us to do something
like
for (RepeatedSubstring &RS : ST) {
... do stuff with RS ...
}
Which would let us perform the cost model stuff and the repeated substring
query at the same time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@346269 91177308-0d34-0410-b5e6-96231b3b80d8
Instruction mapping in the outliner uses "illegal numbers" to signify that
something can't ever be part of an outlining candidate. This means that the
number is unique and can't be part of any repeated substring.
Because each of these is unique, we can use a single unique number to represent
a range of things we can't outline.
The outliner tries to leverage this using a flag which is set in an MBB when
the previous instruction we tried to map was "illegal". This patch improves
that logic to work across MBBs. As a bonus, this also simplifies the mapping
logic somewhat.
This also updates the machine-outliner-remarks test, which was impacted by the
order of Candidates on an OutlinedFunction changing. This order isn't
guaranteed, so I added a FIXME to fix that in a follow-up. The order of
Candidates on an OutlinedFunction isn't important, so this still is NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@345906 91177308-0d34-0410-b5e6-96231b3b80d8
If a function has target features, it may contain instructions that aren't
represented in the default set of instructions. If the outliner pulls out one
of these instructions, and the function doesn't have the right attributes
attached, we'll run into an LLVM error explaining that the target doesn't
support the necessary feature for the instruction.
This makes outlined functions inherit target features from their parents.
It also updates the machine-outliner.ll test to check that we're properly
inheriting target features.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@345535 91177308-0d34-0410-b5e6-96231b3b80d8
The suffix tree won't ever consider sequences with a length less than 2.
Therefore, we really ought to not even consider them in the first place.
Also add a FIXME explaining that this should be defined in terms of the size
in B of an outlined call versus the size in B of the MBB.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@342688 91177308-0d34-0410-b5e6-96231b3b80d8
When you create an outlined function, you know everything you need to know
to decide if debug info should be created. If we emit debug info in
createOutlinedFunction, then we don't need to keep track of every IR function
we create.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@342677 91177308-0d34-0410-b5e6-96231b3b80d8
We were mapping an instruction every time we saw something we couldn't map
before this. Since each illegal mapping is unique, we only have to do this once.
This makes it so that we don't map illegal instructions when the previous
mapped instruction was illegal.
In CTMark (AArch64), this results in 240 fewer instruction mappings on
average over 619 files in total. The largest improvement is 12576 fewer
mappings in one file, and the smallest is 0. The median improvement is 101
fewer mappings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@342405 91177308-0d34-0410-b5e6-96231b3b80d8
Since the outliner is a module pass, it doesn't get codegen size remarks like
the other codegen passes do. This adds size remarks *to* the outliner.
This is kind of a workaround, so it's peppered with FIXMEs; size remarks
really ought to not ever be handled by the pass itself. However, since the
outliner is the only "MachineModulePass", this works for now. Since the
entire purpose of the MachineOutliner is to produce code size savings, it
really ought to be included in codgen size remarks.
If we ever go ahead and make a MachineModulePass (say, something similar to
MachineFunctionPass), then all of this ought to be moved there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@342009 91177308-0d34-0410-b5e6-96231b3b80d8
Just some tidy-up. Pull the mapper stuff into `populateMapper`. This makes it
a bit easier to read what's going on in `runOnModule`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@341959 91177308-0d34-0410-b5e6-96231b3b80d8
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@339940 91177308-0d34-0410-b5e6-96231b3b80d8
Call shouldOutlineFromFunctionByDefault, isFunctionSafeToOutlineFrom,
getOutliningType, and getMachineOutlinerMBBFlags using the correct
TargetInstrInfo. And don't create a MachineFunction for a function
declaration.
The call to getOutliningCandidateInfo is still a little weird, but at
least the weirdness is explicitly called out.
Differential Revision: https://reviews.llvm.org/D49880
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@338465 91177308-0d34-0410-b5e6-96231b3b80d8
There was a missing check for if a candidate list was entirely deleted. This
adds that check.
This fixes an asan failure caused by running test/CodeGen/AArch64/addsub_ext.ll
with the MachineOutliner enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@338148 91177308-0d34-0410-b5e6-96231b3b80d8
This pulls the OutlinedFunction remark out into its own function to make
the code a bit easier to read.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337849 91177308-0d34-0410-b5e6-96231b3b80d8
Just some gardening here.
Similar to how we moved call information into Candidates, this moves outlined
frame information into OutlinedFunction. This allows us to remove
TargetCostInfo entirely.
Anywhere where we returned a TargetCostInfo struct, we now return an
OutlinedFunction. This establishes OutlinedFunctions as more of a general
repeated sequence, and Candidates as occurrences of those repeated sequences.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337848 91177308-0d34-0410-b5e6-96231b3b80d8
Before this, TCI contained all the call information for each Candidate.
This moves that information onto the Candidates. As a result, each Candidate
can now supply how it ought to be called. Thus, Candidates will be able to,
say, call the same function in cheaper ways when possible. This also removes
that information from TCI, since it's no longer used there.
A follow-up patch for the AArch64 outliner will demonstrate this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337840 91177308-0d34-0410-b5e6-96231b3b80d8
Having the missed remark code in the middle of `findCandidates` made the
function hard to follow. This yanks that out into a new function,
`emitNotOutliningCheaperRemark`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337839 91177308-0d34-0410-b5e6-96231b3b80d8
Just some simple gardening to improve clarity.
