Files
archived-llvm/lib/Target/Mips/MCTargetDesc/MipsMCCodeEmitter.cpp
Simon Dardis dfaa4d2c2b [mips] Add movep for microMIPS32R6 and fix microMIPS32r3 version
Previously, the 'movep' instruction was defined for microMIPS32r3 and
shared that definition with microMIPS32R6. 'movep' was re-encoded for
microMIPS32r6, so this patch provides the correct encoding.

Secondly, correct the encoding of the 'rs' and 'rt' operands which have
an instruction specific encoding for the registers those operands accept.

Finally, correct the decoding of the 'dst_regs' operand which was extracting
the relevant field from the instruction, but was actually extracting the
field from the alreadly extracted field.

Reviewers: atanasyan

Differential Revision: https://reviews.llvm.org/D39495


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317475 91177308-0d34-0410-b5e6-96231b3b80d8
2017-11-06 12:59:53 +00:00

1153 lines
41 KiB
C++

//===-- MipsMCCodeEmitter.cpp - Convert Mips Code to Machine Code ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MipsMCCodeEmitter class.
//
//===----------------------------------------------------------------------===//
#include "MipsMCCodeEmitter.h"
#include "MCTargetDesc/MipsFixupKinds.h"
#include "MCTargetDesc/MipsMCExpr.h"
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
using namespace llvm;
#define DEBUG_TYPE "mccodeemitter"
#define GET_INSTRMAP_INFO
#include "MipsGenInstrInfo.inc"
#undef GET_INSTRMAP_INFO
namespace llvm {
MCCodeEmitter *createMipsMCCodeEmitterEB(const MCInstrInfo &MCII,
const MCRegisterInfo &MRI,
MCContext &Ctx) {
return new MipsMCCodeEmitter(MCII, Ctx, false);
}
MCCodeEmitter *createMipsMCCodeEmitterEL(const MCInstrInfo &MCII,
const MCRegisterInfo &MRI,
MCContext &Ctx) {
return new MipsMCCodeEmitter(MCII, Ctx, true);
}
} // end namespace llvm
// If the D<shift> instruction has a shift amount that is greater
// than 31 (checked in calling routine), lower it to a D<shift>32 instruction
static void LowerLargeShift(MCInst& Inst) {
assert(Inst.getNumOperands() == 3 && "Invalid no. of operands for shift!");
assert(Inst.getOperand(2).isImm());
int64_t Shift = Inst.getOperand(2).getImm();
if (Shift <= 31)
return; // Do nothing
Shift -= 32;
// saminus32
Inst.getOperand(2).setImm(Shift);
switch (Inst.getOpcode()) {
default:
// Calling function is not synchronized
llvm_unreachable("Unexpected shift instruction");
case Mips::DSLL:
Inst.setOpcode(Mips::DSLL32);
return;
case Mips::DSRL:
Inst.setOpcode(Mips::DSRL32);
return;
case Mips::DSRA:
Inst.setOpcode(Mips::DSRA32);
return;
case Mips::DROTR:
Inst.setOpcode(Mips::DROTR32);
return;
case Mips::DSLL_MM64R6:
Inst.setOpcode(Mips::DSLL32_MM64R6);
return;
case Mips::DSRL_MM64R6:
Inst.setOpcode(Mips::DSRL32_MM64R6);
return;
case Mips::DSRA_MM64R6:
Inst.setOpcode(Mips::DSRA32_MM64R6);
return;
case Mips::DROTR_MM64R6:
Inst.setOpcode(Mips::DROTR32_MM64R6);
return;
}
}
// Fix a bad compact branch encoding for beqc/bnec.
void MipsMCCodeEmitter::LowerCompactBranch(MCInst& Inst) const {
// Encoding may be illegal !(rs < rt), but this situation is
// easily fixed.
