mirror of
https://github.com/RPCS3/llvm.git
synced 2026-01-31 01:25:19 +01:00
This patch adds the ability to perform IPSCCP-like interprocedural analysis to the generic sparse propagation solver. The patch gives clients the ability to define their own custom LatticeKey types that the generic solver maps to custom LatticeVal types. The custom lattice keys can be used, for example, to distinguish among mappings for regular values, values returned from functions, and values stored in global variables. Clients are responsible for defining how to convert between LatticeKeys and LLVM Values by providing a specialization of the LatticeKeyInfo template. The added unit tests demonstrate how the generic solver can be used to perform a simplified version of interprocedural constant propagation. Differential Revision: https://reviews.llvm.org/D37353 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315919 91177308-0d34-0410-b5e6-96231b3b80d8
531 lines
19 KiB
C++
531 lines
19 KiB
C++
//===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements an abstract sparse conditional propagation algorithm,
|
|
// modeled after SCCP, but with a customizable lattice function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
|
|
#define LLVM_ANALYSIS_SPARSEPROPAGATION_H
|
|
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <set>
|
|
|
|
#define DEBUG_TYPE "sparseprop"
|
|
|
|
namespace llvm {
|
|
|
|
/// A template for translating between LLVM Values and LatticeKeys. Clients must
|
|
/// provide a specialization of LatticeKeyInfo for their LatticeKey type.
|
|
template <class LatticeKey> struct LatticeKeyInfo {
|
|
// static inline Value *getValueFromLatticeKey(LatticeKey Key);
|
|
// static inline LatticeKey getLatticeKeyFromValue(Value *V);
|
|
};
|
|
|
|
template <class LatticeKey, class LatticeVal,
|
|
class KeyInfo = LatticeKeyInfo<LatticeKey>>
|
|
class SparseSolver;
|
|
|
|
/// AbstractLatticeFunction - This class is implemented by the dataflow instance
|
|
/// to specify what the lattice values are and how they handle merges etc. This
|
|
/// gives the client the power to compute lattice values from instructions,
|
|
/// constants, etc. The current requirement is that lattice values must be
|
|
/// copyable. At the moment, nothing tries to avoid copying. Additionally,
|
|
/// lattice keys must be able to be used as keys of a mapping data structure.
|
|
/// Internally, the generic solver currently uses a DenseMap to map lattice keys
|
|
/// to lattice values. If the lattice key is a non-standard type, a
|
|
/// specialization of DenseMapInfo must be provided.
|
|
template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
|
|
private:
|
|
LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
|
|
|
|
public:
|
|
AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
|
|
LatticeVal untrackedVal) {
|
|
UndefVal = undefVal;
|
|
OverdefinedVal = overdefinedVal;
|
|
UntrackedVal = untrackedVal;
|
|
}
|
|
|
|
virtual ~AbstractLatticeFunction() = default;
|
|
|
|
LatticeVal getUndefVal() const { return UndefVal; }
|
|
LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
|
|
LatticeVal getUntrackedVal() const { return UntrackedVal; }
|
|
|
|
/// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
|
|
/// to the analysis (i.e., it would always return UntrackedVal), this
|
|
/// function can return true to avoid pointless work.
|
|
virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
|
|
|
|
/// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
|
|
/// given LatticeKey.
|
|
virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
|
|
return getOverdefinedVal();
|
|
}
|
|
|
|
/// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
|
|
/// one that the we want to handle through ComputeInstructionState.
|
|
virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
|
|
|
|
/// MergeValues - Compute and return the merge of the two specified lattice
|
|
/// values. Merging should only move one direction down the lattice to
|
|
/// guarantee convergence (toward overdefined).
|
|
virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
|
|
return getOverdefinedVal(); // always safe, never useful.
|
|
}
|
|
|
|
/// ComputeInstructionState - Compute the LatticeKeys that change as a result
|
|
/// of executing instruction \p I. Their associated LatticeVals are store in
|
|
/// \p ChangedValues.
