We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@331272 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
As discussed on mailing list, for ThinLTO importing we don't need
to import all the fields of the DICompileUnit. Don't import enums,
macros, retained types lists. Also only import local scoped imported
entities. Since we don't currently import any global variables,
we also don't need to import the list of global variables (added an
assert to verify none are being imported).
This is being done by pre-populating the value map entries to map
the unneeded metadata to nullptr. For the imported entities, we can
simply replace the source module's list with a new list containing
only those needed imported entities. This is done in the IRLinker
constructor so that value mapping automatically does the desired
mapping.
Reviewers: mehdi_amini, dexonsmith, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27635
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289441 91177308-0d34-0410-b5e6-96231b3b80d8
Module inline asm was always being linked/concatenated
when running the IRLinker. This is correct for full LTO but not when
we are importing for ThinLTO, as it can result in multiply defined
symbols when the module asm defines a global symbol.
In order to test with llvm-lto2, I had to work around PR30396,
where a symbol that is defined in module assembly but defined in the
LLVM IR appears twice. Added workaround to llvm-lto2 with a FIXME.
Fixes PR30610.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25359
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284030 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The function importer already decided what symbols need to be pulled
in. Also these magically added ones will not be in the export list
for the source module, which can confuse the internalizer for
instance.
Reviewers: tejohnson, rafael
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19096
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266948 91177308-0d34-0410-b5e6-96231b3b80d8
Cache the result of mapping metadata nodes between instances of IRLinker
(i.e., for the lifetime of IRMover). There shouldn't be any real
functional change here, but this should give a major speedup. I had
loaned this to Mehdi when he tested performance of r266446, and the two
patches together gave a 10x speedup in metadata mapping.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266579 91177308-0d34-0410-b5e6-96231b3b80d8
Since we have moved to a model where functions are imported in bulk from
each source module after making summary-based importing decisions, there
is no longer a need to link metadata as a postpass, and all users have
been removed.
This essentially reverts r255909 and follow-on fixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264763 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
ThinLTO is relying on linkInModule to import selected function.
However a lot of "magic" was hidden in linkInModule and the IRMover,
who would rename and promote global variables on the fly.
This is moving to an approach where the steps are decoupled and the
client is reponsible to specify the list of globals to import.
As a consequence some test are changed because they were relying on
the previous behavior which was importing the definition of *every*
single global without control on the client side.
Now the burden is on the client to decide if a global has to be imported
or not.
Reviewers: tejohnson
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18122
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263863 91177308-0d34-0410-b5e6-96231b3b80d8
(Resubmitting after fixing missing file issue)
With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.
A companion clang patch will immediately succeed this patch to reflect
this renaming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263513 91177308-0d34-0410-b5e6-96231b3b80d8
With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.
A companion clang patch will immediately succeed this patch to reflect
this renaming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263490 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
As discussed on IRC, move the ThinLTOGlobalProcessing code out of
the linker, and into TransformUtils. The name of the class is changed
to FunctionImportGlobalProcessing.
Reviewers: joker.eph, rafael
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D17081
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@260395 91177308-0d34-0410-b5e6-96231b3b80d8
Due to the new in-place ThinLTO symbol handling support added in
r257174, we now invoke renameModuleForThinLTO on the current
module from within the FunctionImport pass.
Additionally, renameModuleForThinLTO no longer needs to return the
Module as it is performing the renaming in place on the one provided.
This commit will be immediately preceeded by a companion clang patch to
remove its invocation of renameModuleForThinLTO.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257181 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Move ThinLTO global value processing functions out of ModuleLinker and
into a new ThinLTOGlobalProcessor class, which performs any necessary
linkage and naming changes on the given module in place.
As a result, renameModuleForThinLTO no longer needs to create a new
Module when performing any necessary local to global promotion on a
module that we are possibly exporting from during a ThinLTO backend
compilation.
During function importing the ThinLTO processing is still invoked from
the ModuleLinker (via the new class), as it needs to perform renaming and
linkage changes on the source module, e.g. in order to get the correct
renaming during local to global promotion.
