Files
archived-llvm/lib/Analysis/TypeBasedAliasAnalysis.cpp
Chandler Carruth 33d568124e [PM] Change the static object whose address is used to uniquely identify
analyses to have a common type which is enforced rather than using
a char object and a `void *` type when used as an identifier.

This has a number of advantages. First, it at least helps some of the
confusion raised in Justin Lebar's code review of why `void *` was being
used everywhere by having a stronger type that connects to documentation
about this.

However, perhaps more importantly, it addresses a serious issue where
the alignment of these pointer-like identifiers was unknown. This made
it hard to use them in pointer-like data structures. We were already
dodging this in dangerous ways to create the "all analyses" entry. In
a subsequent patch I attempted to use these with TinyPtrVector and
things fell apart in a very bad way.

And it isn't just a compile time or type system issue. Worse than that,
the actual alignment of these pointer-like opaque identifiers wasn't
guaranteed to be a useful alignment as they were just characters.

This change introduces a type to use as the "key" object whose address
forms the opaque identifier. This both forces the objects to have proper
alignment, and provides type checking that we get it right everywhere.
It also makes the types somewhat less mysterious than `void *`.

We could go one step further and introduce a truly opaque pointer-like
type to return from the `ID()` static function rather than returning
`AnalysisKey *`, but that didn't seem to be a clear win so this is just
the initial change to get to a reliably typed and aligned object serving
is a key for all the analyses.

Thanks to Richard Smith and Justin Lebar for helping pick plausible
names and avoid making this refactoring many times. =] And thanks to
Sean for the super fast review!

While here, I've tried to move away from the "PassID" nomenclature
entirely as it wasn't really helping and is overloaded with old pass
manager constructs. Now we have IDs for analyses, and key objects whose
address can be used as IDs. Where possible and clear I've shortened this
to just "ID". In a few places I kept "AnalysisID" to make it clear what
was being identified.

Differential Revision: https://reviews.llvm.org/D27031

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287783 91177308-0d34-0410-b5e6-96231b3b80d8
2016-11-23 17:53:26 +00:00

