Files
archived-llvm/include/llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h
Chandler Carruth 6b547686c5 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@351636 91177308-0d34-0410-b5e6-96231b3b80d8
2019-01-19 08:50:56 +00:00

737 lines
26 KiB
C++

//===- CompileOnDemandLayer.h - Compile each function on demand -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// JIT layer for breaking up modules and inserting callbacks to allow
// individual functions to be compiled on demand.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H
#define LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/Layer.h"
#include "llvm/ExecutionEngine/Orc/LazyReexports.h"
#include "llvm/ExecutionEngine/Orc/Legacy.h"
#include "llvm/ExecutionEngine/Orc/OrcError.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iterator>
#include <list>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
namespace llvm {
class Value;
namespace orc {
class ExtractingIRMaterializationUnit;
class CompileOnDemandLayer : public IRLayer {
friend class PartitioningIRMaterializationUnit;
public:
/// Builder for IndirectStubsManagers.
using IndirectStubsManagerBuilder =
std::function<std::unique_ptr<IndirectStubsManager>()>;
using GlobalValueSet = std::set<const GlobalValue *>;
/// Partitioning function.
using PartitionFunction =
std::function<Optional<GlobalValueSet>(GlobalValueSet Requested)>;
/// Off-the-shelf partitioning which compiles all requested symbols (usually
/// a single function at a time).
static Optional<GlobalValueSet> compileRequested(GlobalValueSet Requested);
/// Off-the-shelf partitioning which compiles whole modules whenever any
/// symbol in them is requested.
static Optional<GlobalValueSet> compileWholeModule(GlobalValueSet Requested);
/// Construct a CompileOnDemandLayer.
CompileOnDemandLayer(ExecutionSession &ES, IRLayer &BaseLayer,
LazyCallThroughManager &LCTMgr,
IndirectStubsManagerBuilder BuildIndirectStubsManager);
/// Sets the partition function.
void setPartitionFunction(PartitionFunction Partition);
/// Emits the given module. This should not be called by clients: it will be
/// called by the JIT when a definition added via the add method is requested.
void emit(MaterializationResponsibility R, ThreadSafeModule TSM) override;
private:
struct PerDylibResources {
public:
PerDylibResources(JITDylib &ImplD,
std::unique_ptr<IndirectStubsManager> ISMgr)
: ImplD(ImplD), ISMgr(std::move(ISMgr)) {}
JITDylib &getImplDylib() { return ImplD; }
IndirectStubsManager &getISManager() { return *ISMgr; }
private:
JITDylib &ImplD;
std::unique_ptr<IndirectStubsManager> ISMgr;
};
using PerDylibResourcesMap = std::map<const JITDylib *, PerDylibResources>;
PerDylibResources &getPerDylibResources(JITDylib &TargetD);
void cleanUpModule(Module &M);
void expandPartition(GlobalValueSet &Partition);
void emitPartition(MaterializationResponsibility R, ThreadSafeModule TSM,
IRMaterializationUnit::SymbolNameToDefinitionMap Defs);
mutable std::mutex CODLayerMutex;
IRLayer &BaseLayer;
LazyCallThroughManager &LCTMgr;
IndirectStubsManagerBuilder BuildIndirectStubsManager;
PerDylibResourcesMap DylibResources;
PartitionFunction Partition = compileRequested;
SymbolLinkagePromoter PromoteSymbols;
};
/// Compile-on-demand layer.
///
/// When a module is added to this layer a stub is created for each of its
/// function definitions. The stubs and other global values are immediately
/// added to the layer below. When a stub is called it triggers the extraction
/// of the function body from the original module. The extracted body is then
/// compiled and executed.
template <typename BaseLayerT,
typename CompileCallbackMgrT = JITCompileCallbackManager,
typename IndirectStubsMgrT = IndirectStubsManager>
class LegacyCompileOnDemandLayer {
private:
template <typename MaterializerFtor>
class LambdaMaterializer final : public ValueMaterializer {
public:
LambdaMaterializer(MaterializerFtor M) : M(std::move(M)) {}
Value *materialize(Value *V) final { return M(V); }
private:
MaterializerFtor M;
};
template <typename MaterializerFtor>
LambdaMaterializer<MaterializerFtor>
createLambdaMaterializer(MaterializerFtor M) {
return LambdaMaterializer<MaterializerFtor>(std::move(M));
}
// Provide type-erasure for the Modules and MemoryManagers.
