I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304787 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces an LLVM intrinsic and a target opcode for custom event
logging in XRay. Initially, its use case will be to allow users of XRay to log
some type of string ("poor man's printf"). The target opcode compiles to a noop
sled large enough to enable calling through to a runtime-determined relative
function call. At runtime, when X-Ray is enabled, the sled is replaced by
compiler-rt with a trampoline to the logic for creating the custom log entries.
Future patches will implement the compiler-rt parts and clang-side support for
emitting the IR corresponding to this intrinsic.
Reviewers: timshen, dberris
Subscribers: igorb, pelikan, rSerge, timshen, echristo, dberris, llvm-commits
Differential Revision: https://reviews.llvm.org/D27503
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302405 91177308-0d34-0410-b5e6-96231b3b80d8
This avoids the confusing 'CS.paramHasAttr(ArgNo + 1, Foo)' pattern.
Previously we were testing return value attributes with index 0, so I
introduced hasReturnAttr() for that use case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300367 91177308-0d34-0410-b5e6-96231b3b80d8
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272512 91177308-0d34-0410-b5e6-96231b3b80d8
A ``swifterror`` attribute can be applied to a function parameter or an
AllocaInst.
This commit does not include any target-specific change. The target-specific
optimization will come as a follow-up patch.
Differential Revision: http://reviews.llvm.org/D18092
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265189 91177308-0d34-0410-b5e6-96231b3b80d8
When FastISel fails to translate an instruction it hands off code
generation to SelectionDAG. Before it does so, it may have generated
local value instructions to feed phi nodes in successor blocks. These
instructions will then be generated again by SelectionDAG, causing
duplication and less efficient code, including extra spill
instructions.
Patch by Wolfgang Pieb!
Differential Revision: http://reviews.llvm.org/D11768
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255520 91177308-0d34-0410-b5e6-96231b3b80d8
This should be no functional change but for the record: For three cases
in X86FastISel this will change the order in which the FalseMBB and
TrueMBB of a conditional branch is addedd to the successor/predecessor
lists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245997 91177308-0d34-0410-b5e6-96231b3b80d8
The summary is that it moves the mangling earlier and replaces a few
calls to .addExternalSymbol with addSym.
I originally wanted to replace all the uses of addExternalSymbol with
addSym, but noticed it was a lot of work and doesn't need to be done
all at once.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240395 91177308-0d34-0410-b5e6-96231b3b80d8
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225974 91177308-0d34-0410-b5e6-96231b3b80d8
While, generally speaking, the process of lowering arguments for a patchpoint
is the same as lowering a regular indirect call, on some targets it may not be
exactly the same. Targets may not, for example, want to add additional register
dependencies that apply only to making cross-DSO calls through linker stubs,
may not want to load additional registers out of function descriptors, and may
not want to add additional side-effect-causing instructions that cannot be
removed later with the call itself being generated.
The PowerPC target will use this in a future commit (for all of the reasons
stated above).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225806 91177308-0d34-0410-b5e6-96231b3b80d8
This lowers frem to a runtime libcall inside fast-isel.
The test case also checks the CallLoweringInfo bug that was exposed by this
change.
This fixes rdar://problem/18342783.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217833 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a bug in FastISel::CallLoweringInfo, where the number of
arguments was obtained from the argument vector before it had been
initialized.
Test case follows in another commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217832 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, fast-isel would not clean up after failing to select a call
instruction, because it would have called flushLocalValueMap() which moves
the insertion point, making SavedInsertPt in selectInstruction() invalid.
Fixing this by making SavedInsertPt a member variable, and having
flushLocalValueMap() update it.
This removes some redundant code at -O0, and more importantly fixes PR20863.
Differential Revision: http://reviews.llvm.org/D5249
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217401 91177308-0d34-0410-b5e6-96231b3b80d8
This is the final round of renaming. This changes tblgen to emit lower-case
function names for FastEmitInst_* and FastEmit_*, and updates all its uses
in the source code.
Reviewed by Eric
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217075 91177308-0d34-0410-b5e6-96231b3b80d8
Things got a little bit messy over the years and it is time for a little bit
spring cleaning.
This first commit is focused on the FastISel base class itself. It doxyfies all
comments, C++11fies the code where it makes sense, renames internal methods to
adhere to the coding standard, and clang-formats the files.
