Current TargetTransformInfo can support throughput cost model and code size model, but sometimes we also need instruction latency cost model in different optimizations. Hal suggested we need a single public interface to query the different cost of an instruction. So I proposed following interface:
enum TargetCostKind {
TCK_RecipThroughput, ///< Reciprocal throughput.
TCK_Latency, ///< The latency of instruction.
TCK_CodeSize ///< Instruction code size.
};
int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const;
All clients should mainly use this function to query the cost of an instruction, parameter <kind> specifies the desired cost model.
This patch also provides a simple default implementation of getInstructionLatency.
The default getInstructionLatency provides latency numbers for only small number of instruction classes, those latency numbers are only reasonable for modern OOO processors. It can be extended in following ways:
Add more detail into this function.
Add getXXXLatency function and call it from here.
Implement target specific getInstructionLatency function.
Differential Revision: https://reviews.llvm.org/D37170
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312832 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Add patterns for
fptoui <16 x float> to <16 x i8>
fptoui <16 x float> to <16 x i16>
Reviewers: igorb, delena, craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37505
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@312704 91177308-0d34-0410-b5e6-96231b3b80d8
Add missing SK_PermuteSingleSrc costs for AVX2 targets and earlier, also added some of the simpler SK_PermuteTwoSrc costs to support splitting of SK_PermuteSingleSrc shuffles
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@310632 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the new 32-bit vector float instructions of z14.
This includes:
- Enabling the instructions for the assembler/disassembler.
- CodeGen for the instructions, including new LLVM intrinsics.
- Scheduler description support for the instructions.
- Update to the vector cost function calculations.
In general, CodeGen support for the new v4f32 instructions closely
matches support for the existing v2f64 instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@308195 91177308-0d34-0410-b5e6-96231b3b80d8
The cost of an interleaved access was only implemented for AVX512. For other
X86 targets an overly conservative Base cost was returned, resulting in
avoiding vectorization where it is actually profitable to vectorize.
This patch starts to add costs for AVX2 for most prominent cases of
interleaved accesses (stride 3,4 chars, for now).
Note1: Improvements of up to ~4x were observed in some of EEMBC's rgb
workloads; There is also a known issue of 15-30% degradations on some of these
workloads, associated with an interleaved access followed by type
promotion/widening; the resulting shuffle sequence is currently inefficient and
will be improved by a series of patches that extend the X86InterleavedAccess pass
(such as D34601 and more to follow).
Note 2: The costs in this patch do not reflect port pressure penalties which can
be very dominant in the case of interleaved accesses since most of the shuffle
operations are restricted to a single port. Further tuning, that may incorporate
these considerations, will be done on top of the upcoming improved shuffle
sequences (that is, along with the abovementioned work to extend
X86InterleavedAccess pass).
Differential Revision: https://reviews.llvm.org/D34023
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306238 91177308-0d34-0410-b5e6-96231b3b80d8
Such divisions will eventually be implemented with shifts which should
be reflected in the cost function.
Review: Ulrich Weigand
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303254 91177308-0d34-0410-b5e6-96231b3b80d8
The AArch64 instruction set has a few "widening" instructions (e.g., uaddl,
saddl, uaddw, etc.) that take one or more doubleword operands and produce
quadword results. The operands are automatically sign- or zero-extended as
appropriate. However, in LLVM IR, these extends are explicit. This patch
updates TTI to consider these widening instructions as single operations whose
cost is attached to the arithmetic instruction. It marks extends that are part
of a widening operation "free" and applies a sub-target specified overhead
(zero by default) to the arithmetic instructions.
Differential Revision: https://reviews.llvm.org/D32706
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302582 91177308-0d34-0410-b5e6-96231b3b80d8
Account for subvector extraction/insertion, helps prevent the vectorizers from selecting 256-bit vectors that will have to be split anyhow on AVX1 targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302378 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes PR31789 - When loop-vectorize tries to use these intrinsics for a
non-default address space pointer we fail with a "Calling a function with a
bad singature!" assertion. This patch solves this by adding the 'vector of
pointers' argument as an overloaded type which will determine the address
space.
Differential revision: https://reviews.llvm.org/D31490
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302018 91177308-0d34-0410-b5e6-96231b3b80d8
getArithmeticInstrCost(), getShuffleCost(), getCastInstrCost(),
getCmpSelInstrCost(), getVectorInstrCost(), getMemoryOpCost(),
getInterleavedMemoryOpCost() implemented.
Interleaved access vectorization enabled.
BasicTTIImpl::getCastInstrCost() improved to check for legal extending loads,
in which case the cost of the z/sext instruction becomes 0.
Review: Ulrich Weigand, Renato Golin.
https://reviews.llvm.org/D29631
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300052 91177308-0d34-0410-b5e6-96231b3b80d8
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298444 91177308-0d34-0410-b5e6-96231b3b80d8
getIntrinsicInstrCost() used to only compute scalarization cost based on types.
This patch improves this so that the actual arguments are checked when they are
available, in order to handle only unique non-constant operands.
Tests updates:
Analysis/CostModel/X86/arith-fp.ll
Transforms/LoopVectorize/AArch64/interleaved_cost.ll
Transforms/LoopVectorize/ARM/interleaved_cost.ll
The improvement in getOperandsScalarizationOverhead() to differentiate on
constants made it necessary to update the interleaved_cost.ll tests even
though they do not relate to intrinsics.
Review: Hal Finkel
https://reviews.llvm.org/D29540
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297705 91177308-0d34-0410-b5e6-96231b3b80d8
Newer ppc supports unaligned memory access, it reduces the cost of unaligned memory access significantly. This patch handles this case in PPCTTIImpl::getMemoryOpCost.
This patch fixes pr31492.
Differential Revision: https://reviews.llvm.org/D28630
This is resubmit of r292680, which was reverted by r293092. The internal application failures were actually caused by a source code bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295506 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r292680. It is causing significantly worse
performance and test timeouts in our internal builds. I have already
routed reproduction instructions your way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293092 91177308-0d34-0410-b5e6-96231b3b80d8
Newer ppc supports unaligned memory access, it reduces the cost of unaligned memory access significantly. This patch handles this case in PPCTTIImpl::getMemoryOpCost.
This patch fixes pr31492.
Differential Revision: https://reviews.llvm.org/D28630
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292680 91177308-0d34-0410-b5e6-96231b3b80d8