unsigned RegOp0 = Inst.getOperand(0).getReg();
unsigned RegOp1 = Inst.getOperand(1).getReg();
unsigned Reg0 = Ctx.getRegisterInfo()->getEncodingValue(RegOp0);
unsigned Reg1 = Ctx.getRegisterInfo()->getEncodingValue(RegOp1);
if (Inst.getOpcode() == Mips::BNEC || Inst.getOpcode() == Mips::BEQC ||
Inst.getOpcode() == Mips::BNEC64 || Inst.getOpcode() == Mips::BEQC64) {
assert(Reg0 != Reg1 && "Instruction has bad operands ($rs == $rt)!");
if (Reg0 < Reg1)
return;
} else if (Inst.getOpcode() == Mips::BNVC || Inst.getOpcode() == Mips::BOVC) {
if (Reg0 >= Reg1)
return;
} else if (Inst.getOpcode() == Mips::BNVC_MMR6 ||
Inst.getOpcode() == Mips::BOVC_MMR6) {
if (Reg1 >= Reg0)
return;
} else
llvm_unreachable("Cannot rewrite unknown branch!");
Inst.getOperand(0).setReg(RegOp1);
Inst.getOperand(1).setReg(RegOp0);
}
bool MipsMCCodeEmitter::isMicroMips(const MCSubtargetInfo &STI) const {
return STI.getFeatureBits()[Mips::FeatureMicroMips];
}
bool MipsMCCodeEmitter::isMips32r6(const MCSubtargetInfo &STI) const {
return STI.getFeatureBits()[Mips::FeatureMips32r6];
}
void MipsMCCodeEmitter::EmitByte(unsigned char C, raw_ostream &OS) const {
OS << (char)C;
}
void MipsMCCodeEmitter::EmitInstruction(uint64_t Val, unsigned Size,
const MCSubtargetInfo &STI,
raw_ostream &OS) const {
// Output the instruction encoding in little endian byte order.
// Little-endian byte ordering:
// mips32r2: 4 | 3 | 2 | 1
// microMIPS: 2 | 1 | 4 | 3
if (IsLittleEndian && Size == 4 && isMicroMips(STI)) {
EmitInstruction(Val >> 16, 2, STI, OS);
EmitInstruction(Val, 2, STI, OS);
} else {
for (unsigned i = 0; i < Size; ++i) {
unsigned Shift = IsLittleEndian ? i * 8 : (Size - 1 - i) * 8;
EmitByte((Val >> Shift) & 0xff, OS);
}
}
}
/// encodeInstruction - Emit the instruction.
/// Size the instruction with Desc.getSize().
void MipsMCCodeEmitter::
encodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const
{
// Non-pseudo instructions that get changed for direct object
// only based on operand values.
// If this list of instructions get much longer we will move
// the check to a function call. Until then, this is more efficient.
MCInst TmpInst = MI;
switch (MI.getOpcode()) {
// If shift amount is >= 32 it the inst needs to be lowered further
case Mips::DSLL:
case Mips::DSRL:
case Mips::DSRA:
case Mips::DROTR:
case Mips::DSLL_MM64R6:
case Mips::DSRL_MM64R6:
case Mips::DSRA_MM64R6:
case Mips::DROTR_MM64R6:
LowerLargeShift(TmpInst);
break;
// Compact branches, enforce encoding restrictions.
case Mips::BEQC:
case Mips::BNEC:
case Mips::BEQC64:
case Mips::BNEC64:
case Mips::BOVC:
case Mips::BOVC_MMR6:
case Mips::BNVC:
case Mips::BNVC_MMR6:
LowerCompactBranch(TmpInst);
}
unsigned long N = Fixups.size();
uint32_t Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI);
// Check for unimplemented opcodes.
// Unfortunately in MIPS both NOP and SLL will come in with Binary == 0
// so we have to special check for them.
unsigned Opcode = TmpInst.getOpcode();
if ((Opcode != Mips::NOP) && (Opcode != Mips::SLL) &&
(Opcode != Mips::SLL_MM) && !Binary)
llvm_unreachable("unimplemented opcode in encodeInstruction()");
int NewOpcode = -1;
if (isMicroMips(STI)) {
if (isMips32r6(STI)) {
NewOpcode = Mips::MipsR62MicroMipsR6(Opcode, Mips::Arch_micromipsr6);
if (NewOpcode == -1)
NewOpcode = Mips::Std2MicroMipsR6(Opcode, Mips::Arch_micromipsr6);
}
else
NewOpcode = Mips::Std2MicroMips(Opcode, Mips::Arch_micromips);
// Check whether it is Dsp instruction.
