mirror of
https://github.com/RPCS3/llvm.git
synced 2026-01-31 01:25:19 +01:00
Summary: This extends the PeelingModuloScheduleExpander to generate prolog and epilog code, and correctly stitch uses through the prolog, kernel, epilog DAG. The key concept in this patch is to ensure that all transforms are *local*; only a function of a block and its immediate predecessor and successor. By defining the problem in this way we can inductively rewrite the entire DAG using only local knowledge that is easy to reason about. For example, we assume that all prologs and epilogs are near-perfect clones of the steady-state kernel. This means that if a block has an instruction that is predicated out, we can redirect all users of that instruction to that equivalent instruction in our immediate predecessor. As all blocks are clones, every instruction must have an equivalent in every other block. Similarly we can make the assumption by construction that if a value defined in a block is used outside that block, the only possible user is its immediate successors. We maintain this even for values that are used outside the loop by creating a limited form of LCSSA. This code isn't small, but it isn't complex. Enabled a bunch of testing from Hexagon. There are a couple of tests not enabled yet; I'm about 80% sure there isn't buggy codegen but the tests are checking for patterns that we don't produce. Those still need a bit more investigation. In the meantime we (Google) are happy with the code produced by this on our downstream SMS implementation, and believe it generates correct code. Subscribers: mgorny, hiraditya, jsji, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D68205 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@373462 91177308-0d34-0410-b5e6-96231b3b80d8
368 lines
15 KiB
C++
368 lines
15 KiB
C++
//===- ModuloSchedule.h - Software pipeline schedule expansion ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Software pipelining (SWP) is an instruction scheduling technique for loops
|
|
// that overlaps loop iterations and exploits ILP via compiler transformations.
|
|
//
|
|
// There are multiple methods for analyzing a loop and creating a schedule.
|
|
// An example algorithm is Swing Modulo Scheduling (implemented by the
|
|
// MachinePipeliner). The details of how a schedule is arrived at are irrelevant
|
|
// for the task of actually rewriting a loop to adhere to the schedule, which
|
|
// is what this file does.
|
|
//
|
|
// A schedule is, for every instruction in a block, a Cycle and a Stage. Note
|
|
// that we only support single-block loops, so "block" and "loop" can be used
|
|
// interchangably.
|
|
//
|
|
// The Cycle of an instruction defines a partial order of the instructions in
|
|
// the remapped loop. Instructions within a cycle must not consume the output
|
|
// of any instruction in the same cycle. Cycle information is assumed to have
|
|
// been calculated such that the processor will execute instructions in
|
|
// lock-step (for example in a VLIW ISA).
|
|
//
|
|
// The Stage of an instruction defines the mapping between logical loop
|
|
// iterations and pipelined loop iterations. An example (unrolled) pipeline
|
|
// may look something like:
|
|
//
|
|
// I0[0] Execute instruction I0 of iteration 0
|
|
// I1[0], I0[1] Execute I0 of iteration 1 and I1 of iteration 1
|
|
// I1[1], I0[2]
|
|
// I1[2], I0[3]
|
|
//
|
|
// In the schedule for this unrolled sequence we would say that I0 was scheduled
|
|
// in stage 0 and I1 in stage 1:
|
|
//
|
|
// loop:
|
|
// [stage 0] x = I0
|
|
// [stage 1] I1 x (from stage 0)
|
|
//
|
|
// And to actually generate valid code we must insert a phi:
|
|
//
|
|
// loop:
|
|
// x' = phi(x)
|
|
// x = I0
|
|
// I1 x'
|
|
//
|
|
// This is a simple example; the rules for how to generate correct code given
|
|
// an arbitrary schedule containing loop-carried values are complex.
|
|
//
|
|
// Note that these examples only mention the steady-state kernel of the
|
|
// generated loop; prologs and epilogs must be generated also that prime and
|
|
// flush the pipeline. Doing so is nontrivial.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_CODEGEN_MODULOSCHEDULE_H
|
|
#define LLVM_LIB_CODEGEN_MODULOSCHEDULE_H
|
|
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineLoopUtils.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include <deque>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
class MachineBasicBlock;
|
|
class MachineInstr;
|
|
class LiveIntervals;
|
|
|
|
/// Represents a schedule for a single-block loop. For every instruction we
|
|
/// maintain a Cycle and Stage.
|
|
class ModuloSchedule {
|
|
private:
|
|
/// The block containing the loop instructions.