Reviewers: joker.eph
Subscribers: davidxl, llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D15696
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257174 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Second patch split out from http://reviews.llvm.org/D14752.
Maps metadata as a post-pass from each module when importing complete,
suturing up final metadata to the temporary metadata left on the
imported instructions.
This entails saving the mapping from bitcode value id to temporary
metadata in the importing pass, and from bitcode value id to final
metadata during the metadata linking postpass.
Depends on D14825.
Reviewers: dexonsmith, joker.eph
Subscribers: davidxl, llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D14838
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255909 91177308-0d34-0410-b5e6-96231b3b80d8
Passing in a std::unique_ptr should help find errors when the module
is used after being linked into another module.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255842 91177308-0d34-0410-b5e6-96231b3b80d8
This patch converts code that has access to a LLVMContext to not take a
diagnostic handler.
This has a few advantages
* It is easier to use a consistent diagnostic handler in a single program.
* Less clutter since we are not passing a handler around.
It does make it a bit awkward to implement some C APIs that return a
diagnostic string. I will propose new versions of these APIs and
deprecate the current ones.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255571 91177308-0d34-0410-b5e6-96231b3b80d8
A linker normally has two stages: symbol resolution and "moving stuff".
In lib/Linker there is the complication of lazy linking some globals,
but it was still far more mixed than it needed to.
This splits the linker into a lower level IRMover and the linker proper.
The IRMover just takes a list of globals to move and a callback that
lets the user control what is lazy linked.
The main motivation is that now tools/gold (and soon lld) can use their
own symbol resolution to instruct IRMover what to do.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255254 91177308-0d34-0410-b5e6-96231b3b80d8
Creates a module and performs necessary renaming/promotion of locals
that may be exported to another module.
Split out of D15024.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254802 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch the diagnostic handler was optional. If it was not
passed, the one in the LLVMContext was used.
That is probably not a pattern we want to follow. If each area has an
optional callback, there is a sea of callbacks and it is hard to follow
which one is called.
Doing this also found cases where the callback is a nice addition, like
testing that no errors or warnings are reported.
The other option is to always use the diagnostic handler in the
LLVMContext. That has a few problems
* To implement the C API we would have to set the diag handler and then
set it back to the original value.
* Code that creates the context might be far away from code that wants
the diagnostics.
I do have a patch that implements the second option and will send that as
an RFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254777 91177308-0d34-0410-b5e6-96231b3b80d8
The linker never takes ownership of a module or changes which module it
is refering to, making it natural to use references.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254449 91177308-0d34-0410-b5e6-96231b3b80d8
It was only used from LTO for a debug feature, and LTO can just create
another linker.
It is pretty odd to have a method to reset the module in the middle of a
link. It would make IdentifiedStructTypes inconsistent with the Module
for example.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254434 91177308-0d34-0410-b5e6-96231b3b80d8
This restores commit r251837, with the new library dependence added to
llvm-link/Makefile to address bot failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251866 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r251837, due to a number of bot failures of the form:
/home/grosser/buildslave/perf-x86_64-penryn-O3-polly-fast/llvm.obj/tools/llvm-link/Release+Asserts/llvm-link.o:llvm-link.cpp:function
loadIndex(llvm::LLVMContext&, llvm::Module const*): error: undefined
reference to
'llvm::object::FunctionIndexObjectFile::create(llvm::MemoryBufferRef,
llvm::LLVMContext&, llvm::Module const*, bool)'
/home/grosser/buildslave/perf-x86_64-penryn-O3-polly-fast/llvm.obj/tools/llvm-link/Release+Asserts/llvm-link.o:llvm-link.cpp:function
loadIndex(llvm::LLVMContext&, llvm::Module const*): error: undefined
reference to 'llvm::object::FunctionIndexObjectFile::takeIndex()'
I'm not sure why these are happening - I added Object to the requred
libraries in tools/llvm-link/LLVMBuild.txt and the LLVM_LINK_COMPONENTS
in tools/llvm-link/CMakeLists.txt. Confirmed for my build that these
symbols come out of libLLVMObject.a. What am I missing?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251841 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Support for necessary linkage changes and symbol renaming during
ThinLTO function importing.