if (NewOpcode == -1)
NewOpcode = Mips::Dsp2MicroMips(Opcode, Mips::Arch_mmdsp);
if (NewOpcode != -1) {
if (Fixups.size() > N)
Fixups.pop_back();
Opcode = NewOpcode;
TmpInst.setOpcode (NewOpcode);
Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI);
}
}
const MCInstrDesc &Desc = MCII.get(TmpInst.getOpcode());
// Get byte count of instruction
unsigned Size = Desc.getSize();
if (!Size)
llvm_unreachable("Desc.getSize() returns 0");
EmitInstruction(Binary, Size, STI, OS);
}
/// getBranchTargetOpValue - Return binary encoding of the branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTargetOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 4.
if (MO.isImm()) return MO.getImm() >> 2;
assert(MO.isExpr() &&
"getBranchTargetOpValue expects only expressions or immediates");
const MCExpr *FixupExpression = MCBinaryExpr::createAdd(
MO.getExpr(), MCConstantExpr::create(-4, Ctx), Ctx);
Fixups.push_back(MCFixup::create(0, FixupExpression,
MCFixupKind(Mips::fixup_Mips_PC16)));
return 0;
}
/// getBranchTargetOpValue1SImm16 - Return binary encoding of the branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTargetOpValue1SImm16(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 2.
if (MO.isImm()) return MO.getImm() >> 1;
assert(MO.isExpr() &&
"getBranchTargetOpValue expects only expressions or immediates");
const MCExpr *FixupExpression = MCBinaryExpr::createAdd(
MO.getExpr(), MCConstantExpr::create(-4, Ctx), Ctx);
Fixups.push_back(MCFixup::create(0, FixupExpression,
MCFixupKind(Mips::fixup_Mips_PC16)));
return 0;
}
/// getBranchTargetOpValueMMR6 - Return binary encoding of the branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTargetOpValueMMR6(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 2.
if (MO.isImm())
return MO.getImm() >> 1;
assert(MO.isExpr() &&
"getBranchTargetOpValueMMR6 expects only expressions or immediates");
const MCExpr *FixupExpression = MCBinaryExpr::createAdd(
MO.getExpr(), MCConstantExpr::create(-2, Ctx), Ctx);
Fixups.push_back(MCFixup::create(0, FixupExpression,
MCFixupKind(Mips::fixup_Mips_PC16)));
return 0;
}
/// getBranchTargetOpValueLsl2MMR6 - Return binary encoding of the branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTargetOpValueLsl2MMR6(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 4.
if (MO.isImm())
return MO.getImm() >> 2;
assert(MO.isExpr() &&
"getBranchTargetOpValueLsl2MMR6 expects only expressions or immediates");
const MCExpr *FixupExpression = MCBinaryExpr::createAdd(
MO.getExpr(), MCConstantExpr::create(-4, Ctx), Ctx);
Fixups.push_back(MCFixup::create(0, FixupExpression,
MCFixupKind(Mips::fixup_Mips_PC16)));
return 0;
}
/// getBranchTarget7OpValueMM - Return binary encoding of the microMIPS branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTarget7OpValueMM(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 2.
if (MO.isImm()) return MO.getImm() >> 1;
assert(MO.isExpr() &&
"getBranchTargetOpValueMM expects only expressions or immediates");
const MCExpr *Expr = MO.getExpr();
Fixups.push_back(MCFixup::create(0, Expr,
MCFixupKind(Mips::fixup_MICROMIPS_PC7_S1)));
return 0;
}
/// getBranchTargetOpValueMMPC10 - Return binary encoding of the microMIPS
/// 10-bit branch target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTargetOpValueMMPC10(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 2.
if (MO.isImm()) return MO.getImm() >> 1;
assert(MO.isExpr() &&
"getBranchTargetOpValuePC10 expects only expressions or immediates");
const MCExpr *Expr = MO.getExpr();
Fixups.push_back(MCFixup::create(0, Expr,
MCFixupKind(Mips::fixup_MICROMIPS_PC10_S1)));
return 0;
}
/// getBranchTargetOpValue - Return binary encoding of the microMIPS branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTargetOpValueMM(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 2.