|
|
MachineLoop *Loop;
|
|
|
|
/// The instructions to be generated, in total order. Cycle provides a partial
|
|
/// order; the total order within cycles has been decided by the schedule
|
|
/// producer.
|
|
std::vector<MachineInstr *> ScheduledInstrs;
|
|
|
|
/// The cycle for each instruction.
|
|
DenseMap<MachineInstr *, int> Cycle;
|
|
|
|
/// The stage for each instruction.
|
|
DenseMap<MachineInstr *, int> Stage;
|
|
|
|
/// The number of stages in this schedule (Max(Stage) + 1).
|
|
int NumStages;
|
|
|
|
public:
|
|
/// Create a new ModuloSchedule.
|
|
/// \arg ScheduledInstrs The new loop instructions, in total resequenced
|
|
/// order.
|
|
/// \arg Cycle Cycle index for all instructions in ScheduledInstrs. Cycle does
|
|
/// not need to start at zero. ScheduledInstrs must be partially ordered by
|
|
/// Cycle.
|
|
/// \arg Stage Stage index for all instructions in ScheduleInstrs.
|
|
ModuloSchedule(MachineFunction &MF, MachineLoop *Loop,
|
|
std::vector<MachineInstr *> ScheduledInstrs,
|
|
DenseMap<MachineInstr *, int> Cycle,
|
|
DenseMap<MachineInstr *, int> Stage)
|
|
: Loop(Loop), ScheduledInstrs(ScheduledInstrs), Cycle(std::move(Cycle)),
|
|
Stage(std::move(Stage)) {
|
|
NumStages = 0;
|
|
for (auto &KV : this->Stage)
|
|
NumStages = std::max(NumStages, KV.second);
|
|
++NumStages;
|
|
}
|
|
|
|
/// Return the single-block loop being scheduled.
|
|
MachineLoop *getLoop() const { return Loop; }
|
|
|
|
/// Return the number of stages contained in this schedule, which is the
|
|
/// largest stage index + 1.
|
|
int getNumStages() const { return NumStages; }
|
|
|
|
/// Return the first cycle in the schedule, which is the cycle index of the
|
|
/// first instruction.
|
|
int getFirstCycle() { return Cycle[ScheduledInstrs.front()]; }
|
|
|
|
/// Return the final cycle in the schedule, which is the cycle index of the
|
|
/// last instruction.
|
|
int getFinalCycle() { return Cycle[ScheduledInstrs.back()]; }
|
|
|
|
/// Return the stage that MI is scheduled in, or -1.
|
|
int getStage(MachineInstr *MI) {
|
|
auto I = Stage.find(MI);
|
|
return I == Stage.end() ? -1 : I->second;
|
|
}
|
|
|
|
/// Return the cycle that MI is scheduled at, or -1.
|
|
int getCycle(MachineInstr *MI) {
|
|
auto I = Cycle.find(MI);
|
|
return I == Cycle.end() ? -1 : I->second;
|
|
}
|
|
|
|
/// Return the rescheduled instructions in order.
|
|
ArrayRef<MachineInstr *> getInstructions() { return ScheduledInstrs; }
|
|
|
|
void dump() { print(dbgs()); }
|
|
void print(raw_ostream &OS);
|
|
};
|
|
|
|
/// The ModuloScheduleExpander takes a ModuloSchedule and expands it in-place,
|
|
/// rewriting the old loop and inserting prologs and epilogs as required.
|
|
class ModuloScheduleExpander {
|
|
public:
|
|
using InstrChangesTy = DenseMap<MachineInstr *, std::pair<unsigned, int64_t>>;
|
|
|
|
private:
|
|
using ValueMapTy = DenseMap<unsigned, unsigned>;
|
|
using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
|
|
using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
|
|
|
|
ModuloSchedule &Schedule;
|
|
MachineFunction &MF;
|
|
const TargetSubtargetInfo &ST;
|
|
MachineRegisterInfo &MRI;
|
|
const TargetInstrInfo *TII;
|
|
LiveIntervals &LIS;
|
|
|
|
MachineBasicBlock *BB;
|
|
MachineBasicBlock *Preheader;
|
|
MachineBasicBlock *NewKernel = nullptr;
|
|
std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo;
|
|
|
|
/// Map for each register and the max difference between its uses and def.
|
|
/// The first element in the pair is the max difference in stages. The
|
|
/// second is true if the register defines a Phi value and loop value is
|
|
/// scheduled before the Phi.
|
|
std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
|
|
|
|
/// Instructions to change when emitting the final schedule.
