Files
archived-llvm/include/llvm/Object/ObjectFile.h
Alexey Lapshin a15cff122c [DebugInfo] add SectionedAddress to DebugInfo interfaces.
That patch is the fix for https://bugs.llvm.org/show_bug.cgi?id=40703
   "wrong line number info for obj file compiled with -ffunction-sections"
   bug. The problem happened with only .o files. If object file contains
   several .text sections then line number information showed incorrectly.
   The reason for this is that DwarfLineTable could not detect section which
   corresponds to specified address(because address is the local to the
   section). And as the result it could not select proper sequence in the
   line table. The fix is to pass SectionIndex with the address. So that it
   would be possible to differentiate addresses from various sections. With
   this fix llvm-objdump shows correct line numbers for disassembled code.

   Differential review: https://reviews.llvm.org/D58194

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@354972 91177308-0d34-0410-b5e6-96231b3b80d8
2019-02-27 13:17:36 +00:00

560 lines
18 KiB
C++

//===- ObjectFile.h - File format independent object file -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares a file format independent ObjectFile class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECT_OBJECTFILE_H
#define LLVM_OBJECT_OBJECTFILE_H
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include <cassert>
#include <cstdint>
#include <memory>
#include <system_error>
namespace llvm {
class ARMAttributeParser;
namespace object {
class COFFObjectFile;
class MachOObjectFile;
class ObjectFile;
class SectionRef;
class SymbolRef;
class symbol_iterator;
class WasmObjectFile;
using section_iterator = content_iterator<SectionRef>;
/// This is a value type class that represents a single relocation in the list
/// of relocations in the object file.
class RelocationRef {
DataRefImpl RelocationPimpl;
const ObjectFile *OwningObject = nullptr;
public:
RelocationRef() = default;
RelocationRef(DataRefImpl RelocationP, const ObjectFile *Owner);
bool operator==(const RelocationRef &Other) const;
void moveNext();
uint64_t getOffset() const;
symbol_iterator getSymbol() const;
uint64_t getType() const;
/// Get a string that represents the type of this relocation.
///
/// This is for display purposes only.
void getTypeName(SmallVectorImpl<char> &Result) const;
DataRefImpl getRawDataRefImpl() const;
const ObjectFile *getObject() const;
};
using relocation_iterator = content_iterator<RelocationRef>;
/// This is a value type class that represents a single section in the list of
/// sections in the object file.
class SectionRef {
friend class SymbolRef;
DataRefImpl SectionPimpl;
const ObjectFile *OwningObject = nullptr;
public:
SectionRef() = default;
SectionRef(DataRefImpl SectionP, const ObjectFile *Owner);
bool operator==(const SectionRef &Other) const;
bool operator!=(const SectionRef &Other) const;
bool operator<(const SectionRef &Other) const;
void moveNext();
std::error_code getName(StringRef &Result) const;
uint64_t getAddress() const;
uint64_t getIndex() const;
uint64_t getSize() const;
std::error_code getContents(StringRef &Result) const;
/// Get the alignment of this section as the actual value (not log 2).
uint64_t getAlignment() const;
bool isCompressed() const;
/// Whether this section contains instructions.
bool isText() const;
/// Whether this section contains data, not instructions.
bool isData() const;
/// Whether this section contains BSS uninitialized data.
bool isBSS() const;
bool isVirtual() const;
bool isBitcode() const;
bool isStripped() const;
/// Whether this section will be placed in the text segment, according to the
/// Berkeley size format. This is true if the section is allocatable, and
/// contains either code or readonly data.
bool isBerkeleyText() const;
/// Whether this section will be placed in the data segment, according to the
/// Berkeley size format. This is true if the section is allocatable and
/// contains data (e.g. PROGBITS), but is not text.
bool isBerkeleyData() const;
bool containsSymbol(SymbolRef S) const;
relocation_iterator relocation_begin() const;
relocation_iterator relocation_end() const;
iterator_range<relocation_iterator> relocations() const {
return make_range(relocation_begin(), relocation_end());
}
section_iterator getRelocatedSection() const;
DataRefImpl getRawDataRefImpl() const;
const ObjectFile *getObject() const;
};
struct SectionedAddress {
// TODO: constructors could be removed when C++14 would be adopted.