template <typename ResourceT>
class ResourceOwner {
public:
ResourceOwner() = default;
ResourceOwner(const ResourceOwner &) = delete;
ResourceOwner &operator=(const ResourceOwner &) = delete;
virtual ~ResourceOwner() = default;
virtual ResourceT& getResource() const = 0;
};
template <typename ResourceT, typename ResourcePtrT>
class ResourceOwnerImpl : public ResourceOwner<ResourceT> {
public:
ResourceOwnerImpl(ResourcePtrT ResourcePtr)
: ResourcePtr(std::move(ResourcePtr)) {}
ResourceT& getResource() const override { return *ResourcePtr; }
private:
ResourcePtrT ResourcePtr;
};
template <typename ResourceT, typename ResourcePtrT>
std::unique_ptr<ResourceOwner<ResourceT>>
wrapOwnership(ResourcePtrT ResourcePtr) {
using RO = ResourceOwnerImpl<ResourceT, ResourcePtrT>;
return llvm::make_unique<RO>(std::move(ResourcePtr));
}
struct LogicalDylib {
struct SourceModuleEntry {
std::unique_ptr<Module> SourceMod;
std::set<Function*> StubsToClone;
};
using SourceModulesList = std::vector<SourceModuleEntry>;
using SourceModuleHandle = typename SourceModulesList::size_type;
LogicalDylib() = default;
LogicalDylib(VModuleKey K, std::shared_ptr<SymbolResolver> BackingResolver,
std::unique_ptr<IndirectStubsMgrT> StubsMgr)
: K(std::move(K)), BackingResolver(std::move(BackingResolver)),
StubsMgr(std::move(StubsMgr)) {}
SourceModuleHandle addSourceModule(std::unique_ptr<Module> M) {
SourceModuleHandle H = SourceModules.size();
SourceModules.push_back(SourceModuleEntry());
SourceModules.back().SourceMod = std::move(M);
return H;
}
Module& getSourceModule(SourceModuleHandle H) {
return *SourceModules[H].SourceMod;
}
std::set<Function*>& getStubsToClone(SourceModuleHandle H) {
return SourceModules[H].StubsToClone;
}
JITSymbol findSymbol(BaseLayerT &BaseLayer, const std::string &Name,
bool ExportedSymbolsOnly) {
if (auto Sym = StubsMgr->findStub(Name, ExportedSymbolsOnly))
return Sym;
for (auto BLK : BaseLayerVModuleKeys)
if (auto Sym = BaseLayer.findSymbolIn(BLK, Name, ExportedSymbolsOnly))
return Sym;
else if (auto Err = Sym.takeError())
return std::move(Err);
return nullptr;
}
Error removeModulesFromBaseLayer(BaseLayerT &BaseLayer) {
for (auto &BLK : BaseLayerVModuleKeys)
if (auto Err = BaseLayer.removeModule(BLK))
return Err;
return Error::success();
}
VModuleKey K;
std::shared_ptr<SymbolResolver> BackingResolver;
std::unique_ptr<IndirectStubsMgrT> StubsMgr;
SymbolLinkagePromoter PromoteSymbols;
SourceModulesList SourceModules;
std::vector<VModuleKey> BaseLayerVModuleKeys;
};
public:
/// Module partitioning functor.
using PartitioningFtor = std::function<std::set<Function*>(Function&)>;
/// Builder for IndirectStubsManagers.
using IndirectStubsManagerBuilderT =
std::function<std::unique_ptr<IndirectStubsMgrT>()>;
using SymbolResolverGetter =
std::function<std::shared_ptr<SymbolResolver>(VModuleKey K)>;
using SymbolResolverSetter =
std::function<void(VModuleKey K, std::shared_ptr<SymbolResolver> R)>;
/// Construct a compile-on-demand layer instance.
LegacyCompileOnDemandLayer(ExecutionSession &ES, BaseLayerT &BaseLayer,
SymbolResolverGetter GetSymbolResolver,
SymbolResolverSetter SetSymbolResolver,
PartitioningFtor Partition,
CompileCallbackMgrT &CallbackMgr,
IndirectStubsManagerBuilderT CreateIndirectStubsManager,
bool CloneStubsIntoPartitions = true)
: ES(ES), BaseLayer(BaseLayer),
GetSymbolResolver(std::move(GetSymbolResolver)),
SetSymbolResolver(std::move(SetSymbolResolver)),
Partition(std::move(Partition)), CompileCallbackMgr(CallbackMgr),
CreateIndirectStubsManager(std::move(CreateIndirectStubsManager)),
CloneStubsIntoPartitions(CloneStubsIntoPartitions) {}
~LegacyCompileOnDemandLayer() {
// FIXME: Report error on log.
while (!LogicalDylibs.empty())
consumeError(removeModule(LogicalDylibs.begin()->first));
}
/// Add a module to the compile-on-demand layer.
Error addModule(VModuleKey K, std::unique_ptr<Module> M) {
assert(!LogicalDylibs.count(K) && "VModuleKey K already in use");
auto I = LogicalDylibs.insert(
LogicalDylibs.end(),
std::make_pair(K, LogicalDylib(K, GetSymbolResolver(K),
CreateIndirectStubsManager())));
return addLogicalModule(I->second, std::move(M));
}
/// Add extra modules to an existing logical module.
Error addExtraModule(VModuleKey K, std::unique_ptr<Module> M) {
return addLogicalModule(LogicalDylibs[K], std::move(M));
}
/// Remove the module represented by the given key.
///
/// This will remove all modules in the layers below that were derived from
/// the module represented by K.
Error removeModule(VModuleKey K) {
auto I = LogicalDylibs.find(K);
assert(I != LogicalDylibs.end() && "VModuleKey K not valid here");
auto Err = I->second.removeModulesFromBaseLayer(BaseLayer);
LogicalDylibs.erase(I);
return Err;
}
/// Search for the given named symbol.
/// @param Name The name of the symbol to search for.
/// @param ExportedSymbolsOnly If true, search only for exported symbols.
/// @return A handle for the given named symbol, if it exists.
JITSymbol findSymbol(StringRef Name, bool ExportedSymbolsOnly) {
for (auto &KV : LogicalDylibs) {
if (auto Sym = KV.second.StubsMgr->findStub(Name, ExportedSymbolsOnly))
return Sym;
if (auto Sym = findSymbolIn(KV.first, Name, ExportedSymbolsOnly))
return Sym;
else if (auto Err = Sym.takeError())
return std::move(Err);
}
return BaseLayer.findSymbol(Name, ExportedSymbolsOnly);
}
/// Get the address of a symbol provided by this layer, or some layer
/// below this one.
JITSymbol findSymbolIn(VModuleKey K, const std::string &Name,
bool ExportedSymbolsOnly) {
assert(LogicalDylibs.count(K) && "VModuleKey K is not valid here");
return LogicalDylibs[K].findSymbol(BaseLayer, Name, ExportedSymbolsOnly);
}
/// Update the stub for the given function to point at FnBodyAddr.
/// This can be used to support re-optimization.
/// @return true if the function exists and the stub is updated, false
/// otherwise.
//
// FIXME: We should track and free associated resources (unused compile
// callbacks, uncompiled IR, and no-longer-needed/reachable function
// implementations).
Error updatePointer(std::string FuncName, JITTargetAddress FnBodyAddr) {
//Find out which logical dylib contains our symbol
auto LDI = LogicalDylibs.begin();
for (auto LDE = LogicalDylibs.end(); LDI != LDE; ++LDI) {
if (auto LMResources =
LDI->getLogicalModuleResourcesForSymbol(FuncName, false)) {
Module &SrcM = LMResources->SourceModule->getResource();
std::string CalledFnName = mangle(FuncName, SrcM.getDataLayout());
if (auto Err = LMResources->StubsMgr->updatePointer(CalledFnName,
FnBodyAddr))
return Err;
return Error::success();
}
}
return make_error<JITSymbolNotFound>(FuncName);
}
private:
Error addLogicalModule(LogicalDylib &LD, std::unique_ptr<Module> SrcMPtr) {
// Rename anonymous globals and promote linkage to ensure that everything
// will resolve properly after we partition SrcM.
LD.PromoteSymbols(*SrcMPtr);
// Create a logical module handle for SrcM within the logical dylib.
Module &SrcM = *SrcMPtr;
auto LMId = LD.addSourceModule(std::move(SrcMPtr));
// Create stub functions.
const DataLayout &DL = SrcM.getDataLayout();
{
typename IndirectStubsMgrT::StubInitsMap StubInits;
for (auto &F : SrcM) {
// Skip declarations.
if (F.isDeclaration())
continue;
// Skip weak functions for which we already have definitions.
auto MangledName = mangle(F.getName(), DL);
if (F.hasWeakLinkage() || F.hasLinkOnceLinkage()) {
if (auto Sym = LD.findSymbol(BaseLayer, MangledName, false))
continue;
else if (auto Err = Sym.takeError())
return std::move(Err);
}
// Record all functions defined by this module.
if (CloneStubsIntoPartitions)
LD.getStubsToClone(LMId).insert(&F);
// Create a callback, associate it with the stub for the function,
// and set the compile action to compile the partition containing the
// function.
auto CompileAction = [this, &LD, LMId, &F]() -> JITTargetAddress {
if (auto FnImplAddrOrErr = this->extractAndCompile(LD, LMId, F))
return *FnImplAddrOrErr;
else {
// FIXME: Report error, return to 'abort' or something similar.
consumeError(FnImplAddrOrErr.takeError());
return 0;
}
};
if (auto CCAddr =
CompileCallbackMgr.getCompileCallback(std::move(CompileAction)))
StubInits[MangledName] =
std::make_pair(*CCAddr, JITSymbolFlags::fromGlobalValue(F));
else
return CCAddr.takeError();
}
if (auto Err = LD.StubsMgr->createStubs(StubInits))
return Err;
}
// If this module doesn't contain any globals, aliases, or module flags then
// we can bail out early and avoid the overhead of creating and managing an
// empty globals module.
if (SrcM.global_empty() && SrcM.alias_empty() &&
!SrcM.getModuleFlagsMetadata())
return Error::success();
// Create the GlobalValues module.
auto GVsM = llvm::make_unique<Module>((SrcM.getName() + ".globals").str(),
SrcM.getContext());
GVsM->setDataLayout(DL);
ValueToValueMapTy VMap;
// Clone global variable decls.
for (auto &GV : SrcM.globals())
if (!GV.isDeclaration() && !VMap.count(&GV))
cloneGlobalVariableDecl(*GVsM, GV, &VMap);
// And the aliases.
for (auto &A : SrcM.aliases())
if (!VMap.count(&A))
cloneGlobalAliasDecl(*GVsM, A, VMap);
// Clone the module flags.
cloneModuleFlagsMetadata(*GVsM, SrcM, VMap);
// Now we need to clone the GV and alias initializers.
// Initializers may refer to functions declared (but not defined) in this
// module. Build a materializer to clone decls on demand.
auto Materializer = createLambdaMaterializer(
[&LD, &GVsM](Value *V) -> Value* {
if (auto *F = dyn_cast<Function>(V)) {
// Decls in the original module just get cloned.
if (F->isDeclaration())
return cloneFunctionDecl(*GVsM, *F);
// Definitions in the original module (which we have emitted stubs
// for at this point) get turned into a constant alias to the stub
// instead.
const DataLayout &DL = GVsM->getDataLayout();
std::string FName = mangle(F->getName(), DL);
unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(F->getType());
JITTargetAddress StubAddr =
LD.StubsMgr->findStub(FName, false).getAddress();
ConstantInt *StubAddrCI =
ConstantInt::get(GVsM->getContext(), APInt(PtrBitWidth, StubAddr));
Constant *Init = ConstantExpr::getCast(Instruction::IntToPtr,
StubAddrCI, F->getType());
return GlobalAlias::create(F->getFunctionType(),
F->getType()->getAddressSpace(),
F->getLinkage(), F->getName(),
Init, GVsM.get());
}
// else....
return nullptr;
});
// Clone the global variable initializers.
for (auto &GV : SrcM.globals())
if (!GV.isDeclaration())
moveGlobalVariableInitializer(GV, VMap, &Materializer);
// Clone the global alias initializers.
for (auto &A : SrcM.aliases()) {
auto *NewA = cast<GlobalAlias>(VMap[&A]);
assert(NewA && "Alias not cloned?");
Value *Init = MapValue(A.getAliasee(), VMap, RF_None, nullptr,
&Materializer);
NewA->setAliasee(cast<Constant>(Init));
}
// Build a resolver for the globals module and add it to the base layer.
auto LegacyLookup = [this, &LD](const std::string &Name) -> JITSymbol {
if (auto Sym = LD.StubsMgr->findStub(Name, false))
return Sym;
if (auto Sym = LD.findSymbol(BaseLayer, Name, false))
return Sym;
else if (auto Err = Sym.takeError())
return std::move(Err);
return nullptr;
};
auto GVsResolver = createSymbolResolver(
[&LD, LegacyLookup](const SymbolNameSet &Symbols) {
auto RS = getResponsibilitySetWithLegacyFn(Symbols, LegacyLookup);
if (!RS) {
logAllUnhandledErrors(
RS.takeError(), errs(),
"CODLayer/GVsResolver responsibility set lookup failed: ");
return SymbolNameSet();
}
if (RS->size() == Symbols.size())
return *RS;
SymbolNameSet NotFoundViaLegacyLookup;
for (auto &S : Symbols)
if (!RS->count(S))
NotFoundViaLegacyLookup.insert(S);
auto RS2 =
LD.BackingResolver->getResponsibilitySet(NotFoundViaLegacyLookup);
for (auto &S : RS2)
(*RS).insert(S);
return *RS;
},
[this, &LD,
LegacyLookup](std::shared_ptr<AsynchronousSymbolQuery> Query,
SymbolNameSet Symbols) {
auto NotFoundViaLegacyLookup =
lookupWithLegacyFn(ES, *Query, Symbols, LegacyLookup);
return LD.BackingResolver->lookup(Query, NotFoundViaLegacyLookup);
});
SetSymbolResolver(LD.K, std::move(GVsResolver));
if (auto Err = BaseLayer.addModule(LD.K, std::move(GVsM)))
return Err;
LD.BaseLayerVModuleKeys.push_back(LD.K);
return Error::success();
}
static std::string mangle(StringRef Name, const DataLayout &DL) {
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
}
return MangledName;
}
Expected<JITTargetAddress>
extractAndCompile(LogicalDylib &LD,
typename LogicalDylib::SourceModuleHandle LMId,
Function &F) {
Module &SrcM = LD.getSourceModule(LMId);
// If F is a declaration we must already have compiled it.
if (F.isDeclaration())
return 0;
// Grab the name of the function being called here.
std::string CalledFnName = mangle(F.getName(), SrcM.getDataLayout());
JITTargetAddress CalledAddr = 0;
auto Part = Partition(F);
if (auto PartKeyOrErr = emitPartition(LD, LMId, Part)) {
auto &PartKey = *PartKeyOrErr;
for (auto *SubF : Part) {
std::string FnName = mangle(SubF->getName(), SrcM.getDataLayout());
if (auto FnBodySym = BaseLayer.findSymbolIn(PartKey, FnName, false)) {
if (auto FnBodyAddrOrErr = FnBodySym.getAddress()) {
JITTargetAddress FnBodyAddr = *FnBodyAddrOrErr;
// If this is the function we're calling record the address so we can
// return it from this function.
if (SubF == &F)
CalledAddr = FnBodyAddr;
// Update the function body pointer for the stub.
if (auto EC = LD.StubsMgr->updatePointer(FnName, FnBodyAddr))
return 0;
} else
return FnBodyAddrOrErr.takeError();
} else if (auto Err = FnBodySym.takeError())
return std::move(Err);
else
llvm_unreachable("Function not emitted for partition");
}
LD.BaseLayerVModuleKeys.push_back(PartKey);
} else
return PartKeyOrErr.takeError();
return CalledAddr;
}
template <typename PartitionT>
Expected<VModuleKey>
emitPartition(LogicalDylib &LD,
typename LogicalDylib::SourceModuleHandle LMId,
const PartitionT &Part) {
Module &SrcM = LD.getSourceModule(LMId);
// Create the module.
std::string NewName = SrcM.getName();
for (auto *F : Part) {
NewName += ".";
NewName += F->getName();
}
auto M = llvm::make_unique<Module>(NewName, SrcM.getContext());
M->setDataLayout(SrcM.getDataLayout());
ValueToValueMapTy VMap;
auto Materializer = createLambdaMaterializer([&LD, &LMId,
&M](Value *V) -> Value * {
if (auto *GV = dyn_cast<GlobalVariable>(V))
return cloneGlobalVariableDecl(*M, *GV);
if (auto *F = dyn_cast<Function>(V)) {
// Check whether we want to clone an available_externally definition.
if (!LD.getStubsToClone(LMId).count(F))
return cloneFunctionDecl(*M, *F);
// Ok - we want an inlinable stub. For that to work we need a decl
// for the stub pointer.
auto *StubPtr = createImplPointer(*F->getType(), *M,
F->getName() + "$stub_ptr", nullptr);
auto *ClonedF = cloneFunctionDecl(*M, *F);
makeStub(*ClonedF, *StubPtr);
ClonedF->setLinkage(GlobalValue::AvailableExternallyLinkage);
ClonedF->addFnAttr(Attribute::AlwaysInline);
return ClonedF;
}
if (auto *A = dyn_cast<GlobalAlias>(V)) {
auto *Ty = A->getValueType();
if (Ty->isFunctionTy())
return Function::Create(cast<FunctionType>(Ty),
GlobalValue::ExternalLinkage, A->getName(),
M.get());
return new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage,
nullptr, A->getName(), nullptr,
GlobalValue::NotThreadLocal,
A->getType()->getAddressSpace());
}
return nullptr;
});
// Create decls in the new module.
for (auto *F : Part)
cloneFunctionDecl(*M, *F, &VMap);
// Move the function bodies.
for (auto *F : Part)
moveFunctionBody(*F, VMap, &Materializer);
auto K = ES.allocateVModule();
auto LegacyLookup = [this, &LD](const std::string &Name) -> JITSymbol {
return LD.findSymbol(BaseLayer, Name, false);
};
// Create memory manager and symbol resolver.
auto Resolver = createSymbolResolver(
[&LD, LegacyLookup](const SymbolNameSet &Symbols) {
auto RS = getResponsibilitySetWithLegacyFn(Symbols, LegacyLookup);
if (!RS) {
logAllUnhandledErrors(
RS.takeError(), errs(),
"CODLayer/SubResolver responsibility set lookup failed: ");
return SymbolNameSet();
}
if (RS->size() == Symbols.size())
return *RS;
SymbolNameSet NotFoundViaLegacyLookup;
for (auto &S : Symbols)
if (!RS->count(S))
NotFoundViaLegacyLookup.insert(S);
auto RS2 =
LD.BackingResolver->getResponsibilitySet(NotFoundViaLegacyLookup);
for (auto &S : RS2)
(*RS).insert(S);
return *RS;
},
[this, &LD, LegacyLookup](std::shared_ptr<AsynchronousSymbolQuery> Q,
SymbolNameSet Symbols) {
auto NotFoundViaLegacyLookup =
lookupWithLegacyFn(ES, *Q, Symbols, LegacyLookup);
return LD.BackingResolver->lookup(Q,
std::move(NotFoundViaLegacyLookup));
});
SetSymbolResolver(K, std::move(Resolver));
if (auto Err = BaseLayer.addModule(std::move(K), std::move(M)))
return std::move(Err);
return K;
}
ExecutionSession &ES;
BaseLayerT &BaseLayer;
SymbolResolverGetter GetSymbolResolver;
SymbolResolverSetter SetSymbolResolver;
PartitioningFtor Partition;
CompileCallbackMgrT &CompileCallbackMgr;
IndirectStubsManagerBuilderT CreateIndirectStubsManager;
std::map<VModuleKey, LogicalDylib> LogicalDylibs;
bool CloneStubsIntoPartitions;
};
} // end namespace orc
} // end namespace llvm
#endif // LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H