|
|
InstrChangesTy InstrChanges;
|
|
|
|
void generatePipelinedLoop();
|
|
void generateProlog(unsigned LastStage, MachineBasicBlock *KernelBB,
|
|
ValueMapTy *VRMap, MBBVectorTy &PrologBBs);
|
|
void generateEpilog(unsigned LastStage, MachineBasicBlock *KernelBB,
|
|
ValueMapTy *VRMap, MBBVectorTy &EpilogBBs,
|
|
MBBVectorTy &PrologBBs);
|
|
void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
|
|
MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
|
|
ValueMapTy *VRMap, InstrMapTy &InstrMap,
|
|
unsigned LastStageNum, unsigned CurStageNum,
|
|
bool IsLast);
|
|
void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
|
|
MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
|
|
ValueMapTy *VRMap, InstrMapTy &InstrMap,
|
|
unsigned LastStageNum, unsigned CurStageNum, bool IsLast);
|
|
void removeDeadInstructions(MachineBasicBlock *KernelBB,
|
|
MBBVectorTy &EpilogBBs);
|
|
void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs);
|
|
void addBranches(MachineBasicBlock &PreheaderBB, MBBVectorTy &PrologBBs,
|
|
MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
|
|
ValueMapTy *VRMap);
|
|
bool computeDelta(MachineInstr &MI, unsigned &Delta);
|
|
void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
|
|
unsigned Num);
|
|
MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
|
|
unsigned InstStageNum);
|
|
MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
|
|
unsigned InstStageNum);
|
|
void updateInstruction(MachineInstr *NewMI, bool LastDef,
|
|
unsigned CurStageNum, unsigned InstrStageNum,
|
|
ValueMapTy *VRMap);
|
|
MachineInstr *findDefInLoop(unsigned Reg);
|
|
unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
|
|
unsigned LoopStage, ValueMapTy *VRMap,
|
|
MachineBasicBlock *BB);
|
|
void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
|
|
ValueMapTy *VRMap, InstrMapTy &InstrMap);
|
|
void rewriteScheduledInstr(MachineBasicBlock *BB, InstrMapTy &InstrMap,
|
|
unsigned CurStageNum, unsigned PhiNum,
|
|
MachineInstr *Phi, unsigned OldReg,
|
|
unsigned NewReg, unsigned PrevReg = 0);
|
|
bool isLoopCarried(MachineInstr &Phi);
|
|
|
|
/// Return the max. number of stages/iterations that can occur between a
|
|
/// register definition and its uses.
|
|
unsigned getStagesForReg(int Reg, unsigned CurStage) {
|
|
std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
|
|
if ((int)CurStage > Schedule.getNumStages() - 1 && Stages.first == 0 &&
|
|
Stages.second)
|
|
return 1;
|
|
return Stages.first;
|
|
}
|
|
|
|
/// The number of stages for a Phi is a little different than other
|
|
/// instructions. The minimum value computed in RegToStageDiff is 1
|
|
/// because we assume the Phi is needed for at least 1 iteration.
|
|
/// This is not the case if the loop value is scheduled prior to the
|
|
/// Phi in the same stage. This function returns the number of stages
|
|
/// or iterations needed between the Phi definition and any uses.
|
|
unsigned getStagesForPhi(int Reg) {
|
|
std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
|
|
if (Stages.second)
|
|
return Stages.first;
|
|
return Stages.first - 1;
|
|
}
|
|
|
|
public:
|
|
/// Create a new ModuloScheduleExpander.
|
|
/// \arg InstrChanges Modifications to make to instructions with memory
|
|
/// operands.
|
|
/// FIXME: InstrChanges is opaque and is an implementation detail of an
|
|
/// optimization in MachinePipeliner that crosses abstraction boundaries.
|
|
ModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S,
|
|
LiveIntervals &LIS, InstrChangesTy InstrChanges)
|
|
: Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()),
|
|
TII(ST.getInstrInfo()), LIS(LIS),
|
|
InstrChanges(std::move(InstrChanges)) {}
|
|
|
|
/// Performs the actual expansion.
|
|
void expand();
|
|
/// Performs final cleanup after expansion.
|
|
void cleanup();
|
|
|
|
/// Returns the newly rewritten kernel block, or nullptr if this was
|
|
/// optimized away.
|
|
MachineBasicBlock *getRewrittenKernel() { return NewKernel; }
|
|
};
|
|
|
|
/// A reimplementation of ModuloScheduleExpander. It works by generating a
|
|
/// standalone kernel loop and peeling out the prologs and epilogs.