SectionedAddress() {}
SectionedAddress(uint64_t Addr, uint64_t SectIdx)
: Address(Addr), SectionIndex(SectIdx) {}
const static uint64_t UndefSection = UINT64_MAX;
uint64_t Address = 0;
uint64_t SectionIndex = UndefSection;
};
inline bool operator<(const SectionedAddress &LHS,
const SectionedAddress &RHS) {
return std::tie(LHS.SectionIndex, LHS.Address) <
std::tie(RHS.SectionIndex, RHS.Address);
}
inline bool operator==(const SectionedAddress &LHS,
const SectionedAddress &RHS) {
return std::tie(LHS.SectionIndex, LHS.Address) ==
std::tie(RHS.SectionIndex, RHS.Address);
}
/// This is a value type class that represents a single symbol in the list of
/// symbols in the object file.
class SymbolRef : public BasicSymbolRef {
friend class SectionRef;
public:
enum Type {
ST_Unknown, // Type not specified
ST_Data,
ST_Debug,
ST_File,
ST_Function,
ST_Other
};
SymbolRef() = default;
SymbolRef(DataRefImpl SymbolP, const ObjectFile *Owner);
SymbolRef(const BasicSymbolRef &B) : BasicSymbolRef(B) {
assert(isa<ObjectFile>(BasicSymbolRef::getObject()));
}
Expected<StringRef> getName() const;
/// Returns the symbol virtual address (i.e. address at which it will be
/// mapped).
Expected<uint64_t> getAddress() const;
/// Return the value of the symbol depending on the object this can be an
/// offset or a virtual address.
uint64_t getValue() const;
/// Get the alignment of this symbol as the actual value (not log 2).
uint32_t getAlignment() const;
uint64_t getCommonSize() const;
Expected<SymbolRef::Type> getType() const;
/// Get section this symbol is defined in reference to. Result is
/// end_sections() if it is undefined or is an absolute symbol.
Expected<section_iterator> getSection() const;
const ObjectFile *getObject() const;
};
class symbol_iterator : public basic_symbol_iterator {
public:
symbol_iterator(SymbolRef Sym) : basic_symbol_iterator(Sym) {}
symbol_iterator(const basic_symbol_iterator &B)
: basic_symbol_iterator(SymbolRef(B->getRawDataRefImpl(),
cast<ObjectFile>(B->getObject()))) {}
const SymbolRef *operator->() const {
const BasicSymbolRef &P = basic_symbol_iterator::operator *();
return static_cast<const SymbolRef*>(&P);
}
const SymbolRef &operator*() const {
const BasicSymbolRef &P = basic_symbol_iterator::operator *();
return static_cast<const SymbolRef&>(P);
}
};
/// This class is the base class for all object file types. Concrete instances
/// of this object are created by createObjectFile, which figures out which type
/// to create.
class ObjectFile : public SymbolicFile {
virtual void anchor();
protected:
ObjectFile(unsigned int Type, MemoryBufferRef Source);
const uint8_t *base() const {
return reinterpret_cast<const uint8_t *>(Data.getBufferStart());
}
// These functions are for SymbolRef to call internally. The main goal of
// this is to allow SymbolRef::SymbolPimpl to point directly to the symbol
// entry in the memory mapped object file. SymbolPimpl cannot contain any
// virtual functions because then it could not point into the memory mapped
// file.
//
// Implementations assume that the DataRefImpl is valid and has not been
// modified externally. It's UB otherwise.
friend class SymbolRef;
virtual Expected<StringRef> getSymbolName(DataRefImpl Symb) const = 0;
std::error_code printSymbolName(raw_ostream &OS,
DataRefImpl Symb) const override;
virtual Expected<uint64_t> getSymbolAddress(DataRefImpl Symb) const = 0;
virtual uint64_t getSymbolValueImpl(DataRefImpl Symb) const = 0;
virtual uint32_t getSymbolAlignment(DataRefImpl Symb) const;
virtual uint64_t getCommonSymbolSizeImpl(DataRefImpl Symb) const = 0;
virtual Expected<SymbolRef::Type> getSymbolType(DataRefImpl Symb) const = 0;
virtual Expected<section_iterator>
getSymbolSection(DataRefImpl Symb) const = 0;
// Same as above for SectionRef.
friend class SectionRef;
virtual void moveSectionNext(DataRefImpl &Sec) const = 0;
virtual std::error_code getSectionName(DataRefImpl Sec,
StringRef &Res) const = 0;
virtual uint64_t getSectionAddress(DataRefImpl Sec) const = 0;
virtual uint64_t getSectionIndex(DataRefImpl Sec) const = 0;
virtual uint64_t getSectionSize(DataRefImpl Sec) const = 0;
virtual std::error_code getSectionContents(DataRefImpl Sec,
StringRef &Res) const = 0;
virtual uint64_t getSectionAlignment(DataRefImpl Sec) const = 0;
virtual bool isSectionCompressed(DataRefImpl Sec) const = 0;
virtual bool isSectionText(DataRefImpl Sec) const = 0;
virtual bool isSectionData(DataRefImpl Sec) const = 0;
virtual bool isSectionBSS(DataRefImpl Sec) const = 0;
// A section is 'virtual' if its contents aren't present in the object image.
