mirror of
https://github.com/RPCS3/llvm.git
synced 2026-01-31 01:25:19 +01:00
Summary: We are overly conservative in loop vectorizer with respect to stores to loop invariant addresses. More details in https://bugs.llvm.org/show_bug.cgi?id=38546 This is the first part of the fix where we start with vectorizing loop invariant values to loop invariant addresses. This also includes changes to ORE for stores to invariant address. Reviewers: anemet, Ayal, mkuper, mssimpso Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D50665 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@343028 91177308-0d34-0410-b5e6-96231b3b80d8
261 lines
8.9 KiB
LLVM
261 lines
8.9 KiB
LLVM
; RUN: opt < %s -licm -loop-vectorize -force-vector-width=4 -dce -instcombine -licm -S | FileCheck %s
|
|
|
|
; First licm pass is to hoist/sink invariant stores if possible. Today LICM does
|
|
; not hoist/sink the invariant stores. Even if that changes, we should still
|
|
; vectorize this loop in case licm is not run.
|
|
|
|
; The next licm pass after vectorization is to hoist/sink loop invariant
|
|
; instructions.
|
|
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
|
|
|
|
; all tests check that it is legal to vectorize the stores to invariant
|
|
; address.
|
|
|
|
|
|
; CHECK-LABEL: inv_val_store_to_inv_address_with_reduction(
|
|
; memory check is found.conflict = b[max(n-1,1)] > a && (i8* a)+1 > (i8* b)
|
|
; CHECK: vector.memcheck:
|
|
; CHECK: found.conflict
|
|
|
|
; CHECK-LABEL: vector.body:
|
|
; CHECK: %vec.phi = phi <4 x i32> [ zeroinitializer, %vector.ph ], [ [[ADD:%[a-zA-Z0-9.]+]], %vector.body ]
|
|
; CHECK: %wide.load = load <4 x i32>
|
|
; CHECK: [[ADD]] = add <4 x i32> %vec.phi, %wide.load
|
|
; CHECK-NEXT: store i32 %ntrunc, i32* %a
|
|
; CHECK-NEXT: %index.next = add i64 %index, 4
|
|
; CHECK-NEXT: icmp eq i64 %index.next, %n.vec
|
|
; CHECK-NEXT: br i1
|
|
|
|
; CHECK-LABEL: middle.block:
|
|
; CHECK: %rdx.shuf = shufflevector <4 x i32>
|
|
define i32 @inv_val_store_to_inv_address_with_reduction(i32* %a, i64 %n, i32* %b) {
|
|
entry:
|
|
%ntrunc = trunc i64 %n to i32
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
|
|
%tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
|
|
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
|
|
%tmp2 = load i32, i32* %tmp1, align 8
|
|
%tmp3 = add i32 %tmp0, %tmp2
|
|
store i32 %ntrunc, i32* %a
|
|
%i.next = add nuw nsw i64 %i, 1
|
|
%cond = icmp slt i64 %i.next, %n
|
|
br i1 %cond, label %for.body, label %for.end
|
|
|
|
for.end: ; preds = %for.body
|
|
%tmp4 = phi i32 [ %tmp3, %for.body ]
|
|
ret i32 %tmp4
|
|
}
|
|
|
|
; CHECK-LABEL: inv_val_store_to_inv_address(
|
|
; CHECK-LABEL: vector.body:
|
|
; CHECK: store i32 %ntrunc, i32* %a
|
|
; CHECK: store <4 x i32>
|
|
; CHECK-NEXT: %index.next = add i64 %index, 4
|
|
; CHECK-NEXT: icmp eq i64 %index.next, %n.vec
|
|
; CHECK-NEXT: br i1
|
|
define void @inv_val_store_to_inv_address(i32* %a, i64 %n, i32* %b) {
|
|
entry:
|
|
%ntrunc = trunc i64 %n to i32
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
|
|
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
|
|
%tmp2 = load i32, i32* %tmp1, align 8
|
|
store i32 %ntrunc, i32* %a
|
|
store i32 %ntrunc, i32* %tmp1
|
|
%i.next = add nuw nsw i64 %i, 1
|
|
%cond = icmp slt i64 %i.next, %n
|
|
br i1 %cond, label %for.body, label %for.end
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
|
|
; Both of these tests below are handled as predicated stores.
|
|
|
|
; Conditional store
|
|
; if (b[i] == k) a = ntrunc
|
|
; TODO: We can be better with the code gen for the first test and we can have
|
|
; just one scalar store if vector.or.reduce(vector_cmp(b[i] == k)) is 1.
|
|
|
|
; CHECK-LABEL:inv_val_store_to_inv_address_conditional(
|
|
; CHECK-LABEL: vector.body:
|
|
; CHECK: %wide.load = load <4 x i32>, <4 x i32>*
|
|
; CHECK: [[CMP:%[a-zA-Z0-9.]+]] = icmp eq <4 x i32> %wide.load, %{{.*}}
|
|
; CHECK: store <4 x i32>
|
|
; CHECK-NEXT: [[EE:%[a-zA-Z0-9.]+]] = extractelement <4 x i1> [[CMP]], i32 0
|
|
; CHECK-NEXT: br i1 [[EE]], label %pred.store.if, label %pred.store.continue
|
|
|
|
; CHECK-LABEL: pred.store.if:
|
|
; CHECK-NEXT: store i32 %ntrunc, i32* %a
|
|
; CHECK-NEXT: br label %pred.store.continue
|
|
|
|
; CHECK-LABEL: pred.store.continue:
|
|
; CHECK-NEXT: [[EE1:%[a-zA-Z0-9.]+]] = extractelement <4 x i1> [[CMP]], i32 1
|
|
define void @inv_val_store_to_inv_address_conditional(i32* %a, i64 %n, i32* %b, i32 %k) {
|
|
entry:
|
|
%ntrunc = trunc i64 %n to i32
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
|
|
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
|
|
%tmp2 = load i32, i32* %tmp1, align 8
|
|
%cmp = icmp eq i32 %tmp2, %k
|
|
store i32 %ntrunc, i32* %tmp1
|
|
br i1 %cmp, label %cond_store, label %latch
|
|
|
|
cond_store:
|
|
store i32 %ntrunc, i32* %a
|
|
br label %latch
|
|
|
|
latch:
|
|
%i.next = add nuw nsw i64 %i, 1
|
|
%cond = icmp slt i64 %i.next, %n
|
|
br i1 %cond, label %for.body, label %for.end
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; if (b[i] == k)
|
|
; a = ntrunc
|
|
; else a = k;
|
|
; TODO: We could vectorize this once we support multiple uniform stores to the
|
|
; same address.