if (MO.isImm()) return MO.getImm() >> 1;
assert(MO.isExpr() &&
"getBranchTargetOpValueMM expects only expressions or immediates");
const MCExpr *Expr = MO.getExpr();
Fixups.push_back(MCFixup::create(0, Expr,
MCFixupKind(Mips::
fixup_MICROMIPS_PC16_S1)));
return 0;
}
/// getBranchTarget21OpValue - Return binary encoding of the branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTarget21OpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 4.
if (MO.isImm()) return MO.getImm() >> 2;
assert(MO.isExpr() &&
"getBranchTarget21OpValue expects only expressions or immediates");
const MCExpr *FixupExpression = MCBinaryExpr::createAdd(
MO.getExpr(), MCConstantExpr::create(-4, Ctx), Ctx);
Fixups.push_back(MCFixup::create(0, FixupExpression,
MCFixupKind(Mips::fixup_MIPS_PC21_S2)));
return 0;
}
/// getBranchTarget21OpValueMM - Return binary encoding of the branch
/// target operand for microMIPS. If the machine operand requires
/// relocation, record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTarget21OpValueMM(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 4.
if (MO.isImm()) return MO.getImm() >> 2;
assert(MO.isExpr() &&
"getBranchTarget21OpValueMM expects only expressions or immediates");
const MCExpr *FixupExpression = MCBinaryExpr::createAdd(
MO.getExpr(), MCConstantExpr::create(-4, Ctx), Ctx);
Fixups.push_back(MCFixup::create(0, FixupExpression,
MCFixupKind(Mips::fixup_MICROMIPS_PC21_S1)));
return 0;
}
/// getBranchTarget26OpValue - Return binary encoding of the branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getBranchTarget26OpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 4.
if (MO.isImm()) return MO.getImm() >> 2;
assert(MO.isExpr() &&
"getBranchTarget26OpValue expects only expressions or immediates");
const MCExpr *FixupExpression = MCBinaryExpr::createAdd(
MO.getExpr(), MCConstantExpr::create(-4, Ctx), Ctx);
Fixups.push_back(MCFixup::create(0, FixupExpression,
MCFixupKind(Mips::fixup_MIPS_PC26_S2)));
return 0;
}
/// getBranchTarget26OpValueMM - Return binary encoding of the branch
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::getBranchTarget26OpValueMM(
const MCInst &MI, unsigned OpNo, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 2.
if (MO.isImm())
return MO.getImm() >> 1;
assert(MO.isExpr() &&
"getBranchTarget26OpValueMM expects only expressions or immediates");
const MCExpr *FixupExpression = MCBinaryExpr::createAdd(
MO.getExpr(), MCConstantExpr::create(-4, Ctx), Ctx);
Fixups.push_back(MCFixup::create(0, FixupExpression,
MCFixupKind(Mips::fixup_MICROMIPS_PC26_S1)));
return 0;
}
/// getJumpOffset16OpValue - Return binary encoding of the jump
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getJumpOffset16OpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) return MO.getImm();
assert(MO.isExpr() &&
"getJumpOffset16OpValue expects only expressions or an immediate");
// TODO: Push fixup.
return 0;
}
/// getJumpTargetOpValue - Return binary encoding of the jump
/// target operand. If the machine operand requires relocation,
/// record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getJumpTargetOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 4.
if (MO.isImm()) return MO.getImm()>>2;
assert(MO.isExpr() &&
"getJumpTargetOpValue expects only expressions or an immediate");
const MCExpr *Expr = MO.getExpr();
Fixups.push_back(MCFixup::create(0, Expr,
MCFixupKind(Mips::fixup_Mips_26)));
return 0;
}
unsigned MipsMCCodeEmitter::
getJumpTargetOpValueMM(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
// If the destination is an immediate, divide by 2.