Before, we had something along the lines of
1) Create a std::vector of Candidates
2) Create an OutlinedFunction
3) Create a std::vector of pointers to Candidates
4) Copy those over to the OutlinedFunction and the Candidate list
Now, OutlinedFunctions create the Candidate pointers. They're still copied
over to the main list of Candidates, but it makes it a bit clearer what's
going on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337838 91177308-0d34-0410-b5e6-96231b3b80d8
The MachineOutliner was doing an std::for_each from the call (inserted
before the outlined sequence) to the iterator at the end of the
sequence.
std::for_each needs the iterator past the end, so the last instruction
was not taken into account when propagating the liveness information.
This fixes the machine verifier issue in machine-outliner-disubprogram.ll.
Differential Revision: https://reviews.llvm.org/D49295
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337090 91177308-0d34-0410-b5e6-96231b3b80d8
This adds functionality to the outliner that allows targets to
specify certain functions that should be outlined from by default.
If a target supports default outlining, then it specifies that in
its TargetOptions. In the case that it does, and the user hasn't
specified that they *never* want to outline, the outliner will
be added to the pass pipeline and will run on those default functions.
This is a preliminary patch for turning the outliner on by default
under -Oz for AArch64.
https://reviews.llvm.org/D48776
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336040 91177308-0d34-0410-b5e6-96231b3b80d8
Targets should be able to define whether or not they support the outliner
without the outliner being added to the pass pipeline. Before this, the
outliner pass would be added, and ask the target whether or not it supports the
outliner.
After this, it's possible to query the target in TargetPassConfig, before the
outliner pass is created. This ensures that passing -enable-machine-outliner
will not modify the pass pipeline of any target that does not support it.
https://reviews.llvm.org/D48683
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335887 91177308-0d34-0410-b5e6-96231b3b80d8
insertOutlinerPrologue was not used by any target, and prologue-esque code was
beginning to appear in insertOutlinerEpilogue. Refactor that into one function,
buildOutlinedFrame.
This just removes insertOutlinerPrologue and renames insertOutlinerEpilogue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335076 91177308-0d34-0410-b5e6-96231b3b80d8
This is setting up to fix bug 37573 cleanly.
This moves data structures that are technically both used in some way by the
target and the general-purpose outlining algorithm into MachineOutliner.h. In
particular, the `Candidate` class is of importance.
Before, the outliner passed the locations of `Candidates` to the target, which
would then make some decisions about the prospective outlined function. This
change allows us to just pass `Candidates` along to the target. This will allow
the target to discard `Candidates` that would be considered unsafe before cost
calculation. Thus, we will be able to remove the unsafe candidates described in
the bug without resorting to torching the entire prospective function.
Also, as a side-effect, it makes the outliner a bit cleaner.
https://bugs.llvm.org/show_bug.cgi?id=37573
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@333952 91177308-0d34-0410-b5e6-96231b3b80d8
When we're outlining a sequence that ends in a call, we can save up to
three instructions in the outlined function by turning the call into
a tail-call. I refer to this as thunk outlining because the resulting
outlined function looks like a thunk; suggestions welcome for a better
name.
In addition to making the outlined function shorter, thunk outlining
allows outlining calls which would otherwise be illegal to outline:
we don't need to save/restore LR, so we don't need to prove anything
about the stack access patterns of the callee.
To make this work effectively, I also added
MachineOutlinerInstrType::LegalTerminator to the generic MachineOutliner
code; this allows treating an arbitrary instruction as a terminator in
the suffix tree.
Differential Revision: https://reviews.llvm.org/D47173
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@333015 91177308-0d34-0410-b5e6-96231b3b80d8
Counting the number of instructions is both unintuitive and inaccurate.
On AArch64, this only affects the generated remarks and certain rare
pseudo-instructions, but it will have a bigger impact on other targets.
Differential Revision: https://reviews.llvm.org/D46921
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@332685 91177308-0d34-0410-b5e6-96231b3b80d8
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@332240 91177308-0d34-0410-b5e6-96231b3b80d8
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@331272 91177308-0d34-0410-b5e6-96231b3b80d8
This commit makes it so that if you outline a def of some register, then the
call instruction created by the outliner actually reflects that the register
is defined by the call. It also makes it so that outlined functions don't
have the TracksLiveness property.
Outlined calls shouldn't break liveness assumptions that someone might make.
This also un-XFAILs the noredzone test, and updates the calls test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@331095 91177308-0d34-0410-b5e6-96231b3b80d8
This moves the EnableLinkOnceODROutlining flag from TargetPassConfig.cpp into
MachineOutliner.cpp. It also removes OutlineFromLinkOnceODRs from the
MachineOutliner constructor. This is now handled by the moved command-line
flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@330373 91177308-0d34-0410-b5e6-96231b3b80d8
The MachineOutliner has a bunch of target hooks that will call llvm_unreachable
if the target doesn't implement them. Therefore, if you enable the outliner on
such a target, it'll just crash. It'd be much better if it'd just *not* run
the outliner at all in this case.
This commit adds a hook to TargetInstrInfo that returns false by default.
Targets that implement the hook make it return true. The outliner checks the
return value of this hook to decide whether or not to continue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@329220 91177308-0d34-0410-b5e6-96231b3b80d8
The linkage type on outlined functions was private before. This meant that if
you set a breakpoint in an outlined function, the debugger wouldn't be able to
give a sane name to the outlined function.
This commit changes the linkage type to internal and updates any tests that
relied on the prefixes on the names of outlined functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@329116 91177308-0d34-0410-b5e6-96231b3b80d8
Split up some of the if/else branches in runOnModule. Elaborate on some
comments. Replace a call to getOrCreateMachineFunction with getMachineFunction.
This makes it clearer what's happening in runOnModule, and ensures that the
outliner doesn't create any MachineFunctions which will never be used by the
outliner (or anything else, really).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@328240 91177308-0d34-0410-b5e6-96231b3b80d8