On some targets, the penalty of executing runtime unrolling checks
and then not the unrolled loop can be significantly detrimental to
performance. This results in the need to be more conservative with
the unroll count, keeping a trip count of 2 reduces the overhead as
well as increasing the chance of the unrolled body being executed. But
being conservative leaves performance gains on the table.
This patch enables the unrolling of the remainder loop introduced by
runtime unrolling. This can help reduce the overhead of misunrolled
loops because the cost of non-taken branches is much less than the
cost of the backedge that would normally be executed in the remainder
loop. This allows larger unroll factors to be used without suffering
performance loses with smaller iteration counts.
Differential Revision: https://reviews.llvm.org/D36309
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@310824 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In current implementation the loop peeling happens after trip-count based partial unrolling and may
sometimes not happen at all due to it (for example, if trip count is known, but UP.Partial = false). This
is generally bad, the more than there are some situations where peeling is profitable even if the partial
unrolling is disabled.
This patch is a NFC which reorders peeling and partial unrolling application and prepares the code for
implementation of the said optimizations.
Patch by Max Kazantsev!
Reviewers: sanjoy, anna, reames, apilipenko, igor-laevsky, mkuper
Reviewed By: mkuper
Subscribers: mkuper, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D30243
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296897 91177308-0d34-0410-b5e6-96231b3b80d8
Mostly straightforward changes; we just didn't do the computation before.
One sort of interesting change in LoopUnroll.cpp: we weren't handling
dominance for children of the loop latch correctly, but
foldBlockIntoPredecessor hid the problem for complete unrolling.
Currently punting on loop peeling; made some minor changes to isolate
that problem to LoopUnrollPeel.cpp.
Adds a flag -unroll-verify-domtree; it verifies the domtree immediately
after we finish updating it. This is on by default for +Asserts builds.
Differential Revision: https://reviews.llvm.org/D28073
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292447 91177308-0d34-0410-b5e6-96231b3b80d8
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289756 91177308-0d34-0410-b5e6-96231b3b80d8
This implements PGO-driven loop peeling.
The basic idea is that when the average dynamic trip-count of a loop is known,
based on PGO, to be low, we can expect a performance win by peeling off the
first several iterations of that loop.
Unlike unrolling based on a known trip count, or a trip count multiple, this
doesn't save us the conditional check and branch on each iteration. However,
it does allow us to simplify the straight-line code we get (constant-folding,
etc.). This is important given that we know that we will usually only hit this
code, and not the actual loop.
This is currently disabled by default.
Differential Revision: https://reviews.llvm.org/D25963
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288274 91177308-0d34-0410-b5e6-96231b3b80d8
When we have a loop with a known upper bound on the number of iterations, and
furthermore know that either the number of iterations will be either exactly
that upper bound or zero, then we can fully unroll up to that upper bound
keeping only the first loop test to check for the zero iteration case.
Most of the work here is in plumbing this 'max-or-zero' information from the
part of scalar evolution where it's detected through to loop unrolling. I've
also gone for the safe default of 'false' everywhere but howManyLessThans which
could probably be improved.
Differential Revision: https://reviews.llvm.org/D25682
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284818 91177308-0d34-0410-b5e6-96231b3b80d8
Reappy r284044 after revert in r284051. Krzysztof fixed the error in r284049.
The original summary:
This patch tries to fully unroll loops having break statement like this
for (int i = 0; i < 8; i++) {
if (a[i] == value) {
found = true;
break;
}
}
GCC can fully unroll such loops, but currently LLVM cannot because LLVM only
supports loops having exact constant trip counts.
The upper bound of the trip count can be obtained from calling
ScalarEvolution::getMaxBackedgeTakenCount(). Part of the patch is the
refactoring work in SCEV to prevent duplicating code.
The feature of using the upper bound is enabled under the same circumstance
when runtime unrolling is enabled since both are used to unroll loops without
knowing the exact constant trip count.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284053 91177308-0d34-0410-b5e6-96231b3b80d8
This patch tries to fully unroll loops having break statement like this
for (int i = 0; i < 8; i++) {
if (a[i] == value) {
found = true;
break;
}
}
GCC can fully unroll such loops, but currently LLVM cannot because LLVM only
supports loops having exact constant trip counts.
The upper bound of the trip count can be obtained from calling
ScalarEvolution::getMaxBackedgeTakenCount(). Part of the patch is the
refactoring work in SCEV to prevent duplicating code.