584 lines
20 KiB
C++

//===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the TypeBasedAliasAnalysis pass, which implements
// metadata-based TBAA.
//
// In LLVM IR, memory does not have types, so LLVM's own type system is not
// suitable for doing TBAA. Instead, metadata is added to the IR to describe
// a type system of a higher level language. This can be used to implement
// typical C/C++ TBAA, but it can also be used to implement custom alias
// analysis behavior for other languages.
//
// We now support two types of metadata format: scalar TBAA and struct-path
// aware TBAA. After all testing cases are upgraded to use struct-path aware
// TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
// can be dropped.
//
// The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
// three fields, e.g.:
// !0 = metadata !{ metadata !"an example type tree" }
// !1 = metadata !{ metadata !"int", metadata !0 }
// !2 = metadata !{ metadata !"float", metadata !0 }
// !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
//
// The first field is an identity field. It can be any value, usually
// an MDString, which uniquely identifies the type. The most important
// name in the tree is the name of the root node. Two trees with
// different root node names are entirely disjoint, even if they
// have leaves with common names.
//
// The second field identifies the type's parent node in the tree, or
// is null or omitted for a root node. A type is considered to alias
// all of its descendants and all of its ancestors in the tree. Also,
// a type is considered to alias all types in other trees, so that
// bitcode produced from multiple front-ends is handled conservatively.
//
// If the third field is present, it's an integer which if equal to 1
// indicates that the type is "constant" (meaning pointsToConstantMemory
// should return true; see
// http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
//
// With struct-path aware TBAA, the MDNodes attached to an instruction using
// "!tbaa" are called path tag nodes.
//
// The path tag node has 4 fields with the last field being optional.
//
// The first field is the base type node, it can be a struct type node
// or a scalar type node. The second field is the access type node, it
// must be a scalar type node. The third field is the offset into the base type.
// The last field has the same meaning as the last field of our scalar TBAA:
// it's an integer which if equal to 1 indicates that the access is "constant".
//
// The struct type node has a name and a list of pairs, one pair for each member
// of the struct. The first element of each pair is a type node (a struct type
// node or a sclar type node), specifying the type of the member, the second
// element of each pair is the offset of the member.
//
// Given an example
// typedef struct {
// short s;
// } A;
// typedef struct {
// uint16_t s;
// A a;
// } B;
//
// For an access to B.a.s, we attach !5 (a path tag node) to the load/store
// instruction. The base type is !4 (struct B), the access type is !2 (scalar
// type short) and the offset is 4.
//
// !0 = metadata !{metadata !"Simple C/C++ TBAA"}
// !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
// !2 = metadata !{metadata !"short", metadata !1} // Scalar type node
// !3 = metadata !{metadata !"A", metadata !2, i64 0} // Struct type node
// !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
// // Struct type node
// !5 = metadata !{metadata !4, metadata !2, i64 4} // Path tag node
//
// The struct type nodes and the scalar type nodes form a type DAG.
// Root (!0)
// char (!1) -- edge to Root
// short (!2) -- edge to char
// A (!3) -- edge with offset 0 to short
// B (!4) -- edge with offset 0 to short and edge with offset 4 to A
//
// To check if two tags (tagX and tagY) can alias, we start from the base type
// of tagX, follow the edge with the correct offset in the type DAG and adjust
// the offset until we reach the base type of tagY or until we reach the Root
// node.
// If we reach the base type of tagY, compare the adjusted offset with
// offset of tagY, return Alias if the offsets are the same, return NoAlias
// otherwise.
// If we reach the Root node, perform the above starting from base type of tagY
// to see if we reach base type of tagX.
//
// If they have different roots, they're part of different potentially
// unrelated type systems, so we return Alias to be conservative.
// If neither node is an ancestor of the other and they have the same root,
// then we say NoAlias.
//
// TODO: The current metadata format doesn't support struct
// fields. For example:
// struct X {
// double d;
// int i;
// };
// void foo(struct X *x, struct X *y, double *p) {
// *x = *y;
// *p = 0.0;
// }
// Struct X has a double member, so the store to *x can alias the store to *p.
// Currently it's not possible to precisely describe all the things struct X
// aliases, so struct assignments must use conservative TBAA nodes. There's
// no scheme for attaching metadata to @llvm.memcpy yet either.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
// A handy option for disabling TBAA functionality. The same effect can also be
// achieved by stripping the !tbaa tags from IR, but this option is sometimes
// more convenient.
static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
namespace {
/// This is a simple wrapper around an MDNode which provides a higher-level
/// interface by hiding the details of how alias analysis information is encoded
/// in its operands.
template<typename MDNodeTy>
class TBAANodeImpl {
MDNodeTy *Node;
public:
TBAANodeImpl() : Node(nullptr) {}
explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
/// getNode - Get the MDNode for this TBAANode.
MDNodeTy *getNode() const { return Node; }
/// getParent - Get this TBAANode's Alias tree parent.
TBAANodeImpl<MDNodeTy> getParent() const {