if (MO.isImm()) return MO.getImm() >> 1;
assert(MO.isExpr() &&
"getJumpTargetOpValueMM expects only expressions or an immediate");
const MCExpr *Expr = MO.getExpr();
Fixups.push_back(MCFixup::create(0, Expr,
MCFixupKind(Mips::fixup_MICROMIPS_26_S1)));
return 0;
}
unsigned MipsMCCodeEmitter::
getUImm5Lsl2Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
// The immediate is encoded as 'immediate << 2'.
unsigned Res = getMachineOpValue(MI, MO, Fixups, STI);
assert((Res & 3) == 0);
return Res >> 2;
}
assert(MO.isExpr() &&
"getUImm5Lsl2Encoding expects only expressions or an immediate");
return 0;
}
unsigned MipsMCCodeEmitter::
getSImm3Lsa2Value(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
int Value = MO.getImm();
return Value >> 2;
}
return 0;
}
unsigned MipsMCCodeEmitter::
getUImm6Lsl2Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
unsigned Value = MO.getImm();
return Value >> 2;
}
return 0;
}
unsigned MipsMCCodeEmitter::
getSImm9AddiuspValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
unsigned Binary = (MO.getImm() >> 2) & 0x0000ffff;
return (((Binary & 0x8000) >> 7) | (Binary & 0x00ff));
}
return 0;
}
unsigned MipsMCCodeEmitter::
getExprOpValue(const MCExpr *Expr, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
int64_t Res;
if (Expr->evaluateAsAbsolute(Res))
return Res;
MCExpr::ExprKind Kind = Expr->getKind();
if (Kind == MCExpr::Constant) {
return cast<MCConstantExpr>(Expr)->getValue();
}
if (Kind == MCExpr::Binary) {
unsigned Res = getExprOpValue(cast<MCBinaryExpr>(Expr)->getLHS(), Fixups, STI);
Res += getExprOpValue(cast<MCBinaryExpr>(Expr)->getRHS(), Fixups, STI);
return Res;
}
if (Kind == MCExpr::Target) {
const MipsMCExpr *MipsExpr = cast<MipsMCExpr>(Expr);
Mips::Fixups FixupKind = Mips::Fixups(0);
switch (MipsExpr->getKind()) {
case MipsMCExpr::MEK_None:
case MipsMCExpr::MEK_Special:
llvm_unreachable("Unhandled fixup kind!");
break;
case MipsMCExpr::MEK_CALL_HI16:
FixupKind = Mips::fixup_Mips_CALL_HI16;
break;
case MipsMCExpr::MEK_CALL_LO16:
FixupKind = Mips::fixup_Mips_CALL_LO16;
break;
case MipsMCExpr::MEK_DTPREL_HI:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_DTPREL_HI16
: Mips::fixup_Mips_DTPREL_HI;
break;
case MipsMCExpr::MEK_DTPREL_LO:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_DTPREL_LO16
: Mips::fixup_Mips_DTPREL_LO;
break;
case MipsMCExpr::MEK_GOTTPREL:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOTTPREL
: Mips::fixup_Mips_GOTTPREL;
break;
case MipsMCExpr::MEK_GOT:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT16
: Mips::fixup_Mips_GOT;
break;
case MipsMCExpr::MEK_GOT_CALL:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_CALL16
: Mips::fixup_Mips_CALL16;
break;
case MipsMCExpr::MEK_GOT_DISP:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT_DISP
: Mips::fixup_Mips_GOT_DISP;
break;
case MipsMCExpr::MEK_GOT_HI16:
FixupKind = Mips::fixup_Mips_GOT_HI16;
break;
case MipsMCExpr::MEK_GOT_LO16:
FixupKind = Mips::fixup_Mips_GOT_LO16;
break;
case MipsMCExpr::MEK_GOT_PAGE:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT_PAGE
: Mips::fixup_Mips_GOT_PAGE;
break;
case MipsMCExpr::MEK_GOT_OFST:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_GOT_OFST
: Mips::fixup_Mips_GOT_OFST;
break;
case MipsMCExpr::MEK_GPREL:
FixupKind = Mips::fixup_Mips_GPREL16;
break;
case MipsMCExpr::MEK_LO:
// Check for %lo(%neg(%gp_rel(X)))
if (MipsExpr->isGpOff()) {
FixupKind = Mips::fixup_Mips_GPOFF_LO;
break;
}
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_LO16
: Mips::fixup_Mips_LO16;
break;
case MipsMCExpr::MEK_HIGHEST:
FixupKind = Mips::fixup_Mips_HIGHEST;
break;
case MipsMCExpr::MEK_HIGHER:
FixupKind = Mips::fixup_Mips_HIGHER;
break;
case MipsMCExpr::MEK_HI:
// Check for %hi(%neg(%gp_rel(X)))
if (MipsExpr->isGpOff()) {
FixupKind = Mips::fixup_Mips_GPOFF_HI;
break;
}
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_HI16
: Mips::fixup_Mips_HI16;
break;
case MipsMCExpr::MEK_PCREL_HI16:
FixupKind = Mips::fixup_MIPS_PCHI16;
break;
case MipsMCExpr::MEK_PCREL_LO16:
FixupKind = Mips::fixup_MIPS_PCLO16;
break;
case MipsMCExpr::MEK_TLSGD:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_GD
: Mips::fixup_Mips_TLSGD;
break;
case MipsMCExpr::MEK_TLSLDM:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_LDM
: Mips::fixup_Mips_TLSLDM;
break;
case MipsMCExpr::MEK_TPREL_HI:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_TPREL_HI16
: Mips::fixup_Mips_TPREL_HI;
break;
case MipsMCExpr::MEK_TPREL_LO:
FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_TLS_TPREL_LO16
: Mips::fixup_Mips_TPREL_LO;
break;
case MipsMCExpr::MEK_NEG:
FixupKind =
isMicroMips(STI) ? Mips::fixup_MICROMIPS_SUB : Mips::fixup_Mips_SUB;
break;
}
Fixups.push_back(MCFixup::create(0, MipsExpr, MCFixupKind(FixupKind)));
return 0;
}
if (Kind == MCExpr::SymbolRef) {
Mips::Fixups FixupKind = Mips::Fixups(0);
switch(cast<MCSymbolRefExpr>(Expr)->getKind()) {
default: llvm_unreachable("Unknown fixup kind!");
break;
case MCSymbolRefExpr::VK_None:
FixupKind = Mips::fixup_Mips_32; // FIXME: This is ok for O32/N32 but not N64.
break;
} // switch
Fixups.push_back(MCFixup::create(0, Expr, MCFixupKind(FixupKind)));
return 0;
}
return 0;
}
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned MipsMCCodeEmitter::
getMachineOpValue(const MCInst &MI, const MCOperand &MO,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
if (MO.isReg()) {
unsigned Reg = MO.getReg();
unsigned RegNo = Ctx.getRegisterInfo()->getEncodingValue(Reg);
return RegNo;
} else if (MO.isImm()) {
return static_cast<unsigned>(MO.getImm());
} else if (MO.isFPImm()) {
return static_cast<unsigned>(APFloat(MO.getFPImm())
.bitcastToAPInt().getHiBits(32).getLimitedValue());
}
// MO must be an Expr.
assert(MO.isExpr());
return getExprOpValue(MO.getExpr(),Fixups, STI);
}
/// Return binary encoding of memory related operand.
/// If the offset operand requires relocation, record the relocation.
template <unsigned ShiftAmount>
unsigned MipsMCCodeEmitter::getMemEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 20-16, offset is encoded in bits 15-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),Fixups, STI) << 16;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
// Apply the scale factor if there is one.
OffBits >>= ShiftAmount;
return (OffBits & 0xFFFF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm4(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 6-4, offset is encoded in bits 3-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),
Fixups, STI) << 4;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
Fixups, STI);
return (OffBits & 0xF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm4Lsl1(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 6-4, offset is encoded in bits 3-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),
Fixups, STI) << 4;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
Fixups, STI) >> 1;
return (OffBits & 0xF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm4Lsl2(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 6-4, offset is encoded in bits 3-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo),
Fixups, STI) << 4;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
Fixups, STI) >> 2;
return (OffBits & 0xF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMSPImm5Lsl2(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Register is encoded in bits 9-5, offset is encoded in bits 4-0.
