mirror of
https://github.com/RPCS3/llvm.git
synced 2026-01-31 01:25:19 +01:00
Summary:
JITLink is a jit-linker that performs the same high-level task as RuntimeDyld:
it parses relocatable object files and makes their contents runnable in a target
process.
JITLink aims to improve on RuntimeDyld in several ways:
(1) A clear design intended to maximize code-sharing while minimizing coupling.
RuntimeDyld has been developed in an ad-hoc fashion for a number of years and
this had led to intermingling of code for multiple architectures (e.g. in
RuntimeDyldELF::processRelocationRef) in a way that makes the code more
difficult to read, reason about, extend. JITLink is designed to isolate
format and architecture specific code, while still sharing generic code.
(2) Support for native code models.
RuntimeDyld required the use of large code models (where calls to external
functions are made indirectly via registers) for many of platforms due to its
restrictive model for stub generation (one "stub" per symbol). JITLink allows
arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be
added naturally.
(3) Native support for asynchronous linking.
JITLink uses asynchronous calls for symbol resolution and finalization: these
callbacks are passed a continuation function that they must call to complete the
linker's work. This allows for cleaner interoperation with the new concurrent
ORC JIT APIs, while still being easily implementable in synchronous style if
asynchrony is not needed.
To maximise sharing, the design has a hierarchy of common code:
(1) Generic atom-graph data structure and algorithms (e.g. dead stripping and
| memory allocation) that are intended to be shared by all architectures.
|
+ -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to
| atom-graph parsing.
|
+ -- (3) Architecture specific code that uses (1) and (2). E.g.
JITLinkerMachO_x86_64, which adds x86-64 specific relocation
support to (2) to build and patch up the atom graph.
To support asynchronous symbol resolution and finalization, the callbacks for
these operations take continuations as arguments:
using JITLinkAsyncLookupContinuation =
std::function<void(Expected<AsyncLookupResult> LR)>;
using JITLinkAsyncLookupFunction =
std::function<void(const DenseSet<StringRef> &Symbols,
JITLinkAsyncLookupContinuation LookupContinuation)>;
using FinalizeContinuation = std::function<void(Error)>;
virtual void finalizeAsync(FinalizeContinuation OnFinalize);
In addition to its headline features, JITLink also makes other improvements:
- Dead stripping support: symbols that are not used (e.g. redundant ODR
definitions) are discarded, and take up no memory in the target process
(In contrast, RuntimeDyld supported pointer equality for weak definitions,
but the redundant definitions stayed resident in memory).
- Improved exception handling support. JITLink provides a much more extensive
eh-frame parser than RuntimeDyld, and is able to correctly fix up many
eh-frame sections that RuntimeDyld currently (silently) fails on.
- More extensive validation and error handling throughout.
This initial patch supports linking MachO/x86-64 only. Work on support for
other architectures and formats will happen in-tree.
Differential Revision: https://reviews.llvm.org/D58704
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@358818 91177308-0d34-0410-b5e6-96231b3b80d8
159 lines
5.9 KiB
C++
159 lines
5.9 KiB
C++
//===- llvm/Support/Memory.h - Memory Support -------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file declares the llvm::sys::Memory class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_SUPPORT_MEMORY_H
|
|
#define LLVM_SUPPORT_MEMORY_H
|
|
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include <string>
|
|
#include <system_error>
|
|
|
|
namespace llvm {
|
|
|
|
// Forward declare raw_ostream: it is used for debug dumping below.
|
|
class raw_ostream;
|
|
|
|
namespace sys {
|
|
|
|
/// This class encapsulates the notion of a memory block which has an address
|
|
/// and a size. It is used by the Memory class (a friend) as the result of
|
|
/// various memory allocation operations.
|
|
/// @see Memory
|
|
/// Memory block abstraction.
|
|
class MemoryBlock {
|
|
public:
|
|
MemoryBlock() : Address(nullptr), Size(0) { }
|
|
MemoryBlock(void *addr, size_t size) : Address(addr), Size(size) { }
|
|
void *base() const { return Address; }
|
|
size_t size() const { return Size; }
|
|
|
|
private:
|
|
void *Address; ///< Address of first byte of memory area
|
|
size_t Size; ///< Size, in bytes of the memory area
|
|
unsigned Flags = 0;
|
|
friend class Memory;
|
|
};
|
|
|
|
/// This class provides various memory handling functions that manipulate
|
|
/// MemoryBlock instances.
|
|
/// @since 1.4
|
|
/// An abstraction for memory operations.