|
|
virtual void
|
|
ComputeInstructionState(Instruction &I,
|
|
DenseMap<LatticeKey, LatticeVal> &ChangedValues,
|
|
SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
|
|
|
|
/// PrintLatticeVal - Render the given LatticeVal to the specified stream.
|
|
virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
|
|
|
|
/// PrintLatticeKey - Render the given LatticeKey to the specified stream.
|
|
virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
|
|
|
|
/// GetValueFromLatticeVal - If the given LatticeVal is representable as an
|
|
/// LLVM value, return it; otherwise, return nullptr. If a type is given, the
|
|
/// returned value must have the same type. This function is used by the
|
|
/// generic solver in attempting to resolve branch and switch conditions.
|
|
virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
|
|
return nullptr;
|
|
}
|
|
};
|
|
|
|
/// SparseSolver - This class is a general purpose solver for Sparse Conditional
|
|
/// Propagation with a programmable lattice function.
|
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
|
class SparseSolver {
|
|
|
|
/// LatticeFunc - This is the object that knows the lattice and how to
|
|
/// compute transfer functions.
|
|
AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
|
|
|
|
/// ValueState - Holds the LatticeVals associated with LatticeKeys.
|
|
DenseMap<LatticeKey, LatticeVal> ValueState;
|
|
|
|
/// BBExecutable - Holds the basic blocks that are executable.
|
|
SmallPtrSet<BasicBlock *, 16> BBExecutable;
|
|
|
|
/// ValueWorkList - Holds values that should be processed.
|
|
SmallVector<Value *, 64> ValueWorkList;
|
|
|
|
/// BBWorkList - Holds basic blocks that should be processed.
|
|
SmallVector<BasicBlock *, 64> BBWorkList;
|
|
|
|
using Edge = std::pair<BasicBlock *, BasicBlock *>;
|
|
|
|
/// KnownFeasibleEdges - Entries in this set are edges which have already had
|
|
/// PHI nodes retriggered.
|
|
std::set<Edge> KnownFeasibleEdges;
|
|
|
|
public:
|
|
explicit SparseSolver(
|
|
AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
|
|
: LatticeFunc(Lattice) {}
|
|
SparseSolver(const SparseSolver &) = delete;
|
|
SparseSolver &operator=(const SparseSolver &) = delete;
|
|
|
|
/// Solve - Solve for constants and executable blocks.
|
|
void Solve();
|
|
|
|
void Print(raw_ostream &OS) const;
|
|
|
|
/// getExistingValueState - Return the LatticeVal object corresponding to the
|
|
/// given value from the ValueState map. If the value is not in the map,
|
|
/// UntrackedVal is returned, unlike the getValueState method.
|
|
LatticeVal getExistingValueState(LatticeKey Key) const {
|
|
auto I = ValueState.find(Key);
|
|
return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
|
|
}
|
|
|
|
/// getValueState - Return the LatticeVal object corresponding to the given
|
|
/// value from the ValueState map. If the value is not in the map, its state
|
|
/// is initialized.
|
|
LatticeVal getValueState(LatticeKey Key);
|
|
|
|
/// isEdgeFeasible - Return true if the control flow edge from the 'From'
|
|
/// basic block to the 'To' basic block is currently feasible. If
|
|
/// AggressiveUndef is true, then this treats values with unknown lattice
|
|
/// values as undefined. This is generally only useful when solving the
|
|
/// lattice, not when querying it.
|
|
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
|
|
bool AggressiveUndef = false);
|
|
|
|
/// isBlockExecutable - Return true if there are any known feasible
|
|
/// edges into the basic block. This is generally only useful when
|
|
/// querying the lattice.