|
|
; CHECK-LABEL:inv_val_store_to_inv_address_conditional_diff_values(
|
|
; CHECK-NOT: load <4 x i32>
|
|
define void @inv_val_store_to_inv_address_conditional_diff_values(i32* %a, i64 %n, i32* %b, i32 %k) {
|
|
entry:
|
|
%ntrunc = trunc i64 %n to i32
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
|
|
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
|
|
%tmp2 = load i32, i32* %tmp1, align 8
|
|
%cmp = icmp eq i32 %tmp2, %k
|
|
store i32 %ntrunc, i32* %tmp1
|
|
br i1 %cmp, label %cond_store, label %cond_store_k
|
|
|
|
cond_store:
|
|
store i32 %ntrunc, i32* %a
|
|
br label %latch
|
|
|
|
cond_store_k:
|
|
store i32 %k, i32 * %a
|
|
br label %latch
|
|
|
|
latch:
|
|
%i.next = add nuw nsw i64 %i, 1
|
|
%cond = icmp slt i64 %i.next, %n
|
|
br i1 %cond, label %for.body, label %for.end
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; Instcombine'd version of above test. Now the store is no longer of invariant
|
|
; value.
|
|
; TODO: We should be able to vectorize this loop once we support vectorizing
|
|
; stores of variant values to invariant addresses.
|
|
; CHECK-LABEL: inv_val_store_to_inv_address_conditional_diff_values_ic
|
|
; CHECK-NOT: <4 x
|
|
define void @inv_val_store_to_inv_address_conditional_diff_values_ic(i32* %a, i64 %n, i32* %b, i32 %k) {
|
|
entry:
|
|
%ntrunc = trunc i64 %n to i32
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
|
|
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
|
|
%tmp2 = load i32, i32* %tmp1, align 8
|
|
%cmp = icmp eq i32 %tmp2, %k
|
|
store i32 %ntrunc, i32* %tmp1
|
|
br i1 %cmp, label %cond_store, label %cond_store_k
|
|
|
|
cond_store:
|
|
br label %latch
|
|
|
|
cond_store_k:
|
|
br label %latch
|
|
|
|
latch:
|
|
%storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ]
|
|
store i32 %storeval, i32* %a
|
|
%i.next = add nuw nsw i64 %i, 1
|
|
%cond = icmp slt i64 %i.next, %n
|
|
br i1 %cond, label %for.body, label %for.end
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; invariant val stored to invariant address predicated on invariant condition
|
|
; This is not treated as a predicated store since the block the store belongs to
|
|
; is the latch block (which doesn't need to be predicated).
|
|
; TODO: We should vectorize this loop once we relax the check for
|
|
; variant/invariant values being stored to invariant address.
|
|
; CHECK-LABEL: inv_val_store_to_inv_address_conditional_inv
|
|
; CHECK-NOT: <4 x
|
|
define void @inv_val_store_to_inv_address_conditional_inv(i32* %a, i64 %n, i32* %b, i32 %k) {
|
|
entry:
|
|
%ntrunc = trunc i64 %n to i32
|
|
%cmp = icmp eq i32 %ntrunc, %k
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
|
|
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
|
|
%tmp2 = load i32, i32* %tmp1, align 8
|
|
store i32 %ntrunc, i32* %tmp1
|
|
br i1 %cmp, label %cond_store, label %cond_store_k
|
|
|
|
cond_store:
|
|
br label %latch
|
|
|
|
cond_store_k:
|
|
br label %latch
|
|
|
|
latch:
|
|
%storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ]
|
|
store i32 %storeval, i32* %a
|
|
%i.next = add nuw nsw i64 %i, 1
|
|
%cond = icmp slt i64 %i.next, %n
|
|
br i1 %cond, label %for.body, label %for.end
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; TODO: This loop can be vectorized once we support variant value being
|
|
; stored into invariant address.
|
|
; CHECK-LABEL: variant_val_store_to_inv_address
|
|
; CHECK-NOT: <4 x i32>
|
|
define i32 @variant_val_store_to_inv_address(i32* %a, i64 %n, i32* %b, i32 %k) {
|
|
entry:
|
|
%ntrunc = trunc i64 %n to i32
|
|
%cmp = icmp eq i32 %ntrunc, %k
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
|
|
%tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
|
|
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
|
|
%tmp2 = load i32, i32* %tmp1, align 8
|
|
store i32 %tmp2, i32* %a
|
|
%tmp3 = add i32 %tmp0, %tmp2
|
|
%i.next = add nuw nsw i64 %i, 1
|
|
%cond = icmp slt i64 %i.next, %n
|
|
br i1 %cond, label %for.body, label %for.end
|
|
|
|
for.end: ; preds = %for.body
|
|
%rdx.lcssa = phi i32 [ %tmp0, %for.body ]
|
|
ret i32 %rdx.lcssa
|
|
}
|