|
|
class Memory {
|
|
public:
|
|
enum ProtectionFlags {
|
|
MF_READ = 0x1000000,
|
|
MF_WRITE = 0x2000000,
|
|
MF_EXEC = 0x4000000,
|
|
MF_RWE_MASK = 0x7000000,
|
|
MF_HUGE_HINT = 0x0000001
|
|
};
|
|
|
|
/// This method allocates a block of memory that is suitable for loading
|
|
/// dynamically generated code (e.g. JIT). An attempt to allocate
|
|
/// \p NumBytes bytes of virtual memory is made.
|
|
/// \p NearBlock may point to an existing allocation in which case
|
|
/// an attempt is made to allocate more memory near the existing block.
|
|
/// The actual allocated address is not guaranteed to be near the requested
|
|
/// address.
|
|
/// \p Flags is used to set the initial protection flags for the block
|
|
/// of the memory.
|
|
/// \p EC [out] returns an object describing any error that occurs.
|
|
///
|
|
/// This method may allocate more than the number of bytes requested. The
|
|
/// actual number of bytes allocated is indicated in the returned
|
|
/// MemoryBlock.
|
|
///
|
|
/// The start of the allocated block must be aligned with the
|
|
/// system allocation granularity (64K on Windows, page size on Linux).
|
|
/// If the address following \p NearBlock is not so aligned, it will be
|
|
/// rounded up to the next allocation granularity boundary.
|
|
///
|
|
/// \r a non-null MemoryBlock if the function was successful,
|
|
/// otherwise a null MemoryBlock is with \p EC describing the error.
|
|
///
|
|
/// Allocate mapped memory.
|
|
static MemoryBlock allocateMappedMemory(size_t NumBytes,
|
|
const MemoryBlock *const NearBlock,
|
|
unsigned Flags,
|
|
std::error_code &EC);
|
|
|
|
/// This method releases a block of memory that was allocated with the
|
|
/// allocateMappedMemory method. It should not be used to release any
|
|
/// memory block allocated any other way.
|
|
/// \p Block describes the memory to be released.
|
|
///
|
|
/// \r error_success if the function was successful, or an error_code
|
|
/// describing the failure if an error occurred.
|
|
///
|
|
/// Release mapped memory.
|
|
static std::error_code releaseMappedMemory(MemoryBlock &Block);
|
|
|
|
/// This method sets the protection flags for a block of memory to the
|
|
/// state specified by /p Flags. The behavior is not specified if the
|
|
/// memory was not allocated using the allocateMappedMemory method.
|
|
/// \p Block describes the memory block to be protected.
|
|
/// \p Flags specifies the new protection state to be assigned to the block.
|
|
/// \p ErrMsg [out] returns a string describing any error that occurred.
|
|
///
|
|
/// If \p Flags is MF_WRITE, the actual behavior varies
|
|
/// with the operating system (i.e. MF_READ | MF_WRITE on Windows) and the
|
|
/// target architecture (i.e. MF_WRITE -> MF_READ | MF_WRITE on i386).
|
|
///
|
|
/// \r error_success if the function was successful, or an error_code
|
|
/// describing the failure if an error occurred.
|
|
///
|
|
/// Set memory protection state.
|
|
static std::error_code protectMappedMemory(const MemoryBlock &Block,
|
|
unsigned Flags);
|
|
|
|
/// InvalidateInstructionCache - Before the JIT can run a block of code
|
|
/// that has been emitted it must invalidate the instruction cache on some
|
|
/// platforms.
|
|
static void InvalidateInstructionCache(const void *Addr, size_t Len);
|
|
};
|
|
|
|
/// Owning version of MemoryBlock.
|
|
class OwningMemoryBlock {
|
|
public:
|
|
OwningMemoryBlock() = default;
|
|
explicit OwningMemoryBlock(MemoryBlock M) : M(M) {}
|
|
OwningMemoryBlock(OwningMemoryBlock &&Other) {
|
|
M = Other.M;
|
|
Other.M = MemoryBlock();
|
|
}
|
|
OwningMemoryBlock& operator=(OwningMemoryBlock &&Other) {
|
|
M = Other.M;
|
|
Other.M = MemoryBlock();
|
|
return *this;
|
|
}
|
|
~OwningMemoryBlock() {
|
|
Memory::releaseMappedMemory(M);
|
|
}
|
|
void *base() const { return M.base(); }
|
|
size_t size() const { return M.size(); }
|
|
MemoryBlock getMemoryBlock() const { return M; }
|
|
private:
|
|
MemoryBlock M;
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
/// Debugging output for Memory::ProtectionFlags.
|
|
raw_ostream &operator<<(raw_ostream &OS, const Memory::ProtectionFlags &PF);
|
|
|
|
/// Debugging output for MemoryBlock.
|
|
raw_ostream &operator<<(raw_ostream &OS, const MemoryBlock &MB);
|
|
#endif // ifndef NDEBUG
|
|
} // end namespace sys
|
|
} // end namespace llvm
|
|
|
|
#endif
|