|
|
bool isBlockExecutable(BasicBlock *BB) const {
|
|
return BBExecutable.count(BB);
|
|
}
|
|
|
|
/// MarkBlockExecutable - This method can be used by clients to mark all of
|
|
/// the blocks that are known to be intrinsically live in the processed unit.
|
|
void MarkBlockExecutable(BasicBlock *BB);
|
|
|
|
private:
|
|
/// UpdateState - When the state of some LatticeKey is potentially updated to
|
|
/// the given LatticeVal, this function notices and adds the LLVM value
|
|
/// corresponding the key to the work list, if needed.
|
|
void UpdateState(LatticeKey Key, LatticeVal LV);
|
|
|
|
/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
|
|
/// work list if it is not already executable.
|
|
void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
|
|
|
|
/// getFeasibleSuccessors - Return a vector of booleans to indicate which
|
|
/// successors are reachable from a given terminator instruction.
|
|
void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs,
|
|
bool AggressiveUndef);
|
|
|
|
void visitInst(Instruction &I);
|
|
void visitPHINode(PHINode &I);
|
|
void visitTerminatorInst(TerminatorInst &TI);
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AbstractLatticeFunction Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <class LatticeKey, class LatticeVal>
|
|
void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
|
|
LatticeVal V, raw_ostream &OS) {
|
|
if (V == UndefVal)
|
|
OS << "undefined";
|
|
else if (V == OverdefinedVal)
|
|
OS << "overdefined";
|
|
else if (V == UntrackedVal)
|
|
OS << "untracked";
|
|
else
|
|
OS << "unknown lattice value";
|
|
}
|
|
|
|
template <class LatticeKey, class LatticeVal>
|
|
void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
|
|
LatticeKey Key, raw_ostream &OS) {
|
|
OS << "unknown lattice key";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SparseSolver Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
|
LatticeVal
|
|
SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
|
|
auto I = ValueState.find(Key);
|
|
if (I != ValueState.end())
|
|
return I->second; // Common case, in the map
|
|
|
|
if (LatticeFunc->IsUntrackedValue(Key))
|
|
return LatticeFunc->getUntrackedVal();
|
|
LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
|
|
|
|
// If this value is untracked, don't add it to the map.
|
|
if (LV == LatticeFunc->getUntrackedVal())
|
|
return LV;
|
|
return ValueState[Key] = LV;
|
|
}
|
|
|
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
|
|
LatticeVal LV) {
|
|
auto I = ValueState.find(Key);
|
|
if (I != ValueState.end() && I->second == LV)
|
|
return; // No change.
|
|
|
|
// Update the state of the given LatticeKey and add its corresponding LLVM
|
|
// value to the work list.
|
|
ValueState[Key] = LV;
|
|
if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
|
|
ValueWorkList.push_back(V);
|
|
}
|
|
|
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
|
|
BasicBlock *BB) {
|
|
if (!BBExecutable.insert(BB).second)
|
|
return;
|
|
DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
|
|
BBWorkList.push_back(BB); // Add the block to the work list!
|
|
}
|
|
|
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
|
|
BasicBlock *Source, BasicBlock *Dest) {
|
|
if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
|
|
return; // This edge is already known to be executable!
|
|
|
|
DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() << " -> "
|
|
<< Dest->getName() << "\n");
|
|
|
|
if (BBExecutable.count(Dest)) {
|
|
// The destination is already executable, but we just made an edge
|
|
// feasible that wasn't before. Revisit the PHI nodes in the block
|
|
// because they have potentially new operands.
|
|
for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
|
|
visitPHINode(*cast<PHINode>(I));
|
|
} else {
|
|
MarkBlockExecutable(Dest);
|
|
}
|
|
}
|
|
|
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
|
|
TerminatorInst &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
|
|
Succs.resize(TI.getNumSuccessors());
|
|
if (TI.getNumSuccessors() == 0)
|
|
return;
|
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
|
|
if (BI->isUnconditional()) {
|
|
Succs[0] = true;
|
|
return;
|
|
}
|
|
|
|
LatticeVal BCValue;
|
|
if (AggressiveUndef)
|
|
BCValue =
|
|
getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
|
|
else
|
|
BCValue = getExistingValueState(
|
|
KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
|
|
|
|
if (BCValue == LatticeFunc->getOverdefinedVal() ||
|
|
BCValue == LatticeFunc->getUntrackedVal()) {
|
|
// Overdefined condition variables can branch either way.
