Files
archived-llvm/include/llvm/Analysis/AssumptionCache.h
Chandler Carruth 33d568124e [PM] Change the static object whose address is used to uniquely identify
analyses to have a common type which is enforced rather than using
a char object and a `void *` type when used as an identifier.

This has a number of advantages. First, it at least helps some of the
confusion raised in Justin Lebar's code review of why `void *` was being
used everywhere by having a stronger type that connects to documentation
about this.

However, perhaps more importantly, it addresses a serious issue where
the alignment of these pointer-like identifiers was unknown. This made
it hard to use them in pointer-like data structures. We were already
dodging this in dangerous ways to create the "all analyses" entry. In
a subsequent patch I attempted to use these with TinyPtrVector and
things fell apart in a very bad way.

And it isn't just a compile time or type system issue. Worse than that,
the actual alignment of these pointer-like opaque identifiers wasn't
guaranteed to be a useful alignment as they were just characters.

This change introduces a type to use as the "key" object whose address
forms the opaque identifier. This both forces the objects to have proper
alignment, and provides type checking that we get it right everywhere.
It also makes the types somewhat less mysterious than `void *`.

We could go one step further and introduce a truly opaque pointer-like
type to return from the `ID()` static function rather than returning
`AnalysisKey *`, but that didn't seem to be a clear win so this is just
the initial change to get to a reliably typed and aligned object serving
is a key for all the analyses.

Thanks to Richard Smith and Justin Lebar for helping pick plausible
names and avoid making this refactoring many times. =] And thanks to
Sean for the super fast review!

While here, I've tried to move away from the "PassID" nomenclature
entirely as it wasn't really helping and is overloaded with old pass
manager constructs. Now we have IDs for analyses, and key objects whose
address can be used as IDs. Where possible and clear I've shortened this
to just "ID". In a few places I kept "AnalysisID" to make it clear what
was being identified.

Differential Revision: https://reviews.llvm.org/D27031

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287783 91177308-0d34-0410-b5e6-96231b3b80d8
2016-11-23 17:53:26 +00:00

169 lines
5.6 KiB
C++

//===- llvm/Analysis/AssumptionCache.h - Track @llvm.assume ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that keeps track of @llvm.assume intrinsics in
// the functions of a module (allowing assumptions within any function to be
// found cheaply by other parts of the optimizer).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_ASSUMPTIONCACHE_H
#define LLVM_ANALYSIS_ASSUMPTIONCACHE_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include <memory>
namespace llvm {
/// \brief A cache of @llvm.assume calls within a function.
///
/// This cache provides fast lookup of assumptions within a function by caching
/// them and amortizing the cost of scanning for them across all queries. The
/// cache is also conservatively self-updating so that it will never return
/// incorrect results about a function even as the function is being mutated.
/// However, flushing the cache and rebuilding it (or explicitly updating it)
/// may allow it to discover new assumptions.
class AssumptionCache {
/// \brief The function for which this cache is handling assumptions.
///
/// We track this to lazily populate our assumptions.
Function &F;
/// \brief Vector of weak value handles to calls of the @llvm.assume
/// intrinsic.
SmallVector<WeakVH, 4> AssumeHandles;
/// \brief Flag tracking whether we have scanned the function yet.
///
/// We want to be as lazy about this as possible, and so we scan the function
/// at the last moment.
bool Scanned;
/// \brief Scan the function for assumptions and add them to the cache.
void scanFunction();
public:
/// \brief Construct an AssumptionCache from a function by scanning all of
/// its instructions.
AssumptionCache(Function &F) : F(F), Scanned(false) {}
/// \brief Add an @llvm.assume intrinsic to this function's cache.
///
/// The call passed in must be an instruction within this function and must
/// not already be in the cache.
void registerAssumption(CallInst *CI);
/// \brief Clear the cache of @llvm.assume intrinsics for a function.
///
/// It will be re-scanned the next time it is requested.
void clear() {
AssumeHandles.clear();
Scanned = false;
}
/// \brief Access the list of assumption handles currently tracked for this
/// function.
///
/// Note that these produce weak handles that may be null. The caller must
/// handle that case.
/// FIXME: We should replace this with pointee_iterator<filter_iterator<...>>
/// when we can write that to filter out the null values. Then caller code
/// will become simpler.
MutableArrayRef<WeakVH> assumptions() {
if (!Scanned)
scanFunction();
return AssumeHandles;
}
};
/// \brief A function analysis which provides an \c AssumptionCache.
///
/// This analysis is intended for use with the new pass manager and will vend
/// assumption caches for a given function.
class AssumptionAnalysis : public AnalysisInfoMixin<AssumptionAnalysis> {
friend AnalysisInfoMixin<AssumptionAnalysis>;
static AnalysisKey Key;
public:
typedef AssumptionCache Result;
AssumptionCache run(Function &F, FunctionAnalysisManager &) {
return AssumptionCache(F);
}
};
/// \brief Printer pass for the \c AssumptionAnalysis results.
class AssumptionPrinterPass : public PassInfoMixin<AssumptionPrinterPass> {
raw_ostream &OS;
public:
explicit AssumptionPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
/// \brief An immutable pass that tracks lazily created \c AssumptionCache
/// objects.
///
/// This is essentially a workaround for the legacy pass manager's weaknesses
/// which associates each assumption cache with Function and clears it if the
/// function is deleted. The nature of the AssumptionCache is that it is not
/// invalidated by any changes to the function body and so this is sufficient
/// to be conservatively correct.
class AssumptionCacheTracker : public ImmutablePass {
/// A callback value handle applied to function objects, which we use to
/// delete our cache of intrinsics for a function when it is deleted.
class FunctionCallbackVH final : public CallbackVH {
AssumptionCacheTracker *ACT;
void deleted() override;
public:
typedef DenseMapInfo<Value *> DMI;
FunctionCallbackVH(Value *V, AssumptionCacheTracker *ACT = nullptr)
: CallbackVH(V), ACT(ACT) {}
};
friend FunctionCallbackVH;
typedef DenseMap<FunctionCallbackVH, std::unique_ptr<AssumptionCache>,
FunctionCallbackVH::DMI> FunctionCallsMap;
FunctionCallsMap AssumptionCaches;
public:
/// \brief Get the cached assumptions for a function.
///
/// If no assumptions are cached, this will scan the function. Otherwise, the
/// existing cache will be returned.
AssumptionCache &getAssumptionCache(Function &F);
AssumptionCacheTracker();
~AssumptionCacheTracker() override;
void releaseMemory() override { AssumptionCaches.shrink_and_clear(); }
void verifyAnalysis() const override;
bool doFinalization(Module &) override {
verifyAnalysis();
return false;
}
static char ID; // Pass identification, replacement for typeid
};
} // end namespace llvm
#endif