The feature of using the upper bound is enabled under the same circumstance
when runtime unrolling is enabled since both are used to unroll loops without
knowing the exact constant trip count.
Differential Revision: https://reviews.llvm.org/D24790
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284044 91177308-0d34-0410-b5e6-96231b3b80d8
LoopUnroll is a loop pass, so the analysis of OptimizationRemarkEmitter
is added to the common function analysis passes that loop passes
depend on.
The BFI and indirectly BPI used in this pass is computed lazily so no
overhead should be observed unless -pass-remarks-with-hotness is used.
This is how the patch affects the O3 pipeline:
Dominator Tree Construction
Natural Loop Information
Canonicalize natural loops
Loop-Closed SSA Form Pass
Basic Alias Analysis (stateless AA impl)
Function Alias Analysis Results
Scalar Evolution Analysis
+ Lazy Branch Probability Analysis
+ Lazy Block Frequency Analysis
+ Optimization Remark Emitter
Loop Pass Manager
Rotate Loops
Loop Invariant Code Motion
Unswitch loops
Simplify the CFG
Dominator Tree Construction
Basic Alias Analysis (stateless AA impl)
Function Alias Analysis Results
Combine redundant instructions
Natural Loop Information
Canonicalize natural loops
Loop-Closed SSA Form Pass
Scalar Evolution Analysis
+ Lazy Branch Probability Analysis
+ Lazy Block Frequency Analysis
+ Optimization Remark Emitter
Loop Pass Manager
Induction Variable Simplification
Recognize loop idioms
Delete dead loops
Unroll loops
...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277203 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Unroll factor (Count) calculations moved to a new function.
Early exits on pragma and "-unroll-count" defined factor added.
New type of unrolling "Force" introduced (previously used implicitly).
New unroll preference "AllowRemainder" introduced and set "true" by default.
(should be set to false for architectures that suffers from it).
Reviewers: hfinkel, mzolotukhin, zzheng
Differential Revision: http://reviews.llvm.org/D19553
From: Evgeny Stupachenko <evstupac@gmail.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271071 91177308-0d34-0410-b5e6-96231b3b80d8
As of r255720, the loop pass manager will DTRT when passes update the
loop info for removed loops, so they no longer need to reach into
LPPassManager APIs to do this kind of transformation. This change very
nearly removes the need for the LPPassManager to even be passed into
loop passes - the only remaining pass that uses the LPM argument is
LoopUnswitch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255797 91177308-0d34-0410-b5e6-96231b3b80d8
A large number of loop utility functions take a `Pass *` and reach
into it to find out which analyses to preserve. There are a number of
problems with this:
- The APIs have access to pretty well any Pass state they want, so
it's hard to tell what they may or may not do.
- Other APIs have copied these and pass around a `Pass *` even though
they don't even use it. Some of these just hand a nullptr to the API
since the callers don't even have a pass available.
- Passes in the new pass manager don't work like the current ones, so
the APIs can't be used as is there.
Instead, we should explicitly thread the analysis results that we
actually care about through these APIs. This is both simpler and more
reusable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255669 91177308-0d34-0410-b5e6-96231b3b80d8
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240137 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Runtime unrolling of loops needs to emit an expression to compute the
loop's runtime trip-count. Avoid runtime unrolling if this computation
will be expensive.
Depends on D8993.
Reviewers: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8994
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234846 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
CUDA driver can unroll loops when jit-compiling PTX. To prevent CUDA
driver from unrolling a loop marked with llvm.loop.unroll.disable is not
unrolled by CUDA driver, we need to emit .pragma "nounroll" at the
header of that loop.
This patch also extracts getting unroll metadata from loop ID metadata
into a shared helper function.
Test Plan: test/CodeGen/NVPTX/nounroll.ll
Reviewers: eliben, meheff, jholewinski
Reviewed By: jholewinski
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D7041
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227703 91177308-0d34-0410-b5e6-96231b3b80d8
a cache of assumptions for a single function, and an immutable pass that
manages those caches.
The motivation for this change is two fold. Immutable analyses are
really hacks around the current pass manager design and don't exist in
the new design. This is usually OK, but it requires that the core logic
of an immutable pass be reasonably partitioned off from the pass logic.
This change does precisely that. As a consequence it also paves the way
for the *many* utility functions that deal in the assumptions to live in
both pass manager worlds by creating an separate non-pass object with
its own independent API that they all rely on. Now, the only bits of the
system that deal with the actual pass mechanics are those that actually
need to deal with the pass mechanics.