assert(MI.getOperand(OpNo).isReg() &&
(MI.getOperand(OpNo).getReg() == Mips::SP ||
MI.getOperand(OpNo).getReg() == Mips::SP_64) &&
"Unexpected base register!");
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
Fixups, STI) >> 2;
return OffBits & 0x1F;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMGPImm7Lsl2(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Register is encoded in bits 9-7, offset is encoded in bits 6-0.
assert(MI.getOperand(OpNo).isReg() &&
MI.getOperand(OpNo).getReg() == Mips::GP &&
"Unexpected base register!");
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1),
Fixups, STI) >> 2;
return OffBits & 0x7F;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm9(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 20-16, offset is encoded in bits 8-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups,
STI) << 16;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo + 1), Fixups, STI);
return (OffBits & 0x1FF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm11(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 20-16, offset is encoded in bits 10-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups,
STI) << 16;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
return (OffBits & 0x07FF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm12(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// opNum can be invalid if instruction had reglist as operand.
// MemOperand is always last operand of instruction (base + offset).
switch (MI.getOpcode()) {
default:
break;
case Mips::SWM32_MM:
case Mips::LWM32_MM:
OpNo = MI.getNumOperands() - 2;
break;
}
// Base register is encoded in bits 20-16, offset is encoded in bits 11-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI) << 16;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
return (OffBits & 0x0FFF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm16(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Base register is encoded in bits 20-16, offset is encoded in bits 15-0.
assert(MI.getOperand(OpNo).isReg());
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups,
STI) << 16;
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
return (OffBits & 0xFFFF) | RegBits;
}
unsigned MipsMCCodeEmitter::
getMemEncodingMMImm4sp(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// opNum can be invalid if instruction had reglist as operand
// MemOperand is always last operand of instruction (base + offset)
switch (MI.getOpcode()) {
default:
break;
case Mips::SWM16_MM:
case Mips::SWM16_MMR6:
case Mips::LWM16_MM:
case Mips::LWM16_MMR6:
OpNo = MI.getNumOperands() - 2;
break;
}
// Offset is encoded in bits 4-0.
assert(MI.getOperand(OpNo).isReg());
// Base register is always SP - thus it is not encoded.
assert(MI.getOperand(OpNo+1).isImm());
unsigned OffBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI);
return ((OffBits >> 2) & 0x0F);
}
// FIXME: should be called getMSBEncoding
//
unsigned
MipsMCCodeEmitter::getSizeInsEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
assert(MI.getOperand(OpNo-1).isImm());
assert(MI.getOperand(OpNo).isImm());
unsigned Position = getMachineOpValue(MI, MI.getOperand(OpNo-1), Fixups, STI);
unsigned Size = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI);
return Position + Size - 1;
}
template <unsigned Bits, int Offset>
unsigned
MipsMCCodeEmitter::getUImmWithOffsetEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
assert(MI.getOperand(OpNo).isImm());
unsigned Value = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI);
Value -= Offset;
return Value;
}
unsigned
MipsMCCodeEmitter::getSimm19Lsl2Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
// The immediate is encoded as 'immediate << 2'.
unsigned Res = getMachineOpValue(MI, MO, Fixups, STI);
assert((Res & 3) == 0);
return Res >> 2;
}
assert(MO.isExpr() &&
"getSimm19Lsl2Encoding expects only expressions or an immediate");
const MCExpr *Expr = MO.getExpr();
Mips::Fixups FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_PC19_S2
: Mips::fixup_MIPS_PC19_S2;
Fixups.push_back(MCFixup::create(0, Expr, MCFixupKind(FixupKind)));
return 0;
}
unsigned
MipsMCCodeEmitter::getSimm18Lsl3Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
// The immediate is encoded as 'immediate << 3'.