virtual bool isSectionVirtual(DataRefImpl Sec) const = 0;
virtual bool isSectionBitcode(DataRefImpl Sec) const;
virtual bool isSectionStripped(DataRefImpl Sec) const;
virtual bool isBerkeleyText(DataRefImpl Sec) const;
virtual bool isBerkeleyData(DataRefImpl Sec) const;
virtual relocation_iterator section_rel_begin(DataRefImpl Sec) const = 0;
virtual relocation_iterator section_rel_end(DataRefImpl Sec) const = 0;
virtual section_iterator getRelocatedSection(DataRefImpl Sec) const;
// Same as above for RelocationRef.
friend class RelocationRef;
virtual void moveRelocationNext(DataRefImpl &Rel) const = 0;
virtual uint64_t getRelocationOffset(DataRefImpl Rel) const = 0;
virtual symbol_iterator getRelocationSymbol(DataRefImpl Rel) const = 0;
virtual uint64_t getRelocationType(DataRefImpl Rel) const = 0;
virtual void getRelocationTypeName(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const = 0;
uint64_t getSymbolValue(DataRefImpl Symb) const;
public:
ObjectFile() = delete;
ObjectFile(const ObjectFile &other) = delete;
uint64_t getCommonSymbolSize(DataRefImpl Symb) const {
assert(getSymbolFlags(Symb) & SymbolRef::SF_Common);
return getCommonSymbolSizeImpl(Symb);
}
virtual std::vector<SectionRef> dynamic_relocation_sections() const {
return std::vector<SectionRef>();
}
using symbol_iterator_range = iterator_range<symbol_iterator>;
symbol_iterator_range symbols() const {
return symbol_iterator_range(symbol_begin(), symbol_end());
}
virtual section_iterator section_begin() const = 0;
virtual section_iterator section_end() const = 0;
using section_iterator_range = iterator_range<section_iterator>;
section_iterator_range sections() const {
return section_iterator_range(section_begin(), section_end());
}
/// The number of bytes used to represent an address in this object
/// file format.
virtual uint8_t getBytesInAddress() const = 0;
virtual StringRef getFileFormatName() const = 0;
virtual Triple::ArchType getArch() const = 0;
virtual SubtargetFeatures getFeatures() const = 0;
virtual void setARMSubArch(Triple &TheTriple) const { }
virtual Expected<uint64_t> getStartAddress() const {
return errorCodeToError(object_error::parse_failed);
};
/// Create a triple from the data in this object file.
Triple makeTriple() const;
virtual std::error_code
getBuildAttributes(ARMAttributeParser &Attributes) const {
return std::error_code();
}
/// Maps a debug section name to a standard DWARF section name.
virtual StringRef mapDebugSectionName(StringRef Name) const { return Name; }
/// True if this is a relocatable object (.o/.obj).
virtual bool isRelocatableObject() const = 0;
/// @returns Pointer to ObjectFile subclass to handle this type of object.
/// @param ObjectPath The path to the object file. ObjectPath.isObject must
/// return true.
/// Create ObjectFile from path.
static Expected<OwningBinary<ObjectFile>>
createObjectFile(StringRef ObjectPath);
static Expected<std::unique_ptr<ObjectFile>>
createObjectFile(MemoryBufferRef Object, llvm::file_magic Type);
static Expected<std::unique_ptr<ObjectFile>>
createObjectFile(MemoryBufferRef Object) {
return createObjectFile(Object, llvm::file_magic::unknown);
}
static bool classof(const Binary *v) {
return v->isObject();
}
static Expected<std::unique_ptr<COFFObjectFile>>
createCOFFObjectFile(MemoryBufferRef Object);
static Expected<std::unique_ptr<ObjectFile>>
createELFObjectFile(MemoryBufferRef Object);
static Expected<std::unique_ptr<MachOObjectFile>>
createMachOObjectFile(MemoryBufferRef Object,
uint32_t UniversalCputype = 0,
uint32_t UniversalIndex = 0);
static Expected<std::unique_ptr<WasmObjectFile>>
createWasmObjectFile(MemoryBufferRef Object);
};
// Inline function definitions.
