Keno Fischer
35a5cc8b49
[SCEV] Add explicit representations of umin/smin
...
Summary:
Currently we express umin as `~umax(~x, ~y)`. However, this becomes
a problem for operands in non-integral pointer spaces, because `~x`
is not something we can compute for `x` non-integral. However, since
comparisons are generally still allowed, we are actually able to
express `umin(x, y)` directly as long as we don't try to express is
as a umax. Support this by adding an explicit umin/smin representation
to SCEV. We do this by factoring the existing getUMax/getSMax functions
into a new function that does all four. The previous two functions were
largely identical.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D50167
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@360159 91177308-0d34-0410-b5e6-96231b3b80d8
2019-05-07 15:28:47 +00:00
..
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-05-07 15:28:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-23 08:52:21 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-23 08:52:21 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00
2019-04-17 04:52:47 +00:00