if (Node->getNumOperands() < 2)
return TBAANodeImpl<MDNodeTy>();
MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
if (!P)
return TBAANodeImpl<MDNodeTy>();
// Ok, this node has a valid parent. Return it.
return TBAANodeImpl<MDNodeTy>(P);
}
/// Test if this TBAANode represents a type for objects which are
/// not modified (by any means) in the context where this
/// AliasAnalysis is relevant.
bool isTypeImmutable() const {
if (Node->getNumOperands() < 3)
return false;
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
if (!CI)
return false;
return CI->getValue()[0];
}
};
/// \name Specializations of \c TBAANodeImpl for const and non const qualified
/// \c MDNode.
/// @{
typedef TBAANodeImpl<const MDNode> TBAANode;
typedef TBAANodeImpl<MDNode> MutableTBAANode;
/// @}
/// This is a simple wrapper around an MDNode which provides a
/// higher-level interface by hiding the details of how alias analysis
/// information is encoded in its operands.
template<typename MDNodeTy>
class TBAAStructTagNodeImpl {
/// This node should be created with createTBAAStructTagNode.
MDNodeTy *Node;
public:
explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
/// Get the MDNode for this TBAAStructTagNode.
MDNodeTy *getNode() const { return Node; }
MDNodeTy *getBaseType() const {
return dyn_cast_or_null<MDNode>(Node->getOperand(0));
}
MDNodeTy *getAccessType() const {
return dyn_cast_or_null<MDNode>(Node->getOperand(1));
}
uint64_t getOffset() const {
return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
}
/// Test if this TBAAStructTagNode represents a type for objects
/// which are not modified (by any means) in the context where this
/// AliasAnalysis is relevant.
bool isTypeImmutable() const {
if (Node->getNumOperands() < 4)
return false;
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3));
if (!CI)
return false;
return CI->getValue()[0];
}
};
/// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
/// qualified \c MDNods.
/// @{
typedef TBAAStructTagNodeImpl<const MDNode> TBAAStructTagNode;
typedef TBAAStructTagNodeImpl<MDNode> MutableTBAAStructTagNode;
/// @}
/// This is a simple wrapper around an MDNode which provides a
/// higher-level interface by hiding the details of how alias analysis
/// information is encoded in its operands.
class TBAAStructTypeNode {
/// This node should be created with createTBAAStructTypeNode.
const MDNode *Node;
public:
TBAAStructTypeNode() : Node(nullptr) {}
explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
/// Get the MDNode for this TBAAStructTypeNode.
const MDNode *getNode() const { return Node; }
/// Get this TBAAStructTypeNode's field in the type DAG with
/// given offset. Update the offset to be relative to the field type.
TBAAStructTypeNode getParent(uint64_t &Offset) const {
// Parent can be omitted for the root node.
if (Node->getNumOperands() < 2)
return TBAAStructTypeNode();
// Fast path for a scalar type node and a struct type node with a single
// field.
if (Node->getNumOperands() <= 3) {
uint64_t Cur = Node->getNumOperands() == 2
? 0
: mdconst::extract<ConstantInt>(Node->getOperand(2))
->getZExtValue();
Offset -= Cur;
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
if (!P)
return TBAAStructTypeNode();
return TBAAStructTypeNode(P);
}
// Assume the offsets are in order. We return the previous field if
// the current offset is bigger than the given offset.
unsigned TheIdx = 0;
for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
->getZExtValue();
if (Cur > Offset) {
assert(Idx >= 3 &&
"TBAAStructTypeNode::getParent should have an offset match!");
TheIdx = Idx - 2;
break;
}
}
// Move along the last field.
if (TheIdx == 0)
TheIdx = Node->getNumOperands() - 2;
uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
->getZExtValue();
Offset -= Cur;
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
if (!P)
return TBAAStructTypeNode();
return TBAAStructTypeNode(P);
}
};
}
/// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
/// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
/// format.
static bool isStructPathTBAA(const MDNode *MD) {
// Anonymous TBAA root starts with a MDNode and dragonegg uses it as
// a TBAA tag.
return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
}
AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
const MemoryLocation &LocB) {
if (!EnableTBAA)
return AAResultBase::alias(LocA, LocB);
// Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
// be conservative.
const MDNode *AM = LocA.AATags.TBAA;
if (!AM)
return AAResultBase::alias(LocA, LocB);
const MDNode *BM = LocB.AATags.TBAA;
if (!BM)
return AAResultBase::alias(LocA, LocB);
// If they may alias, chain to the next AliasAnalysis.
if (Aliases(AM, BM))
return AAResultBase::alias(LocA, LocB);
// Otherwise return a definitive result.
return NoAlias;
}
bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
bool OrLocal) {
if (!EnableTBAA)
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
const MDNode *M = Loc.AATags.TBAA;
if (!M)
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
// If this is an "immutable" type, we can assume the pointer is pointing
// to constant memory.
if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
(isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
return true;
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
}
FunctionModRefBehavior
TypeBasedAAResult::getModRefBehavior(ImmutableCallSite CS) {
if (!EnableTBAA)
return AAResultBase::getModRefBehavior(CS);
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
// If this is an "immutable" type, we can assume the call doesn't write
// to memory.
if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
(isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
Min = FMRB_OnlyReadsMemory;
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
}
FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