unsigned Res = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI);
assert((Res & 7) == 0);
return Res >> 3;
}
assert(MO.isExpr() &&
"getSimm18Lsl2Encoding expects only expressions or an immediate");
const MCExpr *Expr = MO.getExpr();
Mips::Fixups FixupKind = isMicroMips(STI) ? Mips::fixup_MICROMIPS_PC18_S3
: Mips::fixup_MIPS_PC18_S3;
Fixups.push_back(MCFixup::create(0, Expr, MCFixupKind(FixupKind)));
return 0;
}
unsigned
MipsMCCodeEmitter::getUImm3Mod8Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
assert(MI.getOperand(OpNo).isImm());
const MCOperand &MO = MI.getOperand(OpNo);
return MO.getImm() % 8;
}
unsigned
MipsMCCodeEmitter::getUImm4AndValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
assert(MI.getOperand(OpNo).isImm());
const MCOperand &MO = MI.getOperand(OpNo);
unsigned Value = MO.getImm();
switch (Value) {
case 128: return 0x0;
case 1: return 0x1;
case 2: return 0x2;
case 3: return 0x3;
case 4: return 0x4;
case 7: return 0x5;
case 8: return 0x6;
case 15: return 0x7;
case 16: return 0x8;
case 31: return 0x9;
case 32: return 0xa;
case 63: return 0xb;
case 64: return 0xc;
case 255: return 0xd;
case 32768: return 0xe;
case 65535: return 0xf;
}
llvm_unreachable("Unexpected value");
}
unsigned
MipsMCCodeEmitter::getRegisterListOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
unsigned res = 0;
// Register list operand is always first operand of instruction and it is
// placed before memory operand (register + imm).
for (unsigned I = OpNo, E = MI.getNumOperands() - 2; I < E; ++I) {
unsigned Reg = MI.getOperand(I).getReg();
unsigned RegNo = Ctx.getRegisterInfo()->getEncodingValue(Reg);
if (RegNo != 31)
res++;
else
res |= 0x10;
}
return res;
}
unsigned
MipsMCCodeEmitter::getRegisterListOpValue16(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return (MI.getNumOperands() - 4);
}
unsigned
MipsMCCodeEmitter::getRegisterPairOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI);
}
unsigned
MipsMCCodeEmitter::getMovePRegPairOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
unsigned res = 0;
if (MI.getOperand(0).getReg() == Mips::A1 &&
MI.getOperand(1).getReg() == Mips::A2)
res = 0;
else if (MI.getOperand(0).getReg() == Mips::A1 &&
MI.getOperand(1).getReg() == Mips::A3)
res = 1;
else if (MI.getOperand(0).getReg() == Mips::A2 &&
MI.getOperand(1).getReg() == Mips::A3)
res = 2;
else if (MI.getOperand(0).getReg() == Mips::A0 &&
MI.getOperand(1).getReg() == Mips::S5)
res = 3;
else if (MI.getOperand(0).getReg() == Mips::A0 &&
MI.getOperand(1).getReg() == Mips::S6)
res = 4;
else if (MI.getOperand(0).getReg() == Mips::A0 &&
MI.getOperand(1).getReg() == Mips::A1)
res = 5;
else if (MI.getOperand(0).getReg() == Mips::A0 &&
MI.getOperand(1).getReg() == Mips::A2)
res = 6;
else if (MI.getOperand(0).getReg() == Mips::A0 &&
MI.getOperand(1).getReg() == Mips::A3)
res = 7;
return res;
}
unsigned
MipsMCCodeEmitter::getMovePRegSingleOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
assert(((OpNo == 2) || (OpNo == 3)) &&
"Unexpected OpNo for movep operand encoding!");
MCOperand Op = MI.getOperand(OpNo);
assert(Op.isReg() && "Operand of movep is not a register!");
switch (Op.getReg()) {
default:
llvm_unreachable("Unknown register for movep!");
case Mips::ZERO: return 0;
case Mips::S1: return 1;
case Mips::V0: return 2;
case Mips::V1: return 3;
case Mips::S0: return 4;
case Mips::S2: return 5;
case Mips::S3: return 6;
case Mips::S4: return 7;
}
}
unsigned
MipsMCCodeEmitter::getSimm23Lsl2Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
assert(MO.isImm() && "getSimm23Lsl2Encoding expects only an immediate");
// The immediate is encoded as 'immediate >> 2'.
unsigned Res = static_cast<unsigned>(MO.getImm());
assert((Res & 3) == 0);
return Res >> 2;
}
#include "MipsGenMCCodeEmitter.inc"