Once this separation is made, several simplifications become pretty
obvious in the assumption cache itself. Rather than using a set and
callback value handles, it can just be a vector of weak value handles.
The callers can easily skip the handles that are null, and eventually we
can wrap all of this up behind a filter iterator.
For now, this adds boiler plate to the various passes, but this kind of
boiler plate will end up making it possible to port these passes to the
new pass manager, and so it will end up factored away pretty reasonably.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225131 91177308-0d34-0410-b5e6-96231b3b80d8
This adds an immutable pass, AssumptionTracker, which keeps a cache of
@llvm.assume call instructions within a module. It uses callback value handles
to keep stale functions and intrinsics out of the map, and it relies on any
code that creates new @llvm.assume calls to notify it of the new instructions.
The benefit is that code needing to find @llvm.assume intrinsics can do so
directly, without scanning the function, thus allowing the cost of @llvm.assume
handling to be negligible when none are present.
The current design is intended to be lightweight. We don't keep track of
anything until we need a list of assumptions in some function. The first time
this happens, we scan the function. After that, we add/remove @llvm.assume
calls from the cache in response to registration calls and ValueHandle
callbacks.
There are no new direct test cases for this pass, but because it calls it
validation function upon module finalization, we'll pick up detectable
inconsistencies from the other tests that touch @llvm.assume calls.
This pass will be used by follow-up commits that make use of @llvm.assume.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217334 91177308-0d34-0410-b5e6-96231b3b80d8
function and a FunctionPass.
This has many benefits. The motivating use case was to be able to
compute function analysis passes *after* running LoopSimplify (to avoid
invalidating them) and then to run other passes which require
LoopSimplify. Specifically passes like unrolling and vectorization are
critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so
that they can be profile aware. For the LoopVectorize pass the only
things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify
and LCSSA is next on my list.
There are also a bunch of other benefits of doing this:
- It is now very feasible to make more passes *preserve* LoopSimplify
because they can simply run it after changing a loop. Because
subsequence passes can assume LoopSimplify is preserved we can reduce
the runs of this pass to the times when we actually mutate a loop
structure.
- The new pass manager should be able to more easily support loop passes
factored in this way.
- We can at long, long last observe that LoopSimplify is preserved
across SCEV. This *halves* the number of times we run LoopSimplify!!!
Now, getting here wasn't trivial. First off, the interfaces used by
LoopSimplify are all over the map regarding how analysis are updated. We
end up with weird "pass" parameters as a consequence. I'll try to clean
at least some of this up later -- I'll have to have it all clean for the
new pass manager.
Next up I discovered a really frustrating bug. LoopUnroll *claims* to
preserve LoopSimplify. That's actually a lie. But the way the
LoopPassManager ends up running the passes, it always ran LoopSimplify
on the unrolled-into loop, rectifying this oversight before any
verification could kick in and point out that in fact nothing was
preserved. So I've added code to the unroller to *actually* simplify the
surrounding loop when it succeeds at unrolling.
The only functional change in the test suite is that we now catch a case
that was previously missed because SCEV and other loop transforms see
their containing loops as simplified and thus don't miss some
opportunities. One test case has been converted to check that we catch
this case rather than checking that we miss it but at least don't get
the wrong answer.
Note that I have #if-ed out all of the verification logic in
LoopSimplify! This is a temporary workaround while extracting these bits
from the LoopPassManager. Currently, there is no way to have a pass in
the LoopPassManager which preserves LoopSimplify along with one which
does not. The LPM will try to verify on each loop in the nest that
LoopSimplify holds but the now-Function-pass cannot distinguish what
loop is being verified and so must try to verify all of them. The inner
most loop is clearly no longer simplified as there is a pass which
didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe
LoopVectorize and some other fixes) I'll be able to re-enable this check
and catch any places where we are still failing to preserve
LoopSimplify. If this causes problems I can back this out and try to
commit *all* of this at once, but so far this seems to work and allow
much more incremental progress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199884 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Brendon Cahoon!
This extends the existing LoopUnroll and LoopUnrollPass. Brendon
measured no regressions in the llvm test suite with -unroll-runtime
enabled. This implementation works by using the existing loop
unrolling code to unroll the loop by a power-of-two (default 8). It
generates an if-then-else sequence of code prior to the loop to
execute the extra iterations before entering the unrolled loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146245 91177308-0d34-0410-b5e6-96231b3b80d8