inline SymbolRef::SymbolRef(DataRefImpl SymbolP, const ObjectFile *Owner)
: BasicSymbolRef(SymbolP, Owner) {}
inline Expected<StringRef> SymbolRef::getName() const {
return getObject()->getSymbolName(getRawDataRefImpl());
}
inline Expected<uint64_t> SymbolRef::getAddress() const {
return getObject()->getSymbolAddress(getRawDataRefImpl());
}
inline uint64_t SymbolRef::getValue() const {
return getObject()->getSymbolValue(getRawDataRefImpl());
}
inline uint32_t SymbolRef::getAlignment() const {
return getObject()->getSymbolAlignment(getRawDataRefImpl());
}
inline uint64_t SymbolRef::getCommonSize() const {
return getObject()->getCommonSymbolSize(getRawDataRefImpl());
}
inline Expected<section_iterator> SymbolRef::getSection() const {
return getObject()->getSymbolSection(getRawDataRefImpl());
}
inline Expected<SymbolRef::Type> SymbolRef::getType() const {
return getObject()->getSymbolType(getRawDataRefImpl());
}
inline const ObjectFile *SymbolRef::getObject() const {
const SymbolicFile *O = BasicSymbolRef::getObject();
return cast<ObjectFile>(O);
}
/// SectionRef
inline SectionRef::SectionRef(DataRefImpl SectionP,
const ObjectFile *Owner)
: SectionPimpl(SectionP)
, OwningObject(Owner) {}
inline bool SectionRef::operator==(const SectionRef &Other) const {
return SectionPimpl == Other.SectionPimpl;
}
inline bool SectionRef::operator!=(const SectionRef &Other) const {
return SectionPimpl != Other.SectionPimpl;
}
inline bool SectionRef::operator<(const SectionRef &Other) const {
return SectionPimpl < Other.SectionPimpl;
}
inline void SectionRef::moveNext() {
return OwningObject->moveSectionNext(SectionPimpl);
}
inline std::error_code SectionRef::getName(StringRef &Result) const {
return OwningObject->getSectionName(SectionPimpl, Result);
}
inline uint64_t SectionRef::getAddress() const {
return OwningObject->getSectionAddress(SectionPimpl);
}
inline uint64_t SectionRef::getIndex() const {
return OwningObject->getSectionIndex(SectionPimpl);
}
inline uint64_t SectionRef::getSize() const {
return OwningObject->getSectionSize(SectionPimpl);
}
inline std::error_code SectionRef::getContents(StringRef &Result) const {
return OwningObject->getSectionContents(SectionPimpl, Result);
}
inline uint64_t SectionRef::getAlignment() const {
return OwningObject->getSectionAlignment(SectionPimpl);
}
inline bool SectionRef::isCompressed() const {
return OwningObject->isSectionCompressed(SectionPimpl);
}
inline bool SectionRef::isText() const {
return OwningObject->isSectionText(SectionPimpl);
}
inline bool SectionRef::isData() const {
return OwningObject->isSectionData(SectionPimpl);
}
inline bool SectionRef::isBSS() const {
return OwningObject->isSectionBSS(SectionPimpl);
}
inline bool SectionRef::isVirtual() const {
return OwningObject->isSectionVirtual(SectionPimpl);
}
inline bool SectionRef::isBitcode() const {
return OwningObject->isSectionBitcode(SectionPimpl);
}
inline bool SectionRef::isStripped() const {
return OwningObject->isSectionStripped(SectionPimpl);
}
inline bool SectionRef::isBerkeleyText() const {
return OwningObject->isBerkeleyText(SectionPimpl);
}
inline bool SectionRef::isBerkeleyData() const {
return OwningObject->isBerkeleyData(SectionPimpl);
}
inline relocation_iterator SectionRef::relocation_begin() const {
return OwningObject->section_rel_begin(SectionPimpl);
}
inline relocation_iterator SectionRef::relocation_end() const {
return OwningObject->section_rel_end(SectionPimpl);
}
inline section_iterator SectionRef::getRelocatedSection() const {
return OwningObject->getRelocatedSection(SectionPimpl);
}
inline DataRefImpl SectionRef::getRawDataRefImpl() const {
return SectionPimpl;
}
inline const ObjectFile *SectionRef::getObject() const {
return OwningObject;
}
/// RelocationRef
inline RelocationRef::RelocationRef(DataRefImpl RelocationP,
const ObjectFile *Owner)
: RelocationPimpl(RelocationP)
, OwningObject(Owner) {}
inline bool RelocationRef::operator==(const RelocationRef &Other) const {
return RelocationPimpl == Other.RelocationPimpl;
}
inline void RelocationRef::moveNext() {
return OwningObject->moveRelocationNext(RelocationPimpl);
}
inline uint64_t RelocationRef::getOffset() const {
return OwningObject->getRelocationOffset(RelocationPimpl);
}
inline symbol_iterator RelocationRef::getSymbol() const {
return OwningObject->getRelocationSymbol(RelocationPimpl);
}
inline uint64_t RelocationRef::getType() const {
return OwningObject->getRelocationType(RelocationPimpl);
}
inline void RelocationRef::getTypeName(SmallVectorImpl<char> &Result) const {
return OwningObject->getRelocationTypeName(RelocationPimpl, Result);
}
inline DataRefImpl RelocationRef::getRawDataRefImpl() const {
return RelocationPimpl;
}
inline const ObjectFile *RelocationRef::getObject() const {
return OwningObject;
}
} // end namespace object
} // end namespace llvm
#endif // LLVM_OBJECT_OBJECTFILE_H