Reviewed by Eric
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217060 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the target to disable target-independent instruction selection and
jump directly into the target-dependent instruction selection code.
This can be beneficial for targets, such as AArch64, which could emit much
better code, but never got a chance to do so, because the target-independent
instruction selector was able to find an instruction sequence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216947 91177308-0d34-0410-b5e6-96231b3b80d8
Currently instructions are folded very aggressively for AArch64 into the memory
operation, which can lead to the use of killed operands:
%vreg1<def> = ADDXri %vreg0<kill>, 2
%vreg2<def> = LDRBBui %vreg0, 2
... = ... %vreg1 ...
This usually happens when the result is also used by another non-memory
instruction in the same basic block, or any instruction in another basic block.
This fix teaches hasTrivialKill to not only check the LLVM IR that the value has
a single use, but also to check if the register that represents that value has
already been used. This can happen when the instruction with the use was folded
into another instruction (in this particular case a load instruction).
This fixes rdar://problem/18142857.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216634 91177308-0d34-0410-b5e6-96231b3b80d8
Note: This was originally reverted to track down a buildbot error. This commit
exposed a latent bug that was fixed in r215753. Therefore it is reapplied
without any modifications.
I run it through SPEC2k and SPEC2k6 for AArch64 and it didn't introduce any new
regeressions.
Original commit message:
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.
On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.
On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.
On ARM it would generate unnecessary mov instructions or not use mvn.
This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.
Related to <rdar://problem/17420988>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216006 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215673 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.
On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.
On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.
On ARM it would generate unnecessary mov instructions or not use mvn.
This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.
Related to <rdar://problem/17420988>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215588 91177308-0d34-0410-b5e6-96231b3b80d8
Move the helper function isCommutativeIntrinsic into the FastISel base class,
so it can be used by more than just one backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214347 91177308-0d34-0410-b5e6-96231b3b80d8
This implements the target-independent lowering for the patchpoint
intrinsic. Targets have to implement the FastLowerCall
hook to support this intrinsic.
Related to <rdar://problem/17427052>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212849 91177308-0d34-0410-b5e6-96231b3b80d8
The infrastructure mimics the call lowering we have already in place for
SelectionDAG, but with limitations. For example structure return demotion and
non-simple types are not supported (yet).
Currently every backend has its own implementation and duplicated code for call
lowering. There is also no specified interface that could be called from
target-independent code. The target-hook is opt-in and doesn't affect current
implementations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212848 91177308-0d34-0410-b5e6-96231b3b80d8
Create a separate helper function for target-independent intrinsic lowering. Also
add an target-hook that allows to directly call into a target-sepcific intrinsic
lowering method. Currently the implementation is opt-in and doesn't affect
existing target implementations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212843 91177308-0d34-0410-b5e6-96231b3b80d8
subtarget. This involved having the movt predicate take the current
function - since we care about size in instruction selection for
whether or not to use movw/movt take the function so we can check
the attributes. This required adding the current MachineFunction to
FastISel and propagating through.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212309 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds MachineMemOperands to load and store instructions. This allows
the peephole optimizer to fold load instructions. Unfortunatelly the peephole
optimizer currently doesn't run at -O0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210858 91177308-0d34-0410-b5e6-96231b3b80d8
ARM64 suffered multiple -verify-machineinstr failures (principally over the
xsp/xzr issue) because FastISel was completely ignoring which subset of the
general-purpose registers each instruction required.
More fixes are coming in ARM64 specific FastISel, but this should cover the
generic problems.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206283 91177308-0d34-0410-b5e6-96231b3b80d8
Stop folding constant adds into GEP when the type size doesn't match.
Otherwise, the adds' operands are effectively being promoted, changing the
conditions of an overflow. Results are different when:
sext(a) + sext(b) != sext(a + b)
Problem originally found on x86-64, but also fixed issues with ARM and PPC,
which used similar code.
<rdar://problem/15292280>
Patch by Duncan Exon Smith!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194840 91177308-0d34-0410-b5e6-96231b3b80d8
trying to move as much FastISel logic as possible out of the main path in
SelectionDAGISel - intermixing them just adds confusion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179902 91177308-0d34-0410-b5e6-96231b3b80d8