// Functions don't have metadata. Just chain to the next implementation.
return AAResultBase::getModRefBehavior(F);
}
ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
if (!EnableTBAA)
return AAResultBase::getModRefInfo(CS, Loc);
if (const MDNode *L = Loc.AATags.TBAA)
if (const MDNode *M =
CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (!Aliases(L, M))
return MRI_NoModRef;
return AAResultBase::getModRefInfo(CS, Loc);
}
ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
if (!EnableTBAA)
return AAResultBase::getModRefInfo(CS1, CS2);
if (const MDNode *M1 =
CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (const MDNode *M2 =
CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (!Aliases(M1, M2))
return MRI_NoModRef;
return AAResultBase::getModRefInfo(CS1, CS2);
}
bool MDNode::isTBAAVtableAccess() const {
if (!isStructPathTBAA(this)) {
if (getNumOperands() < 1)
return false;
if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
if (Tag1->getString() == "vtable pointer")
return true;
}
return false;
}
// For struct-path aware TBAA, we use the access type of the tag.
if (getNumOperands() < 2)
return false;
MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
if (!Tag)
return false;
if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
if (Tag1->getString() == "vtable pointer")
return true;
}
return false;
}
MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
if (!A || !B)
return nullptr;
if (A == B)
return A;
// For struct-path aware TBAA, we use the access type of the tag.
assert(isStructPathTBAA(A) && isStructPathTBAA(B) &&
"Auto upgrade should have taken care of this!");
A = cast_or_null<MDNode>(MutableTBAAStructTagNode(A).getAccessType());
if (!A)
return nullptr;
B = cast_or_null<MDNode>(MutableTBAAStructTagNode(B).getAccessType());
if (!B)
return nullptr;
SmallSetVector<MDNode *, 4> PathA;
MutableTBAANode TA(A);
while (TA.getNode()) {
if (PathA.count(TA.getNode()))
report_fatal_error("Cycle found in TBAA metadata.");
PathA.insert(TA.getNode());
TA = TA.getParent();
}
SmallSetVector<MDNode *, 4> PathB;
MutableTBAANode TB(B);
while (TB.getNode()) {
if (PathB.count(TB.getNode()))
report_fatal_error("Cycle found in TBAA metadata.");
PathB.insert(TB.getNode());
TB = TB.getParent();
}
int IA = PathA.size() - 1;
int IB = PathB.size() - 1;
MDNode *Ret = nullptr;
while (IA >= 0 && IB >= 0) {
if (PathA[IA] == PathB[IB])
Ret = PathA[IA];
else
break;
--IA;
--IB;
}
if (!Ret)
return nullptr;
// We need to convert from a type node to a tag node.
Type *Int64 = IntegerType::get(A->getContext(), 64);
Metadata *Ops[3] = {Ret, Ret,
ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
return MDNode::get(A->getContext(), Ops);
}
void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
if (Merge)
N.TBAA =
MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
else
N.TBAA = getMetadata(LLVMContext::MD_tbaa);
if (Merge)
N.Scope = MDNode::getMostGenericAliasScope(
N.Scope, getMetadata(LLVMContext::MD_alias_scope));
else
N.Scope = getMetadata(LLVMContext::MD_alias_scope);
if (Merge)
N.NoAlias =
MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
else
N.NoAlias = getMetadata(LLVMContext::MD_noalias);
}
/// Aliases - Test whether the type represented by A may alias the
/// type represented by B.
bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
// Verify that both input nodes are struct-path aware. Auto-upgrade should
// have taken care of this.
assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
// Keep track of the root node for A and B.
TBAAStructTypeNode RootA, RootB;
TBAAStructTagNode TagA(A), TagB(B);
// TODO: We need to check if AccessType of TagA encloses AccessType of
// TagB to support aggregate AccessType. If yes, return true.
// Start from the base type of A, follow the edge with the correct offset in
// the type DAG and adjust the offset until we reach the base type of B or
// until we reach the Root node.
// Compare the adjusted offset once we have the same base.
// Climb the type DAG from base type of A to see if we reach base type of B.
const MDNode *BaseA = TagA.getBaseType();
const MDNode *BaseB = TagB.getBaseType();
uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
for (TBAAStructTypeNode T(BaseA);;) {
if (T.getNode() == BaseB)
// Base type of A encloses base type of B, check if the offsets match.
return OffsetA == OffsetB;
RootA = T;
// Follow the edge with the correct offset, OffsetA will be adjusted to
// be relative to the field type.
T = T.getParent(OffsetA);
if (!T.getNode())
break;
}
// Reset OffsetA and climb the type DAG from base type of B to see if we reach
// base type of A.
OffsetA = TagA.getOffset();
for (TBAAStructTypeNode T(BaseB);;) {
if (T.getNode() == BaseA)
// Base type of B encloses base type of A, check if the offsets match.
return OffsetA == OffsetB;
RootB = T;
// Follow the edge with the correct offset, OffsetB will be adjusted to
// be relative to the field type.
T = T.getParent(OffsetB);
if (!T.getNode())
break;
}
// Neither node is an ancestor of the other.
// If they have different roots, they're part of different potentially
// unrelated type systems, so we must be conservative.
if (RootA.getNode() != RootB.getNode())
return true;
// If they have the same root, then we've proved there's no alias.
return false;
}
AnalysisKey TypeBasedAA::Key;
TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
return TypeBasedAAResult();
}
char TypeBasedAAWrapperPass::ID = 0;
INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
false, true)
ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
return new TypeBasedAAWrapperPass();
}
TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
}
bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
Result.reset(new TypeBasedAAResult());
return false;
}
bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
Result.reset();
return false;
}
void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}