|
|
Succs[0] = Succs[1] = true;
|
|
return;
|
|
}
|
|
|
|
// If undefined, neither is feasible yet.
|
|
if (BCValue == LatticeFunc->getUndefVal())
|
|
return;
|
|
|
|
Constant *C =
|
|
dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
|
|
BCValue, BI->getCondition()->getType()));
|
|
if (!C || !isa<ConstantInt>(C)) {
|
|
// Non-constant values can go either way.
|
|
Succs[0] = Succs[1] = true;
|
|
return;
|
|
}
|
|
|
|
// Constant condition variables mean the branch can only go a single way
|
|
Succs[C->isNullValue()] = true;
|
|
return;
|
|
}
|
|
|
|
if (TI.isExceptional()) {
|
|
Succs.assign(Succs.size(), true);
|
|
return;
|
|
}
|
|
|
|
if (isa<IndirectBrInst>(TI)) {
|
|
Succs.assign(Succs.size(), true);
|
|
return;
|
|
}
|
|
|
|
SwitchInst &SI = cast<SwitchInst>(TI);
|
|
LatticeVal SCValue;
|
|
if (AggressiveUndef)
|
|
SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
|
|
else
|
|
SCValue = getExistingValueState(
|
|
KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
|
|
|
|
if (SCValue == LatticeFunc->getOverdefinedVal() ||
|
|
SCValue == LatticeFunc->getUntrackedVal()) {
|
|
// All destinations are executable!
|
|
Succs.assign(TI.getNumSuccessors(), true);
|
|
return;
|
|
}
|
|
|
|
// If undefined, neither is feasible yet.
|
|
if (SCValue == LatticeFunc->getUndefVal())
|
|
return;
|
|
|
|
Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
|
|
SCValue, SI.getCondition()->getType()));
|
|
if (!C || !isa<ConstantInt>(C)) {
|
|
// All destinations are executable!
|
|
Succs.assign(TI.getNumSuccessors(), true);
|
|
return;
|
|
}
|
|
SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
|
|
Succs[Case.getSuccessorIndex()] = true;
|
|
}
|
|
|
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
|
bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
|
|
BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
|
|
SmallVector<bool, 16> SuccFeasible;
|
|
TerminatorInst *TI = From->getTerminator();
|
|
getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
|
|
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
|
|
if (TI->getSuccessor(i) == To && SuccFeasible[i])
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminatorInst(
|
|
TerminatorInst &TI) {
|
|
SmallVector<bool, 16> SuccFeasible;
|
|
getFeasibleSuccessors(TI, SuccFeasible, true);
|
|
|
|
BasicBlock *BB = TI.getParent();
|
|
|
|
// Mark all feasible successors executable...
|
|
for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
|
|
if (SuccFeasible[i])
|
|
markEdgeExecutable(BB, TI.getSuccessor(i));
|
|
}
|
|
|
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
|
|
// The lattice function may store more information on a PHINode than could be
|
|
// computed from its incoming values. For example, SSI form stores its sigma
|
|
// functions as PHINodes with a single incoming value.
|
|
if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
|
|
DenseMap<LatticeKey, LatticeVal> ChangedValues;
|
|
LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
|
|
for (auto &ChangedValue : ChangedValues)
|
|
if (ChangedValue.second != LatticeFunc->getUntrackedVal())
|
|
UpdateState(ChangedValue.first, ChangedValue.second);
|
|
return;
|
|
}
|
|
|
|
LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
|
|
LatticeVal PNIV = getValueState(Key);
|
|
LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
|
|
|
|
// If this value is already overdefined (common) just return.