|
|
class PeelingModuloScheduleExpander {
|
|
ModuloSchedule &Schedule;
|
|
MachineFunction &MF;
|
|
const TargetSubtargetInfo &ST;
|
|
MachineRegisterInfo &MRI;
|
|
const TargetInstrInfo *TII;
|
|
LiveIntervals *LIS;
|
|
|
|
/// The original loop block that gets rewritten in-place.
|
|
MachineBasicBlock *BB;
|
|
/// The original loop preheader.
|
|
MachineBasicBlock *Preheader;
|
|
/// All prolog and epilog blocks.
|
|
SmallVector<MachineBasicBlock *, 4> Prologs, Epilogs;
|
|
/// For every block, the stages that are produced.
|
|
DenseMap<MachineBasicBlock *, BitVector> LiveStages;
|
|
/// For every block, the stages that are available. A stage can be available
|
|
/// but not produced (in the epilog) or produced but not available (in the
|
|
/// prolog).
|
|
DenseMap<MachineBasicBlock *, BitVector> AvailableStages;
|
|
|
|
/// CanonicalMIs and BlockMIs form a bidirectional map between any of the
|
|
/// loop kernel clones.
|
|
DenseMap<MachineInstr *, MachineInstr *> CanonicalMIs;
|
|
DenseMap<std::pair<MachineBasicBlock *, MachineInstr *>, MachineInstr *>
|
|
BlockMIs;
|
|
|
|
/// State passed from peelKernel to peelPrologAndEpilogs().
|
|
std::deque<MachineBasicBlock *> PeeledFront, PeeledBack;
|
|
|
|
public:
|
|
PeelingModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S,
|
|
LiveIntervals *LIS)
|
|
: Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()),
|
|
TII(ST.getInstrInfo()), LIS(LIS) {}
|
|
|
|
void expand();
|
|
|
|
/// Runs ModuloScheduleExpander and treats it as a golden input to validate
|
|
/// aspects of the code generated by PeelingModuloScheduleExpander.
|
|
void validateAgainstModuloScheduleExpander();
|
|
|
|
protected:
|
|
/// Converts BB from the original loop body to the rewritten, pipelined
|
|
/// steady-state.
|
|
void rewriteKernel();
|
|
|
|
private:
|
|
/// Peels one iteration of the rewritten kernel (BB) in the specified
|
|
/// direction.
|
|
MachineBasicBlock *peelKernel(LoopPeelDirection LPD);
|
|
/// Peel the kernel forwards and backwards to produce prologs and epilogs,
|
|
/// and stitch them together.
|
|
void peelPrologAndEpilogs();
|
|
/// All prolog and epilog blocks are clones of the kernel, so any produced
|
|
/// register in one block has an corollary in all other blocks.
|
|
Register getEquivalentRegisterIn(Register Reg, MachineBasicBlock *BB);
|
|
/// Change all users of MI, if MI is predicated out
|
|
/// (LiveStages[MI->getParent()] == false).
|
|
void rewriteUsesOf(MachineInstr *MI);
|
|
/// Insert branches between prologs, kernel and epilogs.
|
|
void fixupBranches();
|
|
/// Create a poor-man's LCSSA by cloning only the PHIs from the kernel block
|
|
/// to a block dominated by all prologs and epilogs. This allows us to treat
|
|
/// the loop exiting block as any other kernel clone.
|
|
MachineBasicBlock *CreateLCSSAExitingBlock();
|
|
/// Helper to get the stage of an instruction in the schedule.
|
|
unsigned getStage(MachineInstr *MI) {
|
|
if (CanonicalMIs.count(MI))
|
|
MI = CanonicalMIs[MI];
|
|
return Schedule.getStage(MI);
|
|
}
|
|
};
|
|
|
|
/// Expander that simply annotates each scheduled instruction with a post-instr
|
|
/// symbol that can be consumed by the ModuloScheduleTest pass.
|
|
///
|
|
/// The post-instr symbol is a way of annotating an instruction that can be
|
|
/// roundtripped in MIR. The syntax is:
|
|
/// MYINST %0, post-instr-symbol <mcsymbol Stage-1_Cycle-5>
|
|
class ModuloScheduleTestAnnotater {
|
|
MachineFunction &MF;
|
|
ModuloSchedule &S;
|
|
|
|
public:
|
|
ModuloScheduleTestAnnotater(MachineFunction &MF, ModuloSchedule &S)
|
|
: MF(MF), S(S) {}
|
|
|
|
/// Performs the annotation.
|
|
void annotate();
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_LIB_CODEGEN_MODULOSCHEDULE_H
|