Also includes llvm-link support for manually importing functions
and associated llvm-link based tests.
Note that this does not include support for intelligently importing
metadata, which is currently imported duplicate times. That support will
be in the follow-on patch, and currently is ignored by the tests.
Reviewers: dexonsmith, joker.eph, davidxl
Subscribers: tobiasvk, tejohnson, llvm-commits
Differential Revision: http://reviews.llvm.org/D13515
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251837 91177308-0d34-0410-b5e6-96231b3b80d8
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240137 91177308-0d34-0410-b5e6-96231b3b80d8
Add a flag to lib/Linker (and `llvm-link`) to override linkage rules.
When set, the functions in the source module *always* replace those in
the destination module.
The `llvm-link` option is `-override=abc.ll`. All the "regular" modules
are loaded and linked first, followed by the `-override` modules. This
is useful for debugging workflows where some subset of the module (e.g.,
a single function) is extracted into a separate file where it's
optimized differently, before being merged back in.
Patch by Luqman Aden!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235473 91177308-0d34-0410-b5e6-96231b3b80d8
We would set the body of a struct type (therefore making it non-opaque)
but were forgetting to move it to the non-opaque set.
Fixes pr22807.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231442 91177308-0d34-0410-b5e6-96231b3b80d8
When debugging LTO issues with ld64, we use -save-temps to save the merged
optimized bitcode file, then invoke ld64 again on the single bitcode file to
speed up debugging code generation passes and ld64 stuff after code generation.
llvm linking a single bitcode file via lto_codegen_add_module will generate a
different bitcode file from the single input. With the newly-added
lto_codegen_set_module, we can make sure the destination module is the same as
the input.
lto_codegen_set_module will transfer the ownship of the module to code
generator.
rdar://19024554
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230290 91177308-0d34-0410-b5e6-96231b3b80d8
The bitcode reading interface used std::error_code to report an error to the
callers and it is the callers job to print diagnostics.
This is not ideal for error handling or diagnostic reporting:
* For error handling, all that the callers care about is 3 possibilities:
* It worked
* The bitcode file is corrupted/invalid.
* The file is not bitcode at all.
* For diagnostic, it is user friendly to include far more information
about the invalid case so the user can find out what is wrong with the
bitcode file. This comes up, for example, when a developer introduces a
bug while extending the format.
The compromise we had was to have a lot of error codes.
With this patch we use the DiagnosticHandler to communicate with the
human and std::error_code to communicate with the caller.
This allows us to have far fewer error codes and adds the infrastructure to
print better diagnostics. This is so because the diagnostics are printed when
he issue is found. The code that detected the problem in alive in the stack and
can pass down as much context as needed. As an example the patch updates
test/Bitcode/invalid.ll.
Using a DiagnosticHandler also moves the fatal/non-fatal error decision to the
caller. A simple one like llvm-dis can just use fatal errors. The gold plugin
needs a bit more complex treatment because of being passed non-bitcode files. An
hypothetical interactive tool would make all bitcode errors non-fatal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225562 91177308-0d34-0410-b5e6-96231b3b80d8
The non-opaque part can be structurally uniqued. To keep this to just
a hash lookup, we don't try to unique cyclic types.
Also change the type mapping algorithm to be optimistic about a type
not being recursive and only create a new type when proven to be wrong.
This is not as strong as trying to speculate that we can keep the source
type, but is simpler (no speculation to revert) and more powerfull
than what we had before (we don't copy non-recursive types at least).
I initially wrote this to try to replace the name based type merging.
It is not strong enough to replace it, but is is a useful addition.
With this patch the number of named struct types is a clang lto bootstrap goes
from 49674 to 15986.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223278 91177308-0d34-0410-b5e6-96231b3b80d8