|
|
if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
|
|
return; // Quick exit
|
|
|
|
// Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
|
|
// and slow us down a lot. Just mark them overdefined.
|
|
if (PN.getNumIncomingValues() > 64) {
|
|
UpdateState(Key, Overdefined);
|
|
return;
|
|
}
|
|
|
|
// Look at all of the executable operands of the PHI node. If any of them
|
|
// are overdefined, the PHI becomes overdefined as well. Otherwise, ask the
|
|
// transfer function to give us the merge of the incoming values.
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
|
|
// If the edge is not yet known to be feasible, it doesn't impact the PHI.
|
|
if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
|
|
continue;
|
|
|
|
// Merge in this value.
|
|
LatticeVal OpVal =
|
|
getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
|
|
if (OpVal != PNIV)
|
|
PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
|
|
|
|
if (PNIV == Overdefined)
|
|
break; // Rest of input values don't matter.
|
|
}
|
|
|
|
// Update the PHI with the compute value, which is the merge of the inputs.
|
|
UpdateState(Key, PNIV);
|
|
}
|
|
|
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
|
|
// PHIs are handled by the propagation logic, they are never passed into the
|
|
// transfer functions.
|
|
if (PHINode *PN = dyn_cast<PHINode>(&I))
|
|
return visitPHINode(*PN);
|
|
|
|
// Otherwise, ask the transfer function what the result is. If this is
|
|
// something that we care about, remember it.
|
|
DenseMap<LatticeKey, LatticeVal> ChangedValues;
|
|
LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
|
|
for (auto &ChangedValue : ChangedValues)
|
|
if (ChangedValue.second != LatticeFunc->getUntrackedVal())
|
|
UpdateState(ChangedValue.first, ChangedValue.second);
|
|
|
|
if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
|
|
visitTerminatorInst(*TI);
|
|
}
|
|
|
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
|
|
// Process the work lists until they are empty!
|
|
while (!BBWorkList.empty() || !ValueWorkList.empty()) {
|
|
// Process the value work list.
|
|
while (!ValueWorkList.empty()) {
|
|
Value *V = ValueWorkList.back();
|
|
ValueWorkList.pop_back();
|
|
|
|
DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
|
|
|
|
// "V" got into the work list because it made a transition. See if any
|
|
// users are both live and in need of updating.
|
|
for (User *U : V->users())
|
|
if (Instruction *Inst = dyn_cast<Instruction>(U))
|
|
if (BBExecutable.count(Inst->getParent())) // Inst is executable?
|
|
visitInst(*Inst);
|
|
}
|
|
|
|
// Process the basic block work list.
|
|
while (!BBWorkList.empty()) {
|
|
BasicBlock *BB = BBWorkList.back();
|
|
BBWorkList.pop_back();
|
|
|
|
DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
|
|
|
|
// Notify all instructions in this basic block that they are newly
|
|
// executable.
|
|
for (Instruction &I : *BB)
|
|
visitInst(I);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
|
|
raw_ostream &OS) const {
|
|
if (ValueState.empty())
|
|
return;
|
|
|
|
LatticeKey Key;
|
|
LatticeVal LV;
|
|
|
|
OS << "ValueState:\n";
|
|
for (auto &Entry : ValueState) {
|
|
std::tie(Key, LV) = Entry;
|
|
if (LV == LatticeFunc->getUntrackedVal())
|
|
continue;
|
|
OS << "\t";
|
|
LatticeFunc->PrintLatticeVal(LV, OS);
|
|
OS << ": ";
|
|
LatticeFunc->PrintLatticeKey(Key, OS);
|
|
OS << "\n";
|
|
}
|
|
}
|
|
} // end namespace llvm
|
|
|
|
#undef DEBUG_TYPE
|